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What is Machine Learning

‘IMachine Learning is the] field of study that gives computers the

ability to learn without being explicitly programmed.” Arthur Samuel
(1959)

“A computer program is said to learn from experience E with respect to
some task T and some performance measure P, if its performance on T,

as measured by P, improves with experience E.” Tom Mitchell, Carnegie
Mellon University (1997)

| suggest: forget about ‘fancy definitions’:

‘understanding/modeling your data’ ...

and if you cannot do it in multi-dimensions on “analytic first
principles” let the computer help ©



Multi-variate Classification

Consider events which can be either signal or background events.

Each event is characterized by n observables:

X =(x1,..., xn) "feature vector"
Goal: classify events as signal or background in an optimal way.

This is usually done by mapping the feature vector to a single variable, i.e.,
to scalar test statistic:

R" - R: y(X)

A cut y > ¢ to classity events as signal corresponds to selecting a
potentially complicated hyper-surface in feature space. In general superior
to classical "rectangular” cuts on the xi.

Problem closely related to machine learning (pattern recognition, data
mining, ... )



Classification: Different Approaches

non linear

k-Nearest-Neighbor,
Boosted Decision Trees,
Multi-Layer Perceptrons,
Support Vector Machines



Signal Probability Instead of Hard Decision

Example: test statistic y for signal and background from a Multi-Layer
Perceptron (MLP):

| TMVA output for classifier: MLP | TMVA manual
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MLP

Instead of a hard yes/no decision one can also define the probability of an
event to be a signal event;
p(y‘S) - fs Ns

PS(Y)EP(S‘J/):p(y‘s)_f;+p(y|5)-(1—f;)' fs:ns+ﬂb




ROC Curve

Quality of the classification can be characterized by the receiver operating
characteristic (ROC curve)
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Different Approaches to Classification

Neyman-Pearson lemma states that likelihood ratio provides an optimal test
statistic for classification:

p(x|S)
p(x|B)

Problem: the underlying pdf's are almost never known explicitly.

y(X) =

Two approaches:

1. Estimate signal and background pdf's and construct test statistic based on
Neyman-Pearson lemma, e.g. Naive Bayes classifier (= Likelihood classifier)

2. Decision boundaries determined directly without approximating the pdf's
(linear discriminants, decision trees, neural networks, ...)



General Remarks and Multi-Variate Analyses

MVA Methods

» More effective than classic cut-based analyses

» Take correlations of input variables into account

Important: find good input variables for MVA methods
» Good separation power between S and B

» Little correlations among variables

» No correlation with the parameters you try to measure in your signal sample!

Pre-processing

» Apply obvious variable transformations and let MVA method do the rest

» Make use of obvious symmetries: if e.g. a particle production process is symmetric in
polar angle 8 use |cos 6| and not cos 6 as input variable

» It is generally useful to bring all input variables to a similar numerical range

H. Voss, Multivariate Data Analysis and Machine Learning in High Energy Physics
http://tmva.sourceforge.net/talks.shtml



Classifiers and Their Properties

H. Voss, Multivariate Data Analysis and Machine Learning in High Energy Physics
http://tmva.sourceforge.net/talks.shtml

Classifiers
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What are Multivariate Techniques?

- Many things ... starting from “linear regression” ...

to multivariate event classification
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- or w/o prior ‘analytic’ model

- typically “multivariate” R
= Parameters depend on the ‘joint distribution’ f(x,, X,)

= ‘learning from experience’ = known data points
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Machine Learning - Multivariate Techniques

= fitted (non-)analytic function may approximate:

= target value - ‘regression’

( e.g. calorimeter calibration/correction function)

8TV MC sample: y +jets
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Q
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‘uc'; - ¢ Photons 7 )
510°E —— Sum of pdfs - = Cluster shape variables
10° %, : = Local cluster position variables
10E hta A (energy leakage)
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Event Classification

" Signal and Background
discriminating observed variables x;,, x,, ...
- decision boundary ?
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Regression

¥ ‘known measurements” > model “functional behaviour”
¥ e.g. : photon energy as function “D”-variables: ECAL shower parameters + ...
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= known analytic model (i.e. nth -order polynomial) = Maximum Likelihood Fit)

= no model ?
- “draw any kind of curve” and parameterize it?

® seems trivial 7 —> human brain has very good pattern recognition capabilities!

" what if you have many input variables?
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Regression -> model functional behaviour

| fvalue:vari:var2 |

’!". \t -

I rll
"" /7 ﬂ!llwﬁi o~
R

, 0'
03‘:"4'11111111111 Ny

lﬁ’[[ /777

A-r,r A

" “standard” regression = fit a known analytic function
"e.g. f(x)= ax,2+bx,?+c

" BUT most times: don't have a reasonable “model” ? - need something more general:
" e.g. piecewise defined splines, kernel estimators, decision trees to approximate f(x)

Note: we are not interested in the ‘fitted parameter(s)’, it is not: “Newton deriving F=m-a”
—> just provide prediction of function values f(x) for new measurements x



HEP: Everything started Multivariate

= intelligent “Multivariate Pattern Recognition” used to identify particles
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Machine Learning in HEP
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Neural Networks in High Energy Physics

Carsten Peterson’

Department of Theoretical Physics, University of Lund
Sélvegatan 14A, S-22362 Lund, Sweden

Plenary talk presented at the "Computing in High Energy Physics”,
September 21 - 25, 1991, Annecy, France

Abstract:

The current status of using artificial neural networks in high energy physics is briefly
reviewed. Examples of successful off-line applications for jet identification and track-
ing are presented. Also, non-classification applications like process control and mass
reconstruction are discussed. For classification tasks the approach is demystified by
stressing that the output can be interpreted as Bayesian probabilities.

In

In the optimization domain several approaches to track finding are discussed.
particular template matching approaches are emphazised - the elastic arms algorithm

and the rotor model.
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Machine Learning in HEP

= Later: ‘MVAs got out of fashion’ = replaced by
= if (..) then ... ; = ‘cuts on individual variables’

= Fear of “black box fears” or because it is easier to program?

= Some ‘Fisher discriminants’, Naive Bayesian (Likelihood) even

NNs.... have always been around before becoming mainstream
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Neural Networks in High Energy Physics
High Energy Physics

The Erogress of exploiting ANN in high enregy physics has been somewhat slow. IPa.rtl}r this con-
servafisii 18 due to the a misconception tha approaches contain an element of ['black box
hlea a i

magic” as compared to conventional approaches. I hope I have convinced the reader tha
the case. Statistical interpretation of the answers makes the ANN approach as well-defined to use

as the discriminant ones.
7



Event Classification

THV A Inpul ¥a et | =aioglalFS_ph

\ ® Each event, if Signal or Background, has “D” measured variables.

" Find a mapping from D-dimensional input/observable/’feature” space

i i TSgnd | T T ]
to one dimensional output i 38|73 Batkground E

stfl, VB> 0. y(S) > 1 -

257 3
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Normal
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15

Test statistic: W
y(x): RP=>R: osfE

— et i
= a 0.2 0.4 0.6 0.8

“feature
space”

y(x)

" distributions of y(x): PDFg(y) and PDFg(y)

" used to set the selection cutl > cut: signal
y(X): < = cut: decision boundary
< cut: background

éefﬁciency and purity

" overlap of PDF¢(y) and PDFg(y) = separation power , purity

o mare j ® y(x)=const: surface defining the decision boundary. .



Classification <> Regression

§ . [T Signal T T T
E 38 Background
=

L Y(B) > 0.%(S) > 1

Classification:

111 111

" y(x): RP>R: “test statistic” in D- y(x): RP>R:
dimensional space of input variables —_—

" y(x)=const: surface defining the decision
boundary.

Redression:
® “D” measured variables + one function value

(e.g. cluster shape variables in the ECAL + particles [

energy)
" y(x): RP2>R “regression function”

" y(x)=const - hyperplanes where the
target function is constant

Now, y(x) needs to be build such that it

best approximates the target, not such

that it best separates signal from bkgr.



Event Classification

PDFg(y). PDFg(y): y(x): RP>R:

=T, B
3 ¥ =7] Backfround
§

- Probability densities for y
given background or signal

e.g.. for an event with y(x) = 0.2
- PDFg(y(x)) = 1.5 and PDF¢(y(x)) = 0.45

fs fg : fraction of S and B in the sample:

f.PDF.(y) Is the probability of an event with
: S S =P(C =S |y) measured x={x,,..... X} that gives y(x)
fSPDF (y)+ T,PDF,(y) to be of type signal

20



Receiver Operation Characteristic (ROC) curve

Signal(H,) /Background(H,)
discrimination:
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Receiver Operation Characteristic (ROC) curve
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= Type 1 error: reject H (i.e. the ‘is bkg’ hypothesis) although it would haven been true
= = background contamination
= Type 2 error: accept H, although false
* - |oss of efficiency
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Event Classification -> finding the mapping function y(x)

- __ PDF(x]S) : o
G = BT D] - best possible classifier

—2 but p(x|S), p(x|B) are typically unknown
— Neyman-Pearsons lemma doesn't really help us directly

" use already classified “events” (e.g. MonteCarlo) to:

estimate p(x|S) and p(x|B): (e.g. the differential cross section folded with the detector
influences) and use the likelihood ratio

= e.g. D-dimensional histogram, Kernel density estimators, ...
—> (generative algorithms)

OR
approximate the “likelihood ratio” (or a monotonic transformation thereof).
find a y(x) whose hyperplanes® in the “feature space”:

(y(x) = const) optimally separate signal from background
e.g. Linear Discriminator, Neural Networks, ...
e(discriminative algorithms)
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Machine Learning Categories

supervised: - training “events” with known type (i.e. Signal or Backgr, target value)

un-supervised: - no prior notion of “Signal” or “Background”

- cluster analysis: if different “groups” are found - class labels
- principal component analysis:

find basis in observable space with biggest
hierarchical differences in the variance

- infer something about underlying substructure
reinforcement-learning:

- learn from “success” or “failure” of some “action policy”

(i.e. a robot achieves his goal or does not / falls or does not fall/ wins
or looses the game)

24



Kernel Density Estimator

“‘events” distributed according to P(x)

= estimate probability density P(x) in D-dimensional space: A
X2 ®
® The only thing at our disposal is our “training data” e il SN
e o ° P
e o e o e o
= Say we want to know P(x) at “this” point “x” ':.' . Fo "oe0, 00 e e
°® e®e o U3 °

® One expects to find in a volume V around point “x” o of .: ..: it

N*[P(x)dx events from a dataset with N events ® T ee o0 0 e

v ° o o.o .. .o o.o“ X

- K-events: >

N e —
((x) - z ) k (x_hxn)’ with k(u) = {1; |ul-| = E,l =1 D k(U) is called

- a Kernel function:
n=1 0, otherwise

—2>K(x)/N: estimate of average P(x) in the volume V

i . 1 —
® Classification: Determine i x )= — Z — I ( X b, <P j
PDF<(x) and PDFg(x) N oy H _ h

—>likelihood ratio as classifier! _ _ . .
- Kernel Density estimator of the probability density

25



Kernel Density Estimator

" estimate probability density P(x) in D-dimensional space: “events” distributed according to P(x)

Xz ®
" The only thing at our disposal is our “training data” e e o ® h, .
[ ] L ] L] ™
L e o e @
= Say we want to know P(x) at “this” point “x” '.'.. < P T00® TA o ® o
] e ®® ; ®
" One expects to find in a volume V around point “x” e of ,:..' >
L [ ]
N*IP(x)dx events from a dataset with N events ® o se oo °° -
A ® e o9 g 009 ... X
e e @° L
- K-events: >

1

N . _ 3
. — . 1, |luy|l<=,i=1..D k(u): is called
((x) = E k (—=2), with k(u)={ =2 -
S ( h ) 0, otherwise a Kernel function:

—2>K(x)/N: estimate of average P(x) in the volume V

" Regression: If each events with (x,,x,) carries a “function value” f(x,,x,) (e.g. energy of incident
particle) -

[ _ )
ﬁz k(x"— x)f(x") = J f(x)P(x)dx i.e.: the average function value

\
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K-Nearest Neighbour

“‘events” distributed according to P(x)
— kNN : k-Nearest Neighbours

relative number events of the various y(x) = Bs
classes amongst the k-nearest neighbours K

keep K fixed -2 variable window size

— automatically ‘adapt’ resolution to the available >
data

- may replace “window” by “smooth” kernel function (i.e. weight events by
distance via Gaussian)
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Kernel Density Estimator

P (X ) = L & (X - X ) . a general probability density estimator using kernel K

" Kor h: “size” of the Kernel - “smoothing”
® too small: overtraining/overfitting

" too large: not sensitive to features in P(x)

" Kernel types: window/Gaussian ...
® which metric for the Kernel ?
* normalise all variables to same range
* include correlations ?
= Mahalanobis Metric: x*x 2 xV-1x

® a drawback of Kernel density estimators:
Evaluation for any test events involves ALL TRAINING
DATA - typically very time consuming

Bayes’ optimal decision boundary

(Elements of statistical learning)

28



,Curse of Dimensionality”

We all know:

Filling a D-dimensional histogram to get a mapping of the PDF is typically unfeasable due
to lack of Monte Carlo events.

Shortcoming of nearest-neighbour strategies: € F
£
§,o.s:—
® higher dimensional cases K-events often are not in ® 06 // Sy
a small “vicinity” of the space point anymore: s o2 |
E ' D=3 |-
0.2? D=5
e —p=10 |
L N e N b P Py
consider: total phase space volume V=1P g 002 88 0088 U080 O

: . Volume fraction
for a cube of a particular fraction of the volume:

edge length=(fraction of volume)'”

® 10 dimensions: capture 1% of the phase space
- 63% of range in each variable necessary - that’s not “local” anymore..®

. develop all the alternative classification/regression techniques
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Naive Bayesian Classifier (projective Likelihood Classifier)

Multivariate Likelihood (k-Nearest Neighbour)
- estimate the full D-dimensional joint probability density

product of marginal PDFs
(1-dim “histograms”)

Naive Bayesian
-> ignore correlations

P(x) = ]‘[ P (x)
pdf: histogram + smoothing

[ el input data (signal) |

Estimated PDF (norm. signal)

" No hard cuts on individual variables = “fuzzy”,

600

(a very signal like variable may
counterweigh another, less signal
like variable)

“fuzzy cuts” X

" optimal method if correlations ==
" try to “eliminate” correlations

30



De-Correlation

= Find variable transformation that diagonalises the covariance matrix
" Determine square-root C ' of correlation matrix C, je., C=C'C’

"compute C ' by diagonalisingC: D=s'cs = cC'= s{Ds’”

" transformation from original (x) in de-correlated variable space (x') by: x' = C "—1x
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RO therw (3,810 (009, 0.00% /10,1, 0.01%

-2 =15 -1

vard

Lovas biialaiand Laaralonal
UMl (5.8 (0.0, 0P /00,0, DA4)
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Attention: eliminates only linear correlations!!
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De-Correlation via PCA (Principal Component Analysis)

= PCA (unsupervised learning algorithm)
= reduce dimensionality of a problem
= find most dominant features in a distribution

= Eigenvectors of covariance matrix -2 “axes” in transformed variable space
* large eigenvalue - large variance along the axis (principal component)

- PCA eliminates correlations!
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Decorrelation at work

" Example: linear correlated Gaussians = de-correlation works to 100%
— 1-D Likelihood on de-correlated sample give best possible performance

écompare also the effect on the MVA-output variable!

correlated variables: after decorrelation

TMVA response for classifier: Likelihood TMVA response for classifier: LikelihoodD
3 °[Esignal I A 5 °mEmsignal T ]
% 8 F£77] Background % 8 F£77] Background =
g 3 g 7C E
— k- —r - -
6 6— -]
c £ - EF:
5 = 5 =
- 2 2
5 5
3 :
5 S
=2 =2
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Likelihood response LikelihoodD response

Watch out! Things might look very different for non-linear correlations!
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Boosted Decision Trees

Decision Tree: Sequential application of cuts splits
the data into nodes, where the final ngga
classify an event as signal or backgro

Each branch = one standard “cut” N
seqguence | ( }

" easy to interpret, visualised /“\ f\

. o |xj > c2| [xj <c2| (Xj>c3] [xj<c3]
Disadvatage = very sensitive to N 4 N
statistical fluctuations in training data o [-“ S | e r

2 ) < ) S
- ]_( S
Xk > c4) [xk < c4)
Boosted Decision Trees (1996): A .
combine a whole forest of Decision Trees, @ .S )
S~

derived from the same sample, e.g. using
different event weights.

" overcomes the stability problem > became popular in HEP since
" increases performance MiniBooNE, B.Roe et.a., NIM 543(2005)
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Sample
1 re-weight
Weighted
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1 re-weight
Weighted
Sample
1 re-weight

P
Weighted
Sample

Boosting
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CO(x)

classifier
C(x)

classifier
C@)(x)

classifier
CO)(x)

classifier
Cm)(x)

N

Classifier

Y wcx)
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Adaptive Boosting (AdaBoost)

1 re-weight
Weighted
Sample
1 re-weight
Weighted
Sample
1 re-weight
Weighted
Sample
1 re-weight

P
Weighted
Sample

classifier
CO)(x)

classifier
CM(x)

classifier
CA(x)

classifier
CO)(x)

classifier
Cm)(x)

" AdaBoost re-weights events
misclassified by previous classifier:

1—f.r _ misclassified
ferr ¢ allevents
NCIassirer ( _ {l) )
y(x)= 2 log| —;—[C(x)

I _ err

E D Siglnai T T I T T T I T T T I T T T I E
% 29 7] Background B
:

Q 0.2 a4 0.6 0.8

y(x)
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Boosted Decision Trees

= Are very popular in HEP
= Robust and easy to train,
= get good results
= But: when we adopted BDTs,
= |n 2006 ANNSs just started their big breakthrough in
the ML community with remarkable advances in

DEEP Learning !
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MACHINE LEARNING

Basic terminology
Classical approaches to prediction
Bias-variance trade-off

Introduction to Neural Networks

Some plots from

[4] T. Hastie, R. Tibshirani, J, Friedman, The Elements of Statistical Learning (2
ed.), Springer Series in Statistics, 2001




Basic terminology

The goal of machine learning is to predict results based on incoming data.

Features (also parameters, or variables): these are the factors for a machine to
look at. E.g.: carthesian coordinates, pixel colors, a car mileage, user's gender,
stock price, word frequency in the text.

« Quantitative (x ={1.02, 0.21, 0.12, 2})

Qualitative discrete (x = {medium, small, large}) or categorical (x={red, blue,
green})

Algorithms (also models): Any problem can be solved in different ways. The
method you choose affects the precision, performance, and size of the final model.

If the data is insufficient/inapproriate (e.g. statistically limited or missing
important features), even the best algorithm won't help. Pay attention to the
accuracy of your results only when you have a good enough dataset.
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CLASSICAL MACHINE LEARNING

Data is pre-categorized %"ot labeled
in any way

or numerical
,” SUPERVISED . UNSUPERVISED

/ \
/ * Oeaiet i \ i i
/ a cotegory irff,féer \ by Similarity
\
\CLUSTERING i
dependencies

|dentify Sequences

/
CLASSIFICATION s
kDivide the socks by color» «Split \‘Avt\)t?rg\;l:;ksc)gothmg
I — o\ ASSOCI|ATION
| @ § (\d/'/_\'/' «Find What clothes | often
¢ REGRESSION 1 ... e
\ «Divide the ties by length» [ ,-f‘_z
- 0 I + —=
\ O\
X = / DIMENSI|ON
X A S REDUCTION
\ °c / L 2
i o (generalization)
~ 7’ «Make the best outfits from the given clothes»
~ -
- :'.':’.’
i Image credit: https://vas3k.com/blog/machine learning/
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_ s =

OUR FOCUS
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Prediction: Least squares

The linear model is one of our most important tools in statistics.

Given a vector of inputs X' = (X4, X, ..., X;), we predict the output Y via
A P p A
Y =0F+> X;B
j=1

The term (3g is the intercept, also known as the bias in machine learning

How do we fit the linear model to a set of data?

The most popular method is the method of least squares: pick the coefficients
B to minimize the residual sum of squares (RSS)

N
RSS(8) = (yi — 2/ B)°

i=1
RSS([B) is a quadratic function of the parameters, and hence its minimum
always exists, but may not be unique.
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Prediction: Least squares

Linear Regression of 0/1 Response

Data were simulated with
outputs being either BLUE
or ORANGE.

A linear regression model
was fit to the data, used
here as fraining dataset.

The fitted values Y are
converted in a
classification according to

& _ Jomance ifY >0
RLUE if Y < 0.
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Prediction: nearest neighbor classifier

An alternative algorithm for classification is the method of nearest neighbors.

Nearest-neighbor methods use those observations in the training set closest in
input space to x to form Y.

The k-nearest neighbor fit for Y is defined as:

P

ELE’\T

where Ni(x) is the neighborhood of x defined by the k closest points x; in the
training sample.

Closeness implies a metric, which in our case we assume is Euclidean distance.

In words, we find the k observations with xi closest to x in input space, and
average their responses.
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Prediction: nearest neighbor classifier

15-Nearest Neighbor Classifier
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1-Nearest Neighbor Classifier
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Comparison

k — Number of Nearest Neighbors

151 101 69 45 31 21 11 7 5 3 1
A S I O B | [ 1 1 | | |
To compare the different o | LN
algorithms, let's define a S “.’\ ner
loss (or cost) criterion. |
8 - Y
« Here, we can take the °
rate of misclassifications 5 \
1] 8 N Vo,
VA
In order to compare the 2 - RN
performances, let's Ne—o
introduce a second, o
independent, dataset to s | mn
evaluate the performance: —Bwes) | |
the test dataset. 2 3 5 8 12 18 29 67 200

Image from [4]
Degrees of Freedom — N/k



Bias-variance tradeoff

High Bias Low Bias
Low Variance High Variance
- - ——-—— e - - -—

Test Sample

Prediction Error

/!

Training Sample

High

Model Complexity Image from [4]

Low

The training error tends to decrease whenever we increase the model complexity,
that is, whenever we fit the data harder.

«  With too much fitting, the model adapts itself too closely to the training data,
and will not generalize well (i.e., have large test error).

« In contrast, if the model is not complex enough, it will underfit and may have
large bias, again resulting in poor generalization.



Where are the neural networks?
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Neural networks

Any neural network is a collection of neurons and connections between them.

Neuron is a function with a set of inputs and one output. Its task is to take all
numbers from its input, apply a function on them and send the result to the output.

 Example: sum up all numbers from the inputs and if that sum is bigger than N
give 1 as a result. Otherwise return zero.

Connections are like channels between neurons. They connect outputs of one
neuron with the inputs of another so they can send digits to each other. Each
connection has only one parameter the weight.

 These weights tell the neuron to respond more to one input and less to
another. Weights are adjusted when training — that's how the network learns.



How do NNs work?

input layer hidden layer 1 hidden layer 2 hidden layer 3

How do NNs work?

| bias
activation weights |
function
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How do NNs learn?

After we constructed a network, our task is to assign proper weights so neurons
will react correctly to incoming signals.

« define a loss function to measure how far the response is from the truth

This function is a function of all the weights and biases in the NN (a priori a very
large number), and the goal of training is to find its minimum.

« To start with, all weights are assigned randomly.

» After evaluating the NN on the training
dataset, we can compute all the
per-neuron differences with respect
to the correct result.

« Computing the gradient of the loss,
gives us a direction in which to tune the
weights towards a local minimum

The process of correcting the weights is
called backpropagation an error.




How do NNs learn?

A mostly complete chart of
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There are many more...



