From transmembrane currents to extracellular potentials and back

Daniel K. Wójcik

Laboratory of Neuroinformatics Nencki Institute of Experimental Biology Warsaw, Poland d.wojcik@nencki.gov.pl http://neuroinflab.pl

LVIII Cracow School of Theoretical Physics 2018, Zakopane

Churchland, Sejnowski 2014

Extracellular potential

Electrodes through the ages

- Intracellular recordings
 - Glass microelectrodes (Umrath, 1930; Hodgkin & Huxley, 1939)
 - Pulled glass electrodes for mammalian cells (Ling & Gerard, 1949)
 - Patch clamp (Neher & Sakmann, 1976)

Wang et al., 2015 8 patch-clamps

up to ~12

Electrodes through the ages

- Extracellular recordings
 - EEG (Berger, 1924)
 - ECoG (Penfield & Jasper, 1950s)
 - Depth recordings (single units, MUA, LFP)
 - Glass microelectrodes (1940s)
 - Wires (1950s)

Wikipedia

In vitro methods (MEAs for slices and cultures)

Tungsten wires, Hubel, 1957

Silicon probes, Buzsaki 2004

4096 ch. CMOS MEA, 3brain

Mark Hunt

Ewa Kublik

>300Hz

manine and the second of the s

Where does the potential come from?

Where does the poten al come from? Assume a point source in a volume conductor $\mathbf{r} = \int_{S} \vec{J}(r) d\hat{S} \frac{I}{4\pi r^2} \hat{r} r^2 J(r) \mathbf{r} = \sigma \vec{E} = -\sigma \nabla V$ $= -\frac{I}{4\pi\sigma r^2}\hat{r}$ $\nabla V(r,\theta,\phi) = \frac{\partial V}{\partial r}\hat{r} + \frac{1}{r}\frac{\partial V}{\partial \theta}\hat{\theta} + \frac{1}{r\sin\theta}\frac{\partial V}{\partial \phi}\hat{\phi}$

But V is spherically symmetric: V = V(r)

$$\frac{\partial V}{\partial r} = -\frac{I}{4\pi\sigma r^2}$$

Tranquillo "Quantitative neurophysiology"

$$V(r) = \frac{I}{4\pi\sigma r}$$

Origin of extracellular potential

Current Source Density

$$V(\vec{r},t) = \frac{1}{4\pi\sigma} \int \frac{C(\vec{r'},t)}{|\vec{r}-\vec{r'}|} d^3\vec{r'}$$

$$C = -\sigma \Delta V$$

C – current source density

 σ – conductivity tensor; here: a constant (homogeneous and isotropic medium)

Experimental paradigm:

Vibrissa – barrel system of the rat

E. Kublik

Data: evoked potentials

cortex

Data: evoked potentials

cortex

thalamus

Open field

Closed field

from Varga et al (2002) modified

Experimental setup

Ewa Kublik, Daniel Świejkowski

Example LFP recorded in the rat forebrain

Ewa Kublik, Daniel Świejkowski

LFP

LFP = Local Field Potential

LFP = Low Frequency Part of the extracellular potential

How to deal with LFPs?

• Forward modeling:

Find out LFPs in a model and connect them with network activity

• Inverse modeling:

Find the sources of the potentials from data Current Source Density analysis [CSD]

CSD reconstruction methods

Traditional CSD method

Pitts, W.H. (1952) <u>Investigations on synaptic transmission</u>. In *Cybernetics* Freeman, J. A., & Nicholson, J. Neurophysiol. C. (1975), 38(2), 369–382. Mitzdorf, U. Physiol. Rev. (1985), 65, 37

• iCSD (inverse CSD method)

Pettersen et al., J.Neurosci. Methods (2006)154(1–2), 116–133 Łęski et al., Neuroinformatics (2007) 5, 207-222 Łęski et al., Neuroinformatics(2011) Doi:10.1007/s12021-011-9111-4

kCSD (kernel CSD method)

Potworowski et al., Neural Computation (2012)24:541-575

Traditional CSD

$$C = -\nabla \cdot [\sigma \nabla V]$$

 Numerical second derivative in 1D (three-point formula)

$$\frac{\partial^2 f}{\partial x^2} \simeq \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

- Problems:
 - Assumes homogeneity in y, z
 - Difficult to adapt to specific situation
 - Can't use at the boundary

"Traditional" CSD method

$$C = -\sigma \frac{\partial^2 V}{\partial x^2} \approx -\sigma \frac{V(x+h) - 2V(x) - V(x-h)}{h^2}$$

In "traditional" CSD we lose points on the boundary:

In 3D setup we considered (4x5x7)inside: 2x3x5 = 30boundary: 110 out of 140 points

Inverse current source density (iCSD)

- Evaluate potentials on the grid by forward modeling
 V at grid points = F[N parameters of CSD]
- Invert F

N parameters of CSD = $F^{-1}[V \text{ at grid points}]$

Example

Inverse Current Source Density (iCSD)

$$C(\mathbf{x}) = \sum_{i=1}^{N} a_i \, \tilde{b}_i(\mathbf{x})$$
 Family of CSD distributions

$$\int_{\mathbf{basis in the CSD space}} \mathbf{E}_i(\mathbf{x})$$

$$b_i(x, y, z) = \mathcal{A}\widetilde{b}_i(x, y, z) = \frac{1}{4\pi\sigma} \int d\mathbf{x}' \frac{\widetilde{b}_i(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|}.$$

basis in the space of potentials

$$V(\mathbf{x}) = \mathcal{A}C(\mathbf{x}) = \sum_{i=1}^{N} a_i b_i(\mathbf{x})$$

Kernel Current Source Density (kCSD)

$$C(\mathbf{x}) = \sum_{i=1}^{M} a_i \,\tilde{b}_i(\mathbf{x})$$

Family of CSD distributions (think M large, $M \gg N$)

basis in the CSD space

$$b_i(x, y, z) = \mathcal{A}\widetilde{b}_i(x, y, z) = \frac{1}{4\pi\sigma} \int d\mathbf{x}' \frac{\widetilde{b}_i(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|}.$$

basis in the space of potentials

$$V(\mathbf{x}) = \mathcal{A}C(\mathbf{x}) = \sum_{i=1}^{M} a_i b_i(\mathbf{x})$$

iCSD in 3D

Daniel Świejkowski, Ewa Kublik, Andrzej Wróbel

Current Source Density

Interpolated field potential

Łęski et al. (2007) Neuroinformatics

iCSD in 3D

Daniel Świejkowski, Ewa Kublik, Andrzej Wróbel

Current Source Density

Łęski et al. (2007) Neuroinformatics

Kernel Current Source Density: kCSD

- Nonparametric method
- Use overcomplete bases
- Arbitrary distribution of contacts
- Deals with noise

(Chaitanya Chintaluri)

(Chaitanya Chintaluri)

(Chaitanya Chintaluri)

(Chaitanya Chintaluri)

Challenge

How to estimate 1000 parameters from 10 measurements?

Challenge

How to estimate 1000 parameters from 10 measurements?

How to solve Poisson equation when C and V are not known, we only know V at 10 points

 $C = -\nabla \cdot [\sigma \nabla V]$

Step 1: Kernel Interpolation of Potential

 $K(x_i, x)$

$$x_1, \dots, x_n \quad V_1, \dots, V_n \quad V(x) =?$$

$$K(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^M b_i(\mathbf{x}) b_i(\mathbf{x}')$$

$$V(x) = \sum_{i=1}^N \beta_i K(x_i, x)$$

$$err\left(\hat{V}\right) = \sum_{i=1}^N \left(\hat{V}(x_i) - V_i\right)^2$$

$$\boldsymbol{\beta} = \mathbf{K}^{-1} \cdot \mathbf{V}$$

Tichonow Regression

Step 2: From potential to the CSD

$$\boldsymbol{C}(\vec{r},t) = \mathcal{A}^{-1} \boldsymbol{V}(\vec{r},t)$$

 $V(\vec{r},t) = \mathcal{A}C(\vec{r},t)$

$$C^*(\mathbf{x}) = \widetilde{\mathbf{K}}^T(\mathbf{x}) \cdot \mathbf{K}^{-1} \cdot \mathbf{V}$$

$$\tilde{K}(\mathbf{x}, \mathbf{x}') = \mathcal{A}^{-1} K(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^{M} \tilde{b}_i(\mathbf{x}) b_i(\mathbf{x}')$$

1 electrode

Interpolated potential

1 electrode

Interpolated potential

Reconstructed CSD

1 electrode

Interpolated potential

Reconstructed CSD

2 electrodes

4 electrodes

Interpolated potential

Reconstructed CSD

8 electrodes

Interpolated potential

Reconstructed CSD

12 electrodes

Interpolated potential

Reconstructed CSD

16 electrodes

Interpolated potential

Reconstructed CSD

32 electrodes

Interpolated potential

Reconstructed CSD

$kCSD-choosing \ \lambda$

- Overfit (λ too small) vs underfit (λ too large)
- Leave-one-out cross-validation:
 - Choose λ
 - Use all but one data points to estimate CSD
 - Calculate V at the point left out
 - Average over all possible missing points

$$C^*(\mathbf{x}) = \widetilde{\mathbf{K}}^T(\mathbf{x}) \cdot (\mathbf{K} + \lambda \mathbf{I})^{-1} \cdot \mathbf{V}$$

How well is λ chosen?

Single cells

Cserpan et al., eLife, 2017

Single cell kCSD

Dorottya Cserpan

Dorottya Cserpan

Domokos Meszéna, Lucia Wittner Istvan Ulbert

Preprocessing: Zoltan Somogyvari Analysis: Dorottya Cserpan

Whole brains

In vivo (towards human)

*V. Caune et al., NeuroImage, 2014

* Urszula Malinowska & Anna Korzeniewska, Johns Hopkins University School of Medicine

Modelling scheme

Kernel Electric source imaging (kESI) – Method based on kCSD 3D with non-trivial electrodes placement, and non-trivial electrical conductivity.

Requires both forward model & inverse model.

- Simple brain model Spherical head
- Rat head model Experimentally verifiable
- Human head model Pre-surgical evaluation tool

Distributed dipolar source

Brain as a sphere.

Deep distributed dipolar source

Distribution of electrodes

Black – 100 ECoG (random placement) Colored – SEEG electrodes (regular)

Rat brain model

Top left:rat's head (scalp)Top right:rat's brain (unsegmented)

Meshes by Uli Hofmann, Freiburg

Right: Rat's head and skull

kESI in rat

Left: point current injection – FEM computed electrical potential

Ground truth: a dipole Bottom left: reconstructed potential Bottom right: reconstructed CSD

Chaitanya Chintaluri

G. Allan Johnson et al., NeuroImage, 2012 "A multidimensional magnetic resonance histology atlas of the Wistar rat brain"

Piotr Majka, Laboratory of Neuroinformatics, Co-registration with Waxholm's brain atlas, masking.

Closed surface, with reference electrode

3 dimensional mesh

Assign anisotropic electrical conductivity

KESI in human

x x

Tools

- LFPy https://lfpy.github.io/
- H. Głąbska, H.C. Chintaluri, D.K. Wójcik Collection of simulated data from a thalamocortical network model, Neuroinformatics 15:87 (2017)
- kCSD

https://github.com/Neuroinflab/kCSD-python

Open position

We are looking for a postdoc for kESI project

http://neuroinflab.pl/jobs

Thanks for your attention

- Szymon Łęski
- Wit Jakuczun
- Jan Potworowski
- Helena Głąbska
- Chaitanya Chintaluri
- Marta Kowalska

Funding: MNISW, NCN, FP7 MC ITN "NAMASEN", POIG "POWIEW" IBD PAN, ICM UW

- Klas Pettersen
- Torbjoern Ness
- Gaute Einevoll
- Dorottya Cserpan
- Zoltan Somogyvari
- Istvan Ulbert

Aas, Oslo,

Budapest,

Hungary

Norway

- Experiments
 - Daniel Świejkowski
 - Ewa Kublik
 - Andrzej Wróbel

