Pricipal Component Analysis

- Principal Component Analysis is a method to reduce a dimensionality of the dataset, while preserving most of the information which it carries. It can be seen then as a compression technique.
- Key idea: some features are correlated, so their presence is redundant.
- Solution: Rotate the feature space in such a way, that the new space basis corresponds to new, uncorrelated features. Reduce the new basis down to N vectors which account for as much of the variability in the dataset as possible. Project dataset onto these vectors, obtaining an approximated representation of N dimensions.

Principal Component Analysis

For a toy example above, vectors e_{1}^{\prime} and e_{2}^{\prime} were chosen as a new basis. We see, that vector e_{1}^{\prime} accounts for much higher variability than vector e_{2}^{\prime}. If we were to represent points from the dataset with a single number (1D feature space), the value which is the most distinguishable for dataset points is their projection onto vector e_{1}^{\prime}.

Silhouette Metric

Let dataset X be a set divided into n clusters C_{j}. For every element $x_{i} \in C_{j}$ we will define:

$$
\begin{aligned}
& a\left(x_{i}\right)=\frac{1}{1-\left|C_{j}\right|} \sum_{x_{k} \in C_{j}} \operatorname{dist}\left(x_{k}, x_{i}\right), \\
& b\left(x_{i}\right)=\min _{\mid \neq j} \frac{1}{\left|C_{l}\right|} \sum_{x_{k} \in C_{l}} \operatorname{dist}\left(x_{k}, x_{i}\right) .
\end{aligned}
$$

Then we can define a single element silhouette metric as:

$$
s\left(x_{i}\right)=\frac{b\left(x_{i}\right)-a\left(x_{i}\right)}{\max \left(a\left(x_{i}\right), b\left(x_{i}\right)\right)} .
$$

And total clustering metric:

$$
a\left(\left\{C_{j}\right\}\right)=\frac{1}{|X|} \sum_{x_{k} \in X} s\left(x_{k}\right)
$$

Silhouette Metric

$$
\begin{gathered}
a\left(x_{i}\right)=\frac{1}{1-\left|C_{j}\right|} \sum_{x_{k} \in C_{j}} \operatorname{dist}\left(x_{k}, x_{i}\right), \quad b\left(x_{i}\right)=\min _{\mid \neq j} \frac{1}{\left|C_{l}\right|} \sum_{x_{k} \in C_{l}} \operatorname{dist}\left(x_{k}, x_{i}\right) . \\
s\left(x_{i}\right)=\frac{b\left(x_{i}\right)-a\left(x_{i}\right)}{\max \left(a\left(x_{i}\right), b\left(x_{i}\right)\right)}, \quad a\left(\left\{C_{i}\right\}\right)=\frac{1}{|X|} \sum_{x_{k} \in X} s\left(x_{i}\right) .
\end{gathered}
$$

Interpretation:

- For given element x_{i}, the value $a\left(x_{i}\right)$ tells us, how close it is to other elements of the cluster.
- The value $b\left(x_{i}\right)$ indicates, what is the distance to the closest other cluster.
- With good clustering, clusters should be compact (which implies small $a\left(x_{i}\right)$) and distinct (which implies high $b\left(x_{i}\right)$).
- We define the metric $s\left(x_{i}\right)$, which approaches 1 for $a\left(x_{i}\right) \ll b\left(x_{i}\right)$ and -1 for $a\left(x_{i}\right) \gg b\left(x_{i}\right)$.

Further reading

Theory:

- http://people.duke.edu/ hpgavin/SystemID/References/Gillies-PCAnotes.pdf
Example applications:
- https://blog.insito.me/why-pca-and-genetics-are-a-match-made-in-heaven-6042ea027cf0
- https://www.aanda.org/articles/aa/abs/2013/05/aa20961-12/aa20961-12.html
- https://pdfs.semanticscholar.org/ 30f1/ceb3139129f0a96b0638e999113f46b32e7d.pdf

