INTRODUCTION
TO DATA SCIENCE

This lecture is
based on course by E. Fox and C. Guestrin, Univ of Washington



What is retrieval?
=

Search for related items

Nearest

Neighbor

Input x,{x}: T
features for Compute
query point :
N dista nces'to Output xNN:
features of other x "neare;t" point or
all other databoints set of points to query
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What is retrieval?
N

Retrieve "nearest neighbor” article

Space of all articles,
organized by similarity of text

T

query article
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What is retrieval?
I
Or set of nearest neighbors

Space of all articles,
organized by similarity of text
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Retrieval applications
s

Just about everything...

Products

StrSeamlng content: Social networks
ongs

News articles (people you might want

Movies
TV shows

I
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What is clustering?
—

Discover groups of similar inputs

#M# Intelligence

Input {x}: I

featL'thes'for Separate
oints in : .
I:)dataset points into  Output {z):

disjoint sets cluster labels per
datapoint
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Clustring applications

Clustering documents by “topic”

Intelligence
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Clustering applications
B

Clustering images

For search, group as:

ﬂ--ﬂ—

— Ocean

— Pink flower
- Dog

— Sunset

— Clouds
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Impact of retrieval & clustering
B

* Foundational ideas

 Lots of iInformation can be extracted using these tools
(exploring user interests and interpretable structure
relating groups of users based on observed behavior)
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Overwiew of the extended content

Nearest : .
neighbors KD-trees Distance metrics
| : | Locality sensitive | Approximation
Clustering hashing algorithms
| Mixture of L | Unsupervised
Gaussians k-means learning
Latent Dirichlet Probabilistic
1 allocation —| MapReduce | modeling
Expectation | Data parallel
Maximization problems
o~ - || Bayesian
Gibbs sampling infarence
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Retrieval

as

k-nearest neighbor search
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1-NN search for retrieval
e

Space of all articles,
organized by similarity of text
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1-NN search for retrieval
S

Compute distances to all docs

Space of all articles,
organized by similarity of text
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1-NN search for retrieval
T

Retrieve "nearest neighbor”

Space of all articles,
organized by similarity of text

nearest neighbor
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1-NN search for retrieval
B

Or set of nearest neighbors

Space of all articles,
organized by similarity of text
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1-NN algorithm
T

1 — Nearest neighbor

* Input: Query article J_J:_)_(:q

Formally: W = min distance (Xg, %)

.
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1-NN algorithm

closest document

>
Initialize Dist2NN = eo, -

ol query document
Fori=12:.N R
Compute: & = distance( | |, I )
If & < Dist2ZNN . document |

== from corpus
=8

Set q =i
set Dist2NN =
Return most similar document . X

closest document in /
corpus to query article

ﬂllﬂ
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k-NN algorithm

* Input: Query article _U X,
Corpus of documents

o XN

T

Formally:
NG Zt/x'"" el X"""i

i Y
e o Xi ek dn KT

: o
dstance (X; x,)Z Mo digmnce (X7, %)
/ 1 x“ j.s“'“#
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k-NN algorithm

sort first k documents
by distance to query doc

Initialize DistZk_NN — Sort(ﬁl,...,ﬁk) <— list of sorted distances

. it ) |. <— list of sorted docs

t(
For i=k+1,...,N «— Query doc

Compute: & = distance( J_. ! -h)

If & < Dist2KNNI[K] c— distance o k* N\ (furthese NN in sex)
find j such that 0 > Dist2kNNJ[j-1] but & < Dist2KNN{j]
remove furthest house and shift queue:

@ Dist2kNN[j+1:k] = Dist2kNN[j:k-1]
set Dist2kNN[j] = & and [iflfil = | j  closesthdocs
Return k most similar articles -/

B B
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Critical elements of NN search
B

ltem (e.qg., doc) representation
X, €

Measure of distance between items:
0 = distance(x;, X,)
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Document representation
I

Bag of words model

- Ignore order of words

- Count # of instances of
each word in vocabulary

2| || |2 31l “Carlos calls the sport futbol.
Emily calls the sport soccer.”
i & @t‘\\\ f 0..\\‘, ‘fr‘ Q'y\ St kb s o

M —ere -
B e
e At g s by wns g D e
e At e e e e e - c—— e e e
h Vs byt n e e W and b gud Nanhad sgiee m e (o wnd o o o | el ot
e ] e
% el e e b R R e s
B R e e L W v bt s A Y g A o -
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Document representation

Issues with word counts —
Rare words

Common words in doc: “the’, “player”, "field”, "goal’
Dominate rare words like: “futbol”, "Messi”
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Document representation
N
TF-IDF document representation

Emphasizes important words

- Appears frequently in document (common locally)

~_word counts

Term frequency =

- Appears rarely in corpus (rare globally)

Inverse doc freq. = qu L lade

-
11S<1Y !
@ L=V
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Document representation
o

TF-IDF document representation

Emphasizes important words

- Appears frequently in document (common locally)

Term frequency = word counts

— Appears rarely in corpus (rare globally)

| et _ [ # does
nverse doc freq. = |98 L dd

e J11S1 Y Or  RAT T"‘:I \
o ol =¥yt

Trade off: local frequency vs. global rarity tf * idf
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Distance metrics:

Distance metrics:
Defining notion of “closest”

In 1D, just Euclidean distance:

distance(x;x,) = [x;-X4|

In Multiple dimensions:
- can define many interesting distance functions

- most straightforwardly, might want to weight
different dimensions differently
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Distance metrics:
T [

Weighting different features

Reasons:
- Some features are more relevant than others

# bedrooms
# bathrooms
sq.ft. living
sq.ft. lot
floors

year built

year renovated
waterfront
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Distance metrics:

Weighting different features

Reasons:
- Some features are more relevant than others

title
abstract
main body
conclusion
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Distance metrics:
T I

Weighting different features

Reasons:
— Some features are more relevant than others
— Some features vary more than others

Small changes . .
© matter more Specify weights
iﬁ @ < > .
o0 as a function of
2 s e ° Big changes feature spread
E P :ii matter less
L @ .
@ o0 .
o® o 0% For feature j:
e
e, o 1
Feature 1 g maxi(xi[j])_mini(xi[j])
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Distance metrics:
I

Scaled Euclidean distance

Formally, this is achieved via

distance(x;, xq) —
\/al()':i[l]-)t:q[l]):2 + ... + ay(x;[d]-x,[d])?

weight on each feature
(defining relative importance)
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Distance metrics:
I I

Effect of binary weights

distance(x; x,) =
Var (xi[11-x[11)2 + ... + ag(x;[d]-x,4[d])?

Setting weights as O or 1

Is equivalent to ] .
feature selection Feature engineering/

selection is
important, but hard
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Distance metrics:
T

(non-scaled) Euclidean distance

Defined in terms of inner product

distance(x; x.) = / (X=Xg) T (Xi—X,)
(R111-%4111)2 + ... + (x;[d]-x,[d])2

Xa Xg,

j— — Y;-")t'q’
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Distance metrics:
Ta [

(hon-scaled) Euclidean distance

Defined in terms of inner product

distance(x;, x,) = J(xi—xq)T(xi—xq) &

OGflL-xg[1D? + ... + (x[dl-x,[d])? &

E‘L\x;m-gru Yake
distance? = ' — 5q.rt.
A ymnG) E
SRR
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Distance metrics:

Scaled Euclidean distance

Defined in terms of inner product

distance(x; x,) = \/(xi—xq)Tl-;\(xi—xq)

ayX[11-X,[1)? + ... + agxid]-x,[d])?

v [ PR
. 1 —
distance? = " a, -
. a . .
RO QN 5 1
- . ].ﬁrd'b
\ -
e N N S
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Distance metrics:
=N

Another natural inner product measure

1000530010000 Similarity
=%TX
i g

=2 %] x,[j

=13
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Distance metrics:

I
Another natural inner product measure

Similarity
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Distance metrics
a6

Cosine similarity — normalize

d
Similarity = X[j] x,[j o
=1 ’b\\bo
d Mm\\
_ > D2 &
- Not a proper =t /
distarlce o
metric : = COS(e) :’]:'3
- Efficient to ’ é'é
compute for |X- ||X.4| | 5
sparse vecs _ (Y [X st e
) (IHD ( g

o
I[)€1'|l ///’ Feature 1 -
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Distance metrics
2
Normalize

1000530010000 <« %
4_ ZA'_HZ
1l= x;‘
v (12 + 52 + 32 + 12 %\ el

1 53 1
// 000/ / 00/ 0000
6 66 6
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Distance metrics
=N

Cosine similarity

In general, -\ < similarity < |

For positive features (like tf-idf) %u'
0 <similarity < '* o2

Define distance = 1-similarity
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Distance metrics
T I

To normalize or not?
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Distance metrics

In the normalized case

=, : E b e ratnd T
ey — e TT = -
¢ | RSSO
2 et

Pttt

[E=N

4 4
Similarity
=13/24
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Distance metrics
e

But not always desired...

Normalizing can

make dissimilar

objects appear
more similar

short tweet

Common
compromise:
Just cap maximum
word counts

long document long document
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Distance metrics
Ta [

Other distance metrics

- Mahalanobis

- rank-based

— correlation-based
- Manhattan

— Jaccard

- Hamming
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Combining distance metrics
I

Example of document features:

1. Text of document
- Distance metric: Cosine similarity

2. # of reads of doc
— Distance metric: Euclidean distance

Add together with user-specified weights
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Scaling up k-NN search

by storing data in a KD-tree

12.11,19.11 2019



Complexity of brute-force search
N

Given a query point, scan through each point

- O(N) distance computations per 1-NN query!
- O(Nlogk) per k-NN query!

= ==l \\hot if N is huge???
| ~ (and many queries)
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KD-trees
T

Structured organization of documents

- Recursively partitions points P .
Into axis aligned boxes. _:J_

Enables more efficient ‘ o | o
pruning of search space

Works “well” In “low-medium” dimensions
- We'll get back to this...
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KD-trees
I

KD-tree construction

®e ® . Start with a list of
v % d-dimensional points.
[ ]
j oo o .’ ° ---
T L L ] ™ 1 0.00 0.00
L’ 2 100 4.31
oo’ . 3 0.13 2.85
e - .. L]
Fentnrn| T e.z-‘ ?L-"-'
. O%Ses  (word V) (word »)
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KD

-frees

KD-tree construction

X205

<« 0S8 —>

xh)»>0.6

Split points into 2 groups
Split dimension
E—
NO- \YES
--- ---

0.00 0.00 1.00 431
3 0.13 2.85
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KD-trees

49|
KD-tree construction
s Recurse on each group
i‘? T separately Split dim 1
o Split value 2
g Split dim 2 O ES
Split value 2 @ Pt XU x21
NO ES 2 1.00 431
--- ---
0153 2.85 0.00 0.00
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KD-trees
N

KD-tree construction

.:J.
[ ]
e ¢ o
T *
& L ] o
L
[ ] . b
ol .-' ° b - CS/ \C)
Pﬂ'nﬂ’ﬂ here -
. . . 'Sﬂ.’c{sf-,i all
Continue splitting points at each set  wndifions dowon
- Creates a binary tree structure titf"{"u}p

Each leaf node contains a list of points
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KD-trees
S|

KD-tree construction

EL .:J.' / \ ?wft &
& o [- ; ‘SP e Jvm “:
& [ ] L 3 hm ﬂ% bx
T O
s Y W

SvdEy v

Keep one additional piece of info at each node:
%3~ The (tight) bounds of points at or below node
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KD-trees
N

KD-tree construction choices

Use heuristics to make splitting decisions:

- Which dimension do we split along?
widest (or alternate)

— Which value do we split at?

median (or _center point of box,
14n0ring dake in box )

- When do we stop?

fewer thon m  pts \ef &
or

——

box  hits  mini mum width
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KD-trees

Many heuristics...

{4

lULJ,J,anem‘ | P=os

I P gt T Tpﬁ

o

g
il

BRI

TR |t

median heuristic center-of-range
heuristic
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Nearest neighbor with KD-trees
=

Traverse tree looking for nearest neighbor to query point
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Nearest neighbor with KD-trees

_ 55|
% | ° e | ,sa70%
s A /O\\\lﬁ
e o ° @
‘T I /\) o“/ \o
5 R iR O’E:_),d’b\b d’d}ab
05

1. Start by exploring leaf node containing query point
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Nearest neighbor with KD-trees

56
... e %:J. ® “1:\'?\'
e | o R | (/{\./\x»}::
snammven ENL N BN
) ) ‘.___“ - e cj’d/\b\b d,cj’\o\b of d”b\b

1. Start by exploring leaf hode containing query point
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Nearest neighbor with KD-trees

)1
\o

.
K /\O VAN
1 e L SRARAYEN

1. Start by exploring leaf hode containing query point
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Nearest neighbor with KD-trees

=
T NN
1 e Ll CRANAYER

1. Start by exploring leaf node containing query point
2. Compute distance to each other point at leaf node
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Nearest neighbor with KD-trees
=

Does nearest neighbor have to live at

e®e _~ leaf node containing query point?
_ distenct <0 O
NN Sownd 0 607
°e o O/ \O
R o"{ }’\o &O\g %O\o
.. .:.:_. ] d/ b Cj/ b d/ b

1. Start by exploring leaf node containing query point
2. Compute distance to each other point at leaf node
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Nearest neighbor with KD-trees
o~

Update distance bound when new
~ nearest neighbor is found

1. Start by exploring leaf node containing query point
2. Compute distance to each other point at leaf node

3. Backtrack and try other branch at each node visited
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Nearest neighbor with KD-trees

o®e | ® SOy 00K 7
e SN

e
. oo d/d’\b\o cj’d/‘o\b of ‘5%

} T m AR

Use distance bound and bounding box of each node to
prune parts of tree that cannot include nearest neighbor
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Nearest neighbor with KD-trees
e

® o Q

BRI

Use distance bound and bounding box of each node to
prune parts of tree that cannot include nearest neighbor

P
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Nearest neighbor with KD-trees

Use distance bound and bounding box of each node to
prune parts of tree that cannot include nearest neighbor
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Nearest neighbor with KD-trees
I

Complexity AR,

For (nearly) balanced, binary trees...

. (EOQZS;I’U'(;:‘?T nodes € | datept ax each leaf — O CND

- Depth: Q{104 WD
~ Median + send points left right;: O (N) ot every level of the tree
— Construction time: O(W 155 N
 1-NN query
— Traverse down tree to starting point: DC\Df) B
- Maximum backtrack and traverse: O(N) ‘n worst case

- Complexity range: 0(1,,5 V)— OC(ND

Under some assumptions on distribution of points,
we get O(logN) but exponential in d

____————;-::—_____‘
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Nearest neighbor with KD-trees

Complexity

=1l

o]
L&
o
L=}
o L=
o e
_.-——-ﬂ\'I o
o o
[+]
o]

\
Bincs

e

=

=]

X

1'
=

L
c| @ o= o
s
b
o
o

7
h,

° ::H-‘““«__ ____,-/ D i

o

(closer to O(log N) )

pruned many

pruned few

(closer to O(N) )
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Complexity for N queries
B

* Ask for nearest neighbor to each doc
N qu,u'"lts
* Brute force 1-NN:
O(WN)
* kd-trees:
O(NVeg N> —» D (N

N oo
T P or

Big
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Complexity for N queries
2
Inspections vs. N and d

exp(d) trend

log(N) trend

# inspections

3 8 g & E g g g

# inspections
8

(wrne d

I P

7 a9 11 13 iﬁ
d X, e &

Z |8
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k-NIN with KD-trees

distance to 2" nearest neighbor
0% ° a / in 2-NN example

L t L O
L .. L e o\)

- ®
S dé&b&o\g%)%
N 8 S8

Exactly same algorithm, but maintain distance to
furthest of current k nearest neighbors
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Approximate k-NN with KD-trees

Before: Prune when distance to bounding box > r
Now: Prune when distance to bounding box > r/

Prunes more than allowed, but can guarantee that if we return a
neighbor at distance r, then there is no neighbor closer than r/ o

i L A Ao
e | o - ; o/ \O
) .° T e /\; o’/ \‘o
5 :.:_. . of \bd/d’\bbdp’\b‘b &E

Saves lots of search

time at little cost in
quality of NN!

™~ Bound loose...In practice, often closer to optimal.
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Closing remarks on KD-trees
B

Tons of variants of kd-trees

- On construction of trees
(heuristics for splitting, stopping, representing branches...)

- Other representational data structures for fast NN search
(e.g., ball trees,...)

Nearest Neighbor Search
- Distance metric and data representation crucial to answer returned

For both, high-dim spaces are hard!
- Number of kd-tree searches can be exponential in dimension
* Rule of thumb... N >> 29 Typically useless for large d.
- Distances sensitive to irrelevant features

* Most dimensions are just noise = everything is far away
* Need technique to learn which features are important to given task
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KD-tree in high dimmensions
B

» Unlikely to have any data points
close to query point

+ Once "nearby” point is found,
the search radius is likely to
Intersect many hypercubes
In at least one dim

+ Not many nodes can be pruned

+ Can show under some conditions
that you visit at least 29 nodes
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Moving away from exact NN search
I

* Approximate neighbor finding...

- Don't find exact neighbor, but that's okay for
many applications

Out of millions of articles, do we need the closest
article or just one that's pretty similar?

Do we even fully trust our measure of similarity???

* Focus on methods that provide good
probabilistic guarantees on approximation
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Locality Sensitive Hashing (LHS)

as alternative to KD-trees
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Locality sensitive hashing
I

Simple “binning” of data into 2 bins

Score(x) = 1.0 #awesome — 1.5 #awful

Like a decision boundary

= in classification
=l Score(x) <O
#“.
4
3 2D Data Sign(Score)
2 X = [0, 5] -1
1 X, = [1, 3] |
o X5 = [3, O] 1

#Hawesome
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Locality sensitive hashing

Using bins for NN search

X = [0, 5]
%, = [1, 3]
Xz = [3, O]

2

=

(18]

I+

il
il
1

0 — candidate

0 €«——= neighbors if

1 / Score(x)<0

Only search here for
queries with Score(x)>0

#Hawesome, .
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Locality sensitive hashing
76 |

Using score for NN search
2D Data | Sign(Score) | Binindex

x, = [0, 5] -1 0 candidate
x; = [1, 3] -1 0 :\ neighbors if
xz = [3, 0] 1 1 / Score(x)<0
: - HASH
List containing {1.2.4,7,..} {3,5,6,8,...}

TABLE

iIndices of datapoints:

\

search for NN
amongst this set
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Locality sensitive hashing

I

Provides approximate NN

Nearest neighbor to
query point found? NO

| #awful

Hawesome
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Locality sensitive hashing
I
Three potential issues with simple approach

1. Challenging to find good line

2. Poor quality solution:
- Points close together get split into separate bins

3. Large computational cost:

- Bins might contain many points, so still
searching over large set for each NN query

List containing {1,24,7,..} {3,5,6,8,...}
indices of datapoints:
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Locality sensitive hashing

=

How to define the line?

Crazy idea:
Define line randomly!

| #awful

Hawesome
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Locality sensitive hashing
i

How bad can a random line be?

Goal: If x,y are close (according to cosine similarity),
want binned values to be the same.

Both points
In bin O

#awful

QO = N W NG

Hawesome
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Locality sensitive hashing

How bad can a random line be?

Goal: If X,y are close (according to cosine similarity),
want binned values to be the same.

| #awful

y

Both points
X INn bin 1

Hawesome

12.11,19.11 2019



Locality sensitive hashing

Goal: If x,y are close (according to cosine similarity),
want binned values to be the same.

| Hawful

One point in
bin 0 and

otherin bin 1

ar © ffawesome
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Locality sensitive hashing

How bad can a random line be?

Goal: If x,y are close (according to cosine similarity),
want binned values to be the same.

#awful

y Binsare
different

Bins are
the same

If B, is small (x,y close),
unlikely to be placed
iINnto separate bins

Bins are
the same

Hawesome
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LSH: improving efficiency

Reducing search cost through more bins

Bin index:
[0 0 O]

Line 2

Bin index:
[0 10]

“Hawful

o = (N} (N Fu :

Linel Binindex:
[110]

Line 3

Bin index:
[111]

H#awesome
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LSH: improving efficiency
B

Using score for NN search

2D Data Sign Bin1 Sign Bin 2 Sign Bin 3
(Scc:-rel} index (Scorezl index (Scoresl index

x, = [1, 3] -1 0 -1 0 -1 0
x5 = [3, 0] 1 1 1 1 1 1

Data {1.2} == {4,8,11} == == == {7.9.10} {3.5.6}

indices: \

search for NN
amongst this set
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LSH: improving efficiency
B

Improving search quality by
searching neighboring bins

v
[00O] [[001] [[010] |[011]
=2 =3
Data {1,2} -- {4.8,11} -- -- -- {7.9.10} {3,5,6}
| indices: ' |
) Bin index:
Query point here, = 000 Line2
: = Bin index:
4 Linel Binindex:
Not necessarily 3 e
> Line 3
Even worse than before...Each line can split pts. 1 [E;i'z il']’de’“
Sacrificing accuracy for speed
1 J Y P . S 01 2 3 4 .. gawesome
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LSH: improving efficiency

Improving search quality by
searching neighboring bins

Bin [000] [001]

[010] [011] |[[100] |[[101] [110] [111]
=5 =6 =7

indices: S
\ / Binjndex:
Next closest =

binS 4 inel Binindex:
(flip 1 bit) |

Hawful

Bin index:
111]

- Hawesome
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LSH: improving efficiency

Improving search quality by
searching neighboring bins

[000] [001] .OLJ] 011] ([100] [[101] [110] (1110

=3 =6 =
Data {1,2} {4,8,11} {7,9,10}§ {3,5.6}
indices:
Further bin

Bin index:
(flip 2 bits)

000]  Line2
Bin index:
@ [010]
Linel Binindex:
[110]

Line 3

#Hawful

= NN

Bin index:
[111]

01 2 3 4 .. gawesome .
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LSH: improving efficiency
B

Improving search quality by
searching neighboring bins

Bin [0001 10011 10101 [011) [[100] (101 (1101 |[M11)
=6 =7
Data {1.2) 4811 - -- - 79101} {3.5.6}
indices:
. . Bin index:
Quallty of retneved NN can only 5 000 Line2
iImprove with searching more bins 2 Bin index:
& o 01O}
Algorithm. 4 Inel Binindex:
o . . [110]
Continue searching until g Line 3
computational budget is reached 1 airzil?dex:
N or quality of NN good enough 0 1 2 3 oo
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LSH recap
B

pam—

* Draw h random lines

« Compute “score” for each point
under each line and translate to
binary index

» Use h-bit binary vector per data
point as bin index

kd-tree competitor
data structure
A

__* Create hash table

« For each query point x, search bin(x),
then neighboring bins until time limit
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LSH: moving to higher dimmensions d

KN
Draw random planes

X[2]

S
“g X[g]
+
@&
O
X Score(x) = awesome
+ V5 fFFgwiul
#awesome x[1] + Vo #great
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LSH: moving to higher dimmensions d
7
Cost of binning points in d-dim

—

») .
Score(x) = VZ'#awesome Per data point,

. x | need d multiplies
AL #l-éWfUl to determine bin

g
~ _ . ) some '?‘?\“T"‘
i v, & S

One-time cost offset if many

queries of fixed dataset
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What you can do now ...
B

* Implement nearest neighbor search for retrieval tasks

» Contrast document representations (e.qg., raw word
counts, tf-i1df,...)
- Emphasize important words using tf-idf

» Contrast methods for measuring similarity between two
documents

- Euclidean vs. weighted Euclidean
- Cosine similarity vs. similarity via unnormalized inner product

» Describe complexity of brute force search
* |Implement KD-trees for nearest neighbor search
* |Implement LSH for approximate nearest neighbor search

» Compare pros and cons of KD-trees and LSH, and decide
which i1s more appropriate for given dataset
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Clustering:

An unsupervised learning task
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Motivation
s

Goal: Structure documents by topic

Discover groups (clusters) of related articles

SPORTS WORLD NEWS
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Motivation

9
Why might clustering be useful?

| dont’t just
like sport!

COOCO0O0
OR=rNWEUG
I R B
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Motivation

Learn user preferences

Set of clustered documents read by user

Use feedback
to learn user
preferences
over topics

Cluer Cluster 4
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Clustering: a supervised learning
o

What if some of the labels are known?

Training set of labeled docs

ENTERTAINMENT _ SCIENCE
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Custering: a supervised learning
x

Multiclass classification problem

Example of

supervised learning
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Clustering: an unsupervised learning
oo

No labels provided

.uncover cluster structure
from Input alone SN

Input: docs as vectors X
Output: cluster labels z,

An unsupervised

learning task

U word T counts
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What defines a cluster ¢

Cluster defined by
center & shape/spread

Assign observation X; (doc)
to cluster k (topic label) if s
o cluster k (topic label) | oz t—61)

- Score under cluster k is d
higher than under others

- For simplicity, often define
score as distance to cluster
center (ignoring shape)
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Hope for unsupervised learning

102
Easy SR
= .
Impossible 3
2h
In between
—_—
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Other (challenging!) clusters to discover

Analysed by your eyes

0

Twn spirals Chusterin cluster nmers

10 g
FEf s
i .%
i HY

=1
=
L - T .
EEHBCABEF
PR LR
CERN LN EE
e TR
e o
oy TR
g i
ot e
= O =
=] o
=,
i,
i
S

05 0 & 10
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Other (challenging!) clusters to discover

Analysed by clustering algorithms

2

~
- % \ § E " 2 ~!!
: - ’ %g%g:.}*“ - 'a‘f’}é
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k-means

clustering algorithm
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k-means clustering algorithm
O

Assume

-Score= distance to
cluster center
(smaller better)

CLUSTER
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k-means clustering algorithm

0. Initialize cluster centers
M1y 2y ooy

B NN
@

[]
[]
[]
Q.

g
[

(K-3 d*&&(s_)
B B
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k-means clustering algorithm
o

0. Initialize cluster centers

1. Assign observations to
closest cluster center

2 \orono:
Zi |,UJ] Xi| |2 kesselation
2 ?
(W clwster .4n o3 Gﬂf . "" ;
W~ A VISual Bng
h Ty ) (6 iseeliis
Inferred label for obs i, whereas Vou don “+
supentised learning has&given label y; 2:2& o
. Mpuke Y
by 3 O Pute tris)
(oo ‘%w‘“’p”:\gf"".‘n o
()»‘F'/‘),s“" M&Xﬁ“&,ﬁ,)
"6
' n“:,w'?
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k-means clustering algorithm
N

0. Initialize cluster centers

1. Assign observations to
closest cluster center

2. Revise cluster centers /
as mean of assigned

observations
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k-means clustering algorithm

0. Initialize cluster centers

1. Assign observations to
closest cluster center

2. Revise cluster centers
as mean of assignhed
observations

3. Repeat 1.4+2. until
convergence
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k-means as coordinate descent algorithm
111 |

1. Assign observations to closest cluster center

i — argmin||u; — x|

2. Revise cluster centers as mean of assigned
observations

equivalent to
Z T
1:2;=]

py e argmin > [lu = xil

1:z;=]
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K-means as coordinate descent algorithm
112

1. Assign observations to closest cluster center
. 2
2 ¢ argmin ||p; — xi[3
J

2. Revise cluster centers as mean of assigned
observations

pj = argmin Y [l — x| [3
H 1:2i=]

Alternating minimization

1. (zgiven y) and 2. (u given z)
= coordinate descent
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Convergence of k-means
s [

Converges to:

- Glo um Because we can cast k-means as coordinate
descent algorithm we know that we are
-|[Local optimum

converging to local optimum
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Convergence of k-mans to local mode

15 —— 15
] ]
10 | LR 10 | ® o
b [} . o
o o e 00
5 . | 5 o A
:'0. ™ oy v
cpd epde ,°
: 0% 0%
+ L) e o ° L) o o
.'. ....
[ ] ]
i o. .. ° . L 5 0.0'.. o ° ®
° )
%, o&fe
P " o o @F "
8 % 9 2 0 2 4 6 8 Yo 8 6 4 2 0 2 4 & 8

Crosses: initialised centers
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Convergence of k-mans to local mode

15 T T T T T T T T 15 T
[ ] [ ]
10 . 10 L
] ° [ ]
. '. ] .'.
5 5| . ®
,... S = ... ] [ ]
':- ¥ R
L L e
of 0 * 8, A%
. ° -.f e o
L ]
;-
‘e’ T Y X ¢« %
-5 . ." > -5 ™ g. o
. e ° °
* ¢ . ¢ @ ®
—].D L 1 1 1 L i L _1[} 1 1 i L 1
-10 & € 4 -2 0 2 6 -10 8 & 4 -2 0 2 6

Crosses: initialised centers
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Convergence of k-mans to local mode

15 T L] L] T T L] T T 15
. ®
10 ", 10 | * 5 | Assigment
o o to which group
* ¢ has changed
I . s 0 [ ] g
51 . . - 5t . e :
'Y % 9 u - % /
. A P
cpd cpde
% *
0 ‘A l ol ‘5 ¢ k-means very
e '00' ¢ o ¢ y ¢ o sensitive to
. ™ initiased centers
. ’ e . oo, @ ¢ 9 ¢
Ste '$ . Sle ol o
%
o8y o &g
P ‘ e o Q’ o
_1 i i i i L i 1 i _lu i L i i i i i i
-0 -8 & -4 -2 D 2 4 6 8 -0 -8 6 4 -2 0 2 4 6 8

Crosses: initialised centers
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Smart initialisation: k-means++ overwiew

Initialization of k-means algorithm is
critical to quality of local optima found

Smart initialization:

1. Choose first cluster center uniformly at
random from data points

2. For each obs x, compute distance d(x) to
nearest cluster center

5. Choose new cluster center from amongst
data points, with probability of x being
chosen proportional to d(x)?

4. Repeat Steps 2 and 3 until k centers have
been chosen
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k-means++ visualised
v §
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k-means++ visualised
119 |
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k-means++ visualised
20 f
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k-means++ visualised
121 |
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Smart initialisation: k-means++ overwiew

G [
k-means++ pros/cons

Computationally costly relative to
random initialization, but the subsequent
k-means often converges more rapidly

Tends to improve quality of local
optimum and lower runtime
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Assessing quality of the clustering
B

15

f.
! C .
~%
8 6 4 -2 0 2 4 6 8

15

10 +

Which clustering do | prefer?
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k-means objective

15 15 -
10} e 5 | W} * . |
| . ‘| :'.._ k-means is trying to
:3-' * :3.' * ¢« minimize the sum of
cpde_ ,° cpde  ,°
) cadd | ca s squared distances:
. l“! o o o 0..: e o '.l'l n of Squ”‘d
o’ ™ *e - "\d ht‘lﬂm T2l
sty ;'L.I a ™ L] | Sl ;.Lt. [ ™ ] | T
..i". -.1", E:E:HH’J_X'JQ
L g e e R R - S e e T j=1l1i:z;=j
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-10 . ! i ! i i i i -
-0 8 & -4 -2 0 2 4 b i}

Cluster heterogeneity

\.g&*‘é"') .

-
W@

%

Measure of qualjty of

given clustering:

k
y: y: ||ﬂj _X'iH%

j=112:2z;,=3

Lower is better!
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What happens to heterogeneity as k increases?

Can refine clusters more and more to the data
- overfitting!
5 o o’owmﬂan}'
Extreme case of k=N:
— can set each cluster center equal to datapoint
- heterogeneity = ) { (ﬁ‘d‘}‘;ﬁ:ﬂ“‘ﬁm se O)

Lowest possible cluster heterogeneity

decreases with increasing k
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127

How to choose k@

Lowest possible
cluster heterogeneity

of
()W"“ un:'.luﬂﬂpk

. but this S .
q . :)uid:‘ a heuristic

# of clusters k
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What you can do now ...
S [

-

+ Describe potential applications of clustering

* Describe the input (unlabeled observations) and output
(labels) of a clustering algorithm

+ Determine whether a task is supervised or unsupervised

+ Cluster documents using k-means

* Interpret k-means as a coordinate descent algorithm

+ Define data parallel problems

* Explain Map and Reduce steps of MapReduce framework

+ Use existing MapReduce implementations to parallelize k-
means, understanding what's being done under the hood
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Probabilistic approach:

mixture model

12.11,19.11 2019




Why probabilistic approach?
NER

Learn user preferences

Set of clustered documents read by user

Use feedback
to learn user
preferences
over topics

Cluster 3 Cluster 4
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Why probabilistic approach?
R

Uncertainty in cluster assignments

Hard assignments
don't tell full story

Slightly closer to
Cluster 4 than

Cluster 2, but count
fully for Cluster 47

ter 3

Cluster 4

Clus
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Why probabilistic approach?
ER

Other limitations of k-means

Assign observations to closest cluster center
- 2
z; <— argmin ||p; — x4||3
J

N\

Can use weighted Euclidean,
but requires known weights

Only center matters

Still assumes all clusters have
the same axis-aligned ellipses
Equivalent to assuming

spherically symmetric clusters .

O
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Why probabilistic approach?
ER

Failure modes of k-means

overlapping clusters

disparate cluster sizes

different shaped/
oriented clusters
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Mixture models
B

* Provides soft assignments of observations
to clusters (uncertainty in assignment)

- e.g., 54% chance document Is world news,
45% science, 1% sports, and 0% entertainment

» Accounts for cluster shapes not just centers

 Enables learning weightings of dimensions

- e.g., how much to weight each word in the
vocabulary when computing cluster assignment
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Application: clustering images

Discover groups of
similar images

oo (L ge
- Ocean n.-n— f ﬁ\ HI!@!I-

- Pink flower - U L
- Dog = |y Provide groupings |

- Sunset = DUt NOt category

- Clouds

E B

12.11,19.11 2019




Application: clustering images

o6 ..
Simple image representation

Consider average red, green, blue pixel intensities

Single RGB vector per image
[R=0.85 G=0.05 B =0.35]
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|74

Application: clustering images

Distribution over all cloud images

Let's look at just the blue dimension

_...........||||H|Hm””

|

||“mHﬂllllum......._ ,

0.8

blue
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Application: clustering images
N

Distribution over all sunset images

Let's look at just the blue dimension

|’
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Application: clustering images
N
Distribution over all forest images

Let's look at just the blue dimension

ulll””“”

1

|

0.42
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Application: clustering images
I
Distribution over all images

We see that they are grouping!
But not easy to distinguish between groups

il HHHmm.....[........_,

blue
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Application: clustering images

e
Can be distinguished along other dim

Now look at the red dimension

<>
e e g In this dimmension
| I separable groups!
il ‘ Hhml'.,. .
0.05 red
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Model for a given image type
S

For each dimension of the [R, G, B] vector,
and each image type, assume a
Gaussian distribution over color intensity

N | p, o2)
‘ parameters
l;! Ih Random variable the
i :i- ' \ distribution is over

e.g., blue intensity

¥ blue
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Model for a given image type
S

2D Gaussians — Bird's eye view

>
3D mesh plot e

qho? o o

R
0.20 o
0.157 :

0.107

>

s oS .
' Cisy

0.057

probability

green

0.00%

>
g

o
c
®
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Application: clustering images

Tuaa |
2D Gaussians — Parameters

Fully specified by mean gy and covariance 2

H = [Ublue ’ IJgreen]

mean centers the
distribution in 2D

green

12.11,19.11 2019



Application: clustering images
s

2D Gaussians — Parameters

Fully specified by mean p and covariance 2

H = [Ublue , Ugreen]
O
5 _
S = Oblue Oblue,green L
2 O |
D-greer‘l,l:)lL,ue Ugreen
covariance determines L
orientation + spread blue
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Application: clustering images
N
Covariance structures

s - |9°
0
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Application: clustering images

Notating a multivariate Gaussian

N(x \\p, Z)}

/ parameters

Random vector
e.q., [R, G, B] intensities

12.11,19.11 2019



Mixture of Gaussians
s |

Model as Gaussian per category/cluster

B M - it

- _ . --.-
Use blue  FREENEE

o o ||

e ==id.-

g R e I 2 Il e

0.3 blue REQ-

el e S
.E-E ﬂ
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Mixture of Gaussians
S|

Jumble of unlabeled images

HISTOGRAM

How do we model
this distribution?
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Mixture of Gaussians
S50 |

What if image types not equally represented?

e.g., forest images are very

<ikely In the collection

0.8.42
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Mixture of Gaussians

15
Combination of weighted Gaussians

Associate a weight 11, with each Gaussian component

LIS 1T, Tl 0 < T, < 1
™ =[0.47 0.26 0.27/]

M, \//" ;Trk:l

Relative proportion of
each class in world from
which we get data

Lk
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Mixture of Gaussians

e |
Mixture of Gaussians (1D)

Each mixture component represents

a unique cluster specified by:
2

{njﬁ, H,, O}

1
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Mixture of Gaussians
s |

Mixture of Gaussians (general)

Each mixture component
represents a unique cluster
specified by:

{Tﬂ{ . M, Zk}
E”z3
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Mixture of Gaussians

According to the model...

Without observing the image content, what's the
probability it's from cluster k? (e.qg., prob. of seeing "clouds” image)

;:E“ A p(zl — k) = T pror

N =

Given observatior@s from cluster_k, what's th
likelihood of Seeing )(i? (e.g., just look at distribution for "cloyds”)

p(x; | zi =k, e, X)) = N (x| e

i o g mk'
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Application: clustering documents
s

Discover groups of related documents
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Application: clustering documents

Document representation
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Application: clustering documents

Mixture of Gaussians for
clustering documents

Space of all documents
(really lives in RY for vocab size V)

Make soft assignments
of docs to each
Gaussian
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Application: clustering documents
s

Counting parameters

Each cluster has {11, , B, 2, }
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Application: clustering documents

I
Counting parameters

Each cluster has {11, , K. 2}

INn V (vocab size) dims:
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Application: clustering documents
o

Restricting to diagonal covariance

Each cluster has {11, , y,. 2, diagonal }

V params
o,° \
o O
2 = 0—32
NG _/
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Application: clustering documents
o

Restrictive assumption, but...

— Can learn weights on dimensions
@ (e.g., weights on words in vocab)
— Can learn cluster-specific
weights on dimensions

Still more flexible than k-means

Spherically
symmetrlc clusters
Specify weights...
@ @ All clusters have same

axis- allg ned ellipses
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Inferring soft assignments with

expectation maximization (EM)
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Inferring cluster labels

L] &
g
e *
- .
. -«" .
L

D) :.‘ '.:

¢ e e,

EriCERk
- . } * . ¢
.. -. L ~‘~“.v
A
i.; ..

L ] - : .
|

Desired soft assignments

R AN
R UL

+ .
L]
-
.
.

[ ]
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What if we knew the cluster
parameters {11, , U,, 2, }?
164

Compute responsibilities

lnes
# clusters & 1&‘ .'f: e

(s Ll"“ LS ri“}

&t““&;iulbuﬁbﬂ
/ Responsibility cluster k tak%for observation i
r&ulﬂ'

——
rig = pla =k | {m), 15, 85} 1)

vandol probability of \ /

\ e :
assignment given model
to cluster k parameters and
observed value
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What if we knew the cluster
parameters {11, , M, 2, }?
165

Responsibilities in pictures

Green cluster
takes more
responsibility

Blue cluster
takes more

responsibility

Uncertain...
split
responsibility
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What if we knew the cluster
parameters {11, , M, 2, }?
166

Responsibilities in pictures

Need to weight by cluster probabilities,
not just cluster shapes

Still uncertain,

but green cluster seems
more probable...

takes more responsibility
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What if we knew the cluster
parameters {11, , M, 2, }?

167

Responsibilities in equations

Responsibility cluster k takes for observation |

/
Iil. = Tk N(%‘ | M,::Ek)

How likely is the
Initial probability of observed value x; under

being from cluster k this cluster assignment?

vy wali wnder bhe green clustes
Jm w:‘:{h vhe prior -1? qreen hf.'nl-zf
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What if we knew the cluster
parameters {11, , M, 2, }?

163
Responsibilities in equations

Responsibility cluster k takes for observation |

ik = Tk N(ZI??, | LL;C,E;,J)

K

§ :WjN(mi | g, Ej) Normalized
j:]_ - over all
possible
cluster

assignments

—
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What if we knew the cluster
parameters {11, , M, 2, }?

169 |
Recall: According to the model...

Without observing the image content, what's the
probability it's from cluster k? (e.g., prob. of seeing "clouds” image)

p(z; = k) = mg

Given observation x; is from cluster k, what's th
likelihood of Seeing )(i? (e.g., just look at distribution for "cloyds”)
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170

What if we knew the cluster
parameters {11, , M, 2, }?

Part 1: Summary

Desired soft assignments
(responsibilities) are easy
to compute when
cluster parameters

{1, . U, 2, } are kKnown

But, we don’'t know these!
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171

Imagine we knew the cluster
(hard) assignments z,

Estimating cluster parameters

Imagine we know the
cluster assignments

Estimation problem

decouples across
clusters

~~__Is green point informative of
fuchsia cluster parameters?

NO!
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Imagine we knew the cluster
(hard) assignments z,

Data table decoupling over clusters

R G B Cluster
x[1] x,[2] x,[3] 3
%,[1] X,2] X,[3] 3
x3[1] X512] X313] 3
X4[1] %,[2] X4[3] 1
xs[1] X:[2] x:[3] 2
X¢[1] X¢[2] X¢[3] 2

Then split into separate tables and consider them independently.
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Imagine we knew the cluster
(hard) assignments z,

173

Maximum likelihood estimation

R G SRSl Estimate {11, , 1, 2, }
xy(1] (2] X (3] e giVEﬂ data aSSigﬂed
x5[1] x,[2] x;[3] 3
il .2 %3] - to cluster k

maximum likelihood estimation

(MLE)

Find parameters that maximize the
score, or likelihood, of data
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Imagine we knew the cluster
(hard) assignments z,

Mean/covariance MLE

Cluster
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Imagine we knew the cluster

(hard) assignments z,

Cluster proportion MLE

R G B Cluster
X,l1] x,[2] X,[3] 1

R G B Cluster
xs[1] Xc[2] xc[3] 2
xgl1] Xg[2] x¢[3] 2

Cluster
x,[1] x,[2] X,[3] 3
X5[1] X5[2] X5[3] 3
X3[1] xz[2] X3[3] 3

# obs in cluster k

total # of obs

True for general mixtures of i.i.d. data,

not just Gaussian clusters
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Imagine we knew the cluster
(hard) assignments z,

Part 2a : Summary

needed to compute soft assignments

Ll Cluster parameters are simple
¥ .y to compute if we know the
. 'f,:sé!'}: ", cluster assignments
?" L .; ':‘i: i‘.'. '.
] - . .'}'. o.'
a® % S -V
‘et A
I But, we don't know these!
" .
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What can we do with just
soft assignments r;?

177

Estimating cluster parameters
from soft assignments

S Instead of having a full

R . ,

Saed oo observation x; in cluster kK,
s_g‘ d' just allocate a portion r;,
.y ‘ '\i:ha\:;

-:‘Q.t.i' " ‘}o. t".‘.
. .‘ :“?‘:‘" \ ‘
X, divided across all clusters,
as determined by r;,
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What can we do with just
soft assignments r;?

178

Maximum likelihood estimation
from soft assignments

Just like in boosting with weighted observations...

R G B riq Fio riz
% [1] x,[2] x(3 | 030 | 018 | 0524
%,[1] %521 x,31 | 001 | 026 | 073 \
x5[1] X5(2] xs(3] | 0.002 | 0.008 | 0.99
X4 [1] X,[2] x,3 | 075 | 010 | 015 52% chance
this obs is in
x5[1] X5[2] xs3] | 005 | 093 | 0.02 Cluster 2
xc1] xc[2] x[3] | 013 | 086 | o001
Total weight in cluster: | 1.242 | 2.8 | 242

(effective # of obs)
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What can we do with just

soft assignments r;?

179

Maximum likelihood estimation

from soft assignments

X3[1]

X411 ]

G

R

G

B

B

Cluster 1

weights

Cluster 2

weights

xXs[1] | Cluster 3
xc[1] weights

x 1 | xl1] x,[2] X, [3] 0.52

xc[1] x5[1] X-[2] X5[3] 0.73

xg[1] xz[1] xz[2] Xz[3] 0.99

X4[1] x4[2] X4[3] 0.15

Xs[1] x5[2] X5[3] 0.02

xg[1] xg[2] xg[3] 0.01
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What can we do with just

soft assignments r;?

Cluster-specific location/shape MLE

Cluster 1

R G B weights
x,[1] x[2] X[3] 0.30
x;[1] X5[2] X,[3] 0.01
x3[1] X3[2] Xz[3] 0.002
X, (1] X,12] Xy13] 0.75
x:[1] Xs[2] Xg[3] 0.05
xg[1] Xgl2] Xgl3] 0.13

Compute cluster parameter estimates
with weights on each row operation

Tk L

Total weight in cluster k

ffective # ol
— off . e
= elrecuve # ODS
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What can we do with just

soft assignments r;?

MLE of cluster proportions 7.

Mt M2 riz
030 | 018 | 052
001 | 026 | 073 Arsoft
0.002 | 0.008 | 099 A~ AV
05 | 010 | 015 | =~ N oo
: : : . soft _
005 | 093 | 002 Ne ™ = Z Tik
013 | 0.86 | 0.01 : - =1
Estimate cluster otal f—F g}tw.: in cluster k
. = glreclive # obs
Total weight (1222 | 25 | 242 proportions from
in cluster: relative weights
Total weight 6
In dataset: \

# datapoints N
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What can we do with just

soft assignments r;?

Defaults to hard assignment case

when r; in {0,1}

Hard assignments have:

- {

1

0 otherwise

1k

R G B Fia Fi2 riz
x[1] x[2] x[3] 0 0 1
X5[1] x3[2] X5[3] 0 0 1
x3[1] Xz[2] X3[3] 0 0 1
X4[1] X4[2] X,[3] 1 0 0
Xs[1] Xs[2] Xs[3] 0 1 0
xg[1] Xe12] X413] 0 1 0

Total weight in cluster: | 1 2 3

N

One-hot encoding of
cluster assignment

12.11,19.11 2019



What can we do with just
soft assignments r;?

Equating the estimates...

N \E 19;15
. NSOftJ PR NEOft — @P “;u'b" w:“"tlw
T — — ovs, & 1
k N i=1 k & g /
= N«
1 Z %
A .
oft 2L 52

S
k 1=1
1

NSOftZ®($?’ ) (i — ‘uk) /

.:_,;.m ss obove

- |
4, L, bi- R by
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What can we do with just
soft assignments r;?

N
Part 2b: Summary

Cwt Still straightforward
eﬁy‘ i | tocompute cluster
'. .af-;e > __“ g '*fi, parameter espmates
A 3;33:“-..‘”- from soft assignments
: et _-.r"
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Expectation maximization (ME)

e
An iterative algorithm

Motivates an iterative algorithm:

1. E-step: estimate cluster responsibilities
given current parameter estimates
AN (z; | fu, )

S #iN (i | 1, 55)

2. M-step: maximize likelihood over
parameters given current responsibilities

Fikk =

ﬁ'k: ,ar’kj ik | {Tﬁikw :I:i}
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Expectation maximization (ME)

EM for mixtures of Gaussians
INn pictures — initialization

(a8, A, 3¢

Then com Pu.t't.

M
“:[p52 04 0.08)
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Expectation maximization (ME)

(K:74

EM for mixtures of Gaussians
In pictures — after 15" iteration

ﬂ“;ﬁ'.u. I;kl,]“'\DOA ')
given soft assiqn- i

A m A )y 'fﬂg
--?i-n. Ll 2

Then .rupmpu.hf. respon st ey
.
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Expectation maximization (ME)

EM for mixtures of Gaussians
in pictures — after 2"9 iteration

rinse
&

repent
untl mmfn/ﬁ-ﬂﬂfe.
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Expectation maximization (ME)
ECR

EM for mixtures of Gaussians
In pictures — converged solution

\ l . -

P
ﬁﬁﬁnman of "L
te blwe or F""L:s""

L
Glu‘t.f P Ry

finol ossiQ™ '
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Expectation maximization (ME)
oo

EM for mixtures of Gaussians
INn pictures - replay
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Expectation maximization (ME)
N

Convergence of EM

* EM is a coordinate-ascent algorithm

— Can equate E-and M-steps with alternating
maximizations of an objective function

« Convergences to a local mode

« We will assess via (log) likelihood of data
under current parameter and
responsibility estimates
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Expectation maximization (ME)
BN

INnitialization

- Many ways to initialize the EM algorithm

« Important for convergence rates and quality
of local mode found

- Examples:

- Choose K observations at random to define K "centroids”.
Assign other observations to nearest centriod to form initial
parameter estimates.

- Pick centers sequentially to provide good coverage of data
like in k-means++

- Initialize from k-means solution

- Grow mixture model by splitting (and sometimes removing)
clusters until K clusters are formed
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Expectation maximization (ME)
R

Overfitting of MLE

Maximizing likelihood can overfit to data

Imagine at K=2 example with one obs assigned to
cluster 1 and others assighed to cluster 2
- What parameter values maximize likelihood?

Set center equal to

point and shrink
variance to O

Likelihood goes to oo |

12.11,19.11 2019



Expectation maximization (ME)
N
Overfitting in high dims

Doc-clustering example:
Imagine only 1 doc assigned to cluster k has word w
(or all docs in cluster agree on count of word w)

Likelihood maximized by setting y,[w] = x;[w] and crz_k =0

W

Likelihood of any doc with different count on
word w being in cluster k is O!
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Expectation maximization (ME)

2
Simple regularization of M-step
for mixtures of Gaussians

Simple fix: Don’t let variances = O!

Add small amount to diagonal of
covariance estimate

Alternatively, take Bayesian approach
and place prior on parameters.

Similar idea, but all parameter
estimates are "smoothed” via cluster
pseudo-observations.
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Expectation maximization (ME)

1%
Relationship to k-means

Consider Gaussian mixture model with  _ gpperical clusters with

equal variances, so relative
likelihoods just function of
distance to cluster center

0-2
> = o2 . .
= — As variances—=>0, likelihood
* .
+ ratio becomes O or 1
L J

- ./ @ - Responsibilities weigh in
cluster proportions, but

dominated by likelihood

Spherically
(az N symmetric clusters

and let the variance parameter o =2 0 disparity
P ’frkN(:r.; | kaEJEI)
) . ik = 5K A
Datapoint gets fully assigned to > i1 7N (i | fij, 021)

nearest center, just as in k-means
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Expectation maximization (ME)

Infinitesimally small variance EM
= k-means

1. E-step: estimate cluster responsibilities given
current parameter estimates

-~ . - 2
P N (x; | fig, o°T) c {0.}, 1}

K - -
> i1 TN (i | 1y, 021)
Decision based on

Infinitesimally small distance to nearest
cluster center

2. M-step: maximize likelihood over parameters
given current responsibilities (hard assignmentsl!)

ﬁk:ﬁk | {?ﬁika mi}
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What you can do now ...
N

* Interpret a probabilistic model-based approach to
clustering using mixture models

* Describe model parameters
« Motivate the utility of soft assignments and describe
what they represent

* Discuss issues related to how the number of parameters
grow with the number of dimensions

- Interpret diagonal covariance versions of mixtures of Gaussians

« Compare and contrast mixtures of Gaussians and
k-means

+ Implement an EM algorithm for inferring soft
assignments and cluster parameters
- Determine an initialization strategy
- Implement a variant that helps avoid overfitting issues
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Hierarchical clustering
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Why hierarchical clustering
oo

* Avoid choosing # clusters beforehand

« Dendrograms help visualize
different clustering granularities
- No need to rerun algorithm [rl rlﬁn

« Most algorithms allow user to choose
any distance metric

— k-means restricted us to Euclidean distance
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Why hierarchical clustering
o

Can often find more complex
shapes than k-means or
Gaussian mixture models

Gaussian mixtures:

ellipsoids
k-means: spherical

clusters

e
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Why hierarchical clustering
oz

Can often find more complex
shapes than k-means or
Gaussian mixture models

What about these?

'y
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Two main types of algorithms
T

Divisive, a.k.a top-down: Start with all data in
one big cluster and recursively split.

- Example: recursive k-means

Agglomerative a.k.a. bottom-up: Start with
each data point as its own cluster. Merge
clusters until all points are in one big cluster.

- Example: single linkage
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Divisive clustering
TN

Divisive In pictures — level 1
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Divisive clustering
T

Divisive in pictures — level 2
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Divisive: Recursive k-means

206 |
Wlklpedla\
Non-athletes

Athletes

E——
E—
=
=
== ==
=
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Divisive: Recursive k-means

- /Wlklpema\ﬂ '

thletes on-athletes

~ \

Baseball Soccer/  Musicians, Scholars, politicians,
Em— Ice hockey artists, actors ~ government officials
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Divisive: choices to be made
N

» Which algorithm to recurse
* How many clusters per split
« When to split vs. stop

— Max cluster size:
number of points in cluster falls below threshold

— Max cluster radius:
distance to furthest point falls below threshold

— Specified # clusters:
split until pre-specified # clusters is reached
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Aglomerative: Single linkage
oo

1. Initialize each point to be its own cluster

D ©

®
O,
®

®
®
®
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Aglomerative: Single linkage
o

2. Define distance between clusters to be:

@@ @ distance(C,,C,) =
® ©® .,
®

@ specified pairwise
distance function

®

Linkage criteria
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Aglomerative: Single linkage
e

3. Merge the two closest clusters
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Aglomerative: Single linkage
TR

4. Repeat step 3 until all points are in one cluster

PR
)
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Aglomerative: Single linkage
BN

4. Repeat step 3 until all points are in one cluster
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Cluster of clusters
KN

Just like our picture for divisive clustering...
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The dendrogram

* X axis shows data points (carefully ordered)
* y-axis shows distance between pair of clusters

Height here indicates
min distance between
blue pts and green pts
(2 clusters)

Cluster
distance

Data points
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Extracting a partition
wel

Choose a distance D* at which to cut dendogram

Every branch that crosses D* becomes a separate cluster

*

D
Cluster "'rrrh""""'

distance

Data points
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Agglomerative: choices to be made

» Distance metric: d(x; x)

» Linkage function: e.g., mirg: d(x, x)
X;in C,,
X; in C,

* Where and how to cut dendrogram

DA, - a== b o o S
Cluster _
distance =

| ---l

Data points
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More on cutting dendrogram

* For visualization, smaller # clusters is preferable

* For tasks like outlier detection, cut based on:

- Distance threshold (i)
- Inconsistency coefficient

» Compare height of merge to average merge heights below

subsets that are relatively far apart compared to the
members of each subset internally

» Still have to choose a threshold to cut at, but now in terms
of “inconsistency” rather than distance

* No cutting method is “incorrect’, some are just
more useful than others
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Computational considerations
S [

» Computing all pairs of distances is expensive
- Brute force algorithm is O(N4log(N))

# datapoints

« Smart implementations use triangle inequality
to rule out candidate pairs

* Best known algorithm is O(N?)
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