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Lectures Synopsis

Lecture 1: Back to basics
Introduction, Probability distribution functions, Binomial
distributions, Poisson distribution

Lecture 2: The Gaussian Limit
The central limit theorem, Gaussian errors, Error
propagation, Combination of measurements, Multi-
dimensional Gaussian errors, Error Matrix

Lecture 3. Fitting and Hypothesis Testing
The 5 test, Likelihood functions, Fitting, Binned maximum

likelihood, Unbinned maximum likelihood

Lecture 4. Dark Arts
Bayesian statistics, Confidence intervals, systematic errors.



Experimental Physics

* Experimental science concerned with two types of experimental measurement:
+ Measurement of a quantity : parameter estimation

+ Tests of a theory/model : hypothesis testing

* For parameter estimation we usually have some data (a set of measurements) and
from which we want to obtain
+ The best estimate of the true parameter; “the measured value”
+ The best estimate of how well we have measured the parameter; “the uncertainty”

* For hypothesis testing we usually have some data (a set of measurements) and
one or more theoretical models, and want
+ A measure of how consistent our data are with the model; “a probability”
+ Which model best describes our data; “a relative probability”

To address the above questions we need to
use and understand statistical techniques

* In these 5%1 lectures we will cover most aspects of statistics as applied to
experimental high energy physics:

+ Nothing will be stated without proof (or at least justification).
+ Understanding the derivations will help you to understand the basis behind the

statistical techniques



The path to enlightenment:

* [f you measure something always quote an uncertainty
* Understand what you are doing and why

= Don’ t forget that you are usually estimating the uncertainty

- e.g. don’ t worry too much about whether an effect is 2.90 and 3.1c

unlikely you can estimate the uncertainty that well
= Don’ t worry too much about the difference between Bayesian and
Frequentist approaches
- often give same results
- if the results are different — usually means data are weak
— s0 do another experiment



Three Types of Errors

Statistical Uncertainties:

* Random fluctuations
+ e.g. shot noise, measuring small currents,
how many electrons arrive in a fixed time
+ Tossing a coin N times, how many heads

Systematic Uncertianies:

* Biases
+ e.g. energy calibration wrong
+ Thermal expansion of measuring device
+ Imperfect theoretical predications

Blunders, i.e. errors:

* Mistakes
+ Forgot to include a particular background
in analysis
+ Bugs in analysis code

o

.

The main topic of
these lectures

Discussed in the last
lecture

Not discussed, never
happen...




Probability Distributions

* Suppose we are trying to measure some quantity with true value X( the result
of a single measurement follows a probability density function (PDF) which may
or may not be of a known form.
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Mean and Variance

* Can now define a few important properties of the PDF

Mean: = (x) = / xP(x)dx “average of many measurements”

Mean of squares: (x*) = /-sz(x)d.x

Variance: Var(x) = 0% = ((x — u)?) = /(.r— 1)*P(x)dx

* The variance represents the width of the PDF about the mean

* Convenient to express this in terms of the standard deviation ¢

* U and ¢ describe the mean and “width” of a PDF

* Sometimes you will see the 3™ and 4" moments used (skewness, kurtosis)
(these are not particularly useful)

u
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Estimating the Mean and Variance

* In general do not know the PDF - instead have a number of measurements
distributed according to the PDF

* Unless one has a infinite number of measurements cannot fully reconstruct
the PDF (not a particularly useful thing to do anyway)

* But can obtain unbiased estimates of the mean and variance

“Population” “Sample”

H : Measurements
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* Can also define sample variance

* How does sample variance §

1 I
2 —\2
s7==Y (xi—%)
n -
i=1
: relate to true variance 0‘2 ?

* Can calculate average value of variance
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* Hence, on average, the sample variance is a factor n;;:l smaller than the true variance
* For an unbiased estimate of the true variance for a single measurement use:

1
2 _
=l T

n

Y (xi—3%)°

i=1

* For the best unbiased estimate of the true

mean use the sample mean:

]
X = —
n

)i
i

* What is the “error” (i.e. square root of the variance) on the sample mean ?

Var(x) = o7 = ((x—p)?)
= (CXu-w?)
- n_EH(XEHH(Hn;] (XX )it j — 2HAE) 4 1
) n—1 .,
= L+——pi-p
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* Hence the uncertainty on the mean is \/r_‘t smaller than the uncertainty on a single

measurement o

Oy = —
X \/l_’l

* Note: this is general result — doesn’t rely on distribution

* Of course we only have an estimate of O , so our best (unbiased) estimate of the
uncertainty on the mean is:
O = s
X NG n—1

* There is one final question we can ask... what is the uncertainty on our estimate
of the uncertainty. The answer to this question depends on the form of the

PDF.
- We' Il come back to this in the context of a Gaussian distribution.....

QUESTION 2

Given 5 measurements of a quantity x: 10.2, 5.5, 6.7, 3.4, 3.5

What is the best estimate of X and what is the estimated uncertainty?
For later, how well do you know the uncertainty?
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Special Probability Distributions

* So far, dealt in generalities
* Now consider some special distributions...
* Simplest case “Binomial distribution”
+ Random process with two outcomes with probabilities p and (1-p)
+ Repeat process a fixed number of times = distribution of outcomes
* Next simplest, “Poisson distribution”
+ Discrete random process with fixed mean
* Then, “Gaussian distribution”
+ Continuous “high statistics” limit

“infinitesimal limit”

Binomial - |Poisson

“large N limit”

Gaussian

12



Binomial Distribution

* Applies for a fixed number of trials when there are two possible outcomes, e.g.
+ Toss an unbiased coin ten times, how many heads ?

P(r;n) = "Cp"(1—p)""
_ Z;:Oﬂrp iﬂ;
n!

= L -n
_ r—1) {n r) (”_]N

anp (r=1)n—r)! (n=0 term is zero)
. n—1-r") (H_l)‘
- ”p):p P Pln—1—1r)! (letr’ =r-1)

= anP(r;n— 1) «— normalised to unity

= H,’J

* Hence X=np (hardly a surprising result)
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Variance of the binomial distribution

_ : r— n—r (H_IV
= =) G

n—l (n—1)!

= np) (+ Dp"(1—py=" Pn—1—17)!

n—1

n—1
= np EP(r;n— 1)+np Z rP(rin—1)
r=[} I'=ﬂ

= np+npx(n—1)p

{rz} = npnp—p+1)
— Var(r) = (r*)=u*=np(np—p+1)+np—(np)’
= np(1-p)

Var(r) =np(1—p)
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*What is the meaning of G ?
= By definition, G, is root of the mean square (rms) deviation from the mean

B 2\ 4
o= ((r—pn)):?
* For a binomial distribution ¢ = \/np(1 — p)

* |t provides a well-defined measure of the spread about the mean

* For above values: 62 %, 57 %, and 66 % of distribution within 1 ¢ of mean

Answer depends on n and p, but roughly ~55-70%
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Example: Efficiency Uncertainty

* Suppose you use MC events to determine a selection efficiency
+ m out n events pass some selection, what is the efficiency and uncertainty

* This is a binomial process (fixed number of trials). Hence the number of events
passing the selection will be distributed as:

P(m;n) = "Cue"(1—¢g)"™"

* Want to quote best estimate of the efficiency and the best estimate of the
uncertainty (i.e. square root of the variance).

m
* Best estimate of efficiency is “clearly”: |g, = —
n

* From properties of binomial distribution expect

1
2 2

— 1
c° = (&%) ne(l—¢€)x —

;2 - el-¢g (= M)

n

e.g. 90 out of 100 events pass trigger requirements,

£=10.90x0.03

16



A more advanced analysis

m

* Asserted that our best estimate of the true efficiency € is € = —

Suppose we repeated the experiment many times
(m)  ne

(&) = n n -

so on average this procedure gives an unbiased estimate of £
* What about our estimate for the variance ?

52 — &(l1—¢&) mn—m)

- 3
n n
Again suppose we repeated the experiment many times
2
<0.2> _ H<m> - <m )
n3 n3
n’e  n’e’>—ne*+ne

3~

n n3
e(l—e¢ e(l—¢ n+1
(1-¢) e(-e)_nt

e(l—e¢
. p ( )
1
n

n

GOOD

GOOD ENOUGH
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a problem ...

) e(l—eg)

* Suppose you want to estimate a trigger efficiency based on 100 MC events
* |f all the MC events pass the trigger selection...

* best estimate of efficiency is 100 %

* but what about the uncertainty on the efficiency ?

* the above equation would suggest zero

= this is clearly nhonsense

= so what’ s wrong ?

We’ Il come back to this in lecture 4...
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The Poisson Distribution

* Probably the most important distribution for experimental particle physicists
* Appropriate for discrete counts at a fixed rate
" e.g. in time t, on average expect u events

= Bt
p(”?”)_ n!

* The form of this equation is not immediately obvious (unlike that of the binomial
distribution) — so (for completeness) derive the Poisson Distribution...

*|n time t, on average expect pu events. Now divide t into N intervals of &t
- Probability of one event on &t is 8p

ot u

Sp=p—==L
Ep“r N

- Probability of getting two events is negligibly small
« Hence the problem has been transformed into N trials each with two discrete
outcomes, i.e. a binomial distribution

N!
n!(N—n)!

p(n;p) = lim 8p"(1—8p)""
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The Poisson Distribution

N!
_ ne1 o N—n
P = (6p)"(1-3dp) (N )1
InP = nlndép+ (N—n)ln(l1—98p)+InN!—Inn!—In(N —n)!
First consider: (N—n)In(1—-0p) = (N—n)[—6p+(_;_3p)-.2;[;_‘+...]
~ —NOop+nop
n
N _H —I_ E” llllllllllllllllllllllllllllllllllllllllllll
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N!
Now consider: In Non) NInN—N—(N—n)In(N—n)+(N—n)
- NlnNJrn—(N—n)ln(l - E) —(N—n)InN
N
~ nlnN+n+ (I‘\.f’—n)E
" N
2
B )
= InN +N
, N! .
hence JTN{(N_H)!} — N
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N!

So finall N) = "(1-8p) "
o finally, P(n;N) (6p)"(1—0p) n!(N—n)!
B Nﬂ “ n B Nﬂ‘
: : _ n,—u _ (EF o
becomes: P(n;u) = (op)e o (N) ¢
) = Mt
P(H!.Iu) - ﬂ'!

* Check that the Poisson distribution is normalised...

i P(n;p)
n=()

TR

1M 2!

e M1+ =+ =—+..
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Properties of the Poisson Distribution
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e.g. u=1.25, 2.5, 5.0

Prob(r ; u=1.25)
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* Suppose | am trying to measure a cross section for a process

» observe [NV events for an integrated luminosity of A
* for this luminosity the expected number of events is

U=o0
* observed number of events will be Poisson distributed according to U
* our best unbiased estimate of [l is simply the number of observed events

He =N

* for a Poisson distribution the variance is equal to the mean
* hence we can estimate the uncertainty on the estimated mean as /N

U, =N++/N
o= 5 (N+VN)

NOTE: if you observe N events, the estimated uncertainty on the mean of the
underlying Poisson distribution is VN
: it is not the “error” on N — there is no uncertainty on what you counted

* Poisson fluctuations are the ultimate limit to any counting experiment
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* Suppose a colleague makes a histogram of event counts as a function of y
* the histogram includes errors bars (made by root)

~F.‘|5...|...|...|...|...
Q L
2
: -
g ——
w 10F -
. ——
—y— —y—
! +-
D.llllll Illllllll+

0 0.2 0.4 0.6 0.8 1

* How should you interpret the error bars
* If symmetric then probably \/ﬁ
= j.e. they indicate the expected “spread” assuming the mean expected
counts in that bin are equal to the observed value
* For large N this is not unreasonable
* But for small N this doesn’ t make much sense...
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High Statistics Limit of Poisson Distribution

n,—u
P(mp) =
let f(x) = InP(x;u)
= —u—Inx!4+xlnu
~ —U+xInx—x+xlnu
hence f'(x) = Inu—Inx
filx) = =1/x

Taylor expansion about mean:
P00 = F)+ (o= RS () g (= 1S (1) + 3 (= ) ().

B (x—p)?  (x—p)
- f(j.i)— 2” + 6u2

+ ...

_ m)?
Px;u)~ ke 2
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* Even for relatively small n, (apart from in the extreme tails), a Gaussian
Distribution is a pretty good approximation

*Problem 3: for “fun” show that the high statistics limit of a binomial distribution is
a Gaussian of width o2=np(1-p)
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* Investigate the treatment of statistics in the Gaussian Limit
The central limit theorem
Gaussian errors
Error propagation
Combination of measurements
Multi-dimensional Gaussian errors
Error Matrix
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