Date
|
Lecture slides
|
Python scripts with assignments
|
Datasets
|
Tutorials
|
8.10.2019
|
Introduction
Data
exploration
|
assignement-0-python
assignement-0-numpy
assignement-0-numpy-matplotlib
assignement-0-pandas
assignment-1
|
kc_house_data.csv.zip
info
on kc_house
|
HowToStart
DS-cheatsheet_numpy.pdf
DS_cheatsheet_matplotlib.pdf
DS_cheatsheet_jupyter_notebook.pdf
DS_cheatsheet_pandas.pdf
|
15.10.2019 |
Regression I
|
assignment-2
|
|
S.Rashki
python-machine-learning-book
rashka_ch04.ipynb
rashka_ch10.ipynb
|
22.10.2019 |
Regression II
|
assignment-3
|
|
numpy
tutorial
matrix
algebra tutorial |
29.10.2019
|
Classification I
|
assignment-4
|
amazon_baby.csv.zip
|
scikit-learn:
LogisticRegression |
5.11.2019 |
Classification
II
|
|
|
|
|
|
|
|
|
12.11.2019 |
Retrieval&clustering
I
|
assignment-5
or
PCA_Clustering
slides
|
people_wiki.cvs.zip
mnist_train.csv.gz
clusters.gif.gz
pca.gif.gz
|
http://cs229.stanford.edu/notes/cs229-notes10.pdf
|
19.11.2019
|
Retrieval&clustering
II
|
|
|
|
Switching
to physics
|
Switching
to physics
|
Switching
to physics |
Switching
to physics |
Switching
to physics |
Material for
reading: |
=>
G. Cowan, "Statistical Data Analysis".
=>
F. James, "Statistical Methods in
Experimental Physics".
=>
J. Narsky, F. Porter, "Statistical Analysis Techniques
in Particle Physics".
=> K.
Cranmer, "Practical statistics for LHC"
|
|
|
|
Advanced projects: (Root based,
physics)
|
BDTs
and TMVA
by I.
Coadou, IN2P3
School on Statistics, 2018 |
slides
Apply.C
Train.C
dataSchachbrett.root
follow exercises there
|
|
root-numpy,
examples: write.py, read.py
HowToActivate |
|
Interval
Estimation and Hypotheses Testing
by T.
Dorigo, IN2P3 School on Statistics, 2018
|
slides
follow exercises there
|
|
|
|
Unfolding
S.
Schmitt, D. Britzger, DESY Scool 2014
|
root
based: RooUnfold
slides
python based: pynfold
follow exercises there
|
|
|
|
Higgs
signal at LHC
by I. van Vulpen, Terascale Statistics
School, DESY 2018
|
slides,
exercises
doc
DesyCode2018.tgz
follow exercises there
|
|
|
|
Roofit
and Roostats
by V. Verkerke, Terascale
Statistics School, DESY 201 |
slides,
part I
exercises,
part I
macros, part I
slides,
part II
exercises,
part II
macros, partII
follow exercises there
|
|
|
Assignments for your
choice, complete 3 :
(Python based)
|
Principal Component
Analysis
slides
|
PCA_Clustering.ipynb |
|
|
|
Monte
Carlo methods
by M. Chrzaszcz, ETH Zurich
|
MC.ipynb
|
|
|
|
Bayesian inference
|
Bayesian_Inference.ipynb
|
|
|
|
Unfolding
|
Unfolding.ipynb
|
|
|
|
Non-parametric inference
|
Non_parametric.ipynb
|
|
|
|
Gaussian processes
|
Gaussian_processes.ipynb
monthly_in_situ_co2_mlo.csv
|
|
|
26.11.2019 |
Statistics and Data
Analysis-part 1
|
exercises-part_1
|
|
|
3.12.2019
|
Statistics and Data
Analysis-part 2
Statistics and
Data Analysis-part 3 |
exercises-part_2
exercises-part_3
|
|
|
10.12.2019
|
Statistics and Data
Analysis-part 4 |
exercises-part_4
|
|
|
16.12.2019
|
Zajęcia
odwołane
|
|
|
|
7.01.2020
|
Modeling,
simulation, Monte Carlo methods
|
MC.ipynb
|
|
|
14.01.2020
|
Zajęcia
odwołane
|
|
|
|
21.01.2020
|
Machine
Learning and Multivariate analyses
|
Statistical
methods for LHC
|
|
|
28.01.2020
|
Unfolding
algorithms and RooUnfold
|
|
|
|