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| have deeply regretted that | did not proceed
far enough at least to understand
something of the great leading
principles of mathematics;
for men thus endowed seem
to have an extra sense.

Charles Darwin
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Here are five biological challenges that could stimulate, and benefit from, major
innovations in mathematics.

(1) Understand cells, their diversity within and between organisms, and their interactions
with the biotic and abiotic environments.The complex networks of gene interactions, proteins,
and signaling between the cell and other cells and the abiotic environment is probably
incomprehensible without some mathematical structure perhaps vet to be invented.

(2) Understand the brain, behavior, and emotion.This, too, is a system problem. A practical test of
the depth of our understanding is this simple question: Can we understand why people choose to
have children or choose not to have children (assuming they are physiologically able to do s0)?
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December 2004 | Volume 2 | Issue 12 | e439

Here are five biological challenges that could stimulate, and benefit from, major
innovations in mathematics.

Here are five mathematical challenges that would contribute to the progress of biology.
(1) Understand computation. Find more effective ways to gain insight and prove theorems from
numerical or symbolic computations and agent-based models.We recall Hamming:"The purpose of

2) | computing is insight, not numbers” (Hamming 1971, p. 31).

Sl (2) Find better ways to model multi-level systems, for example, cells within organs within people
in human communities in physical, chemical, and biotic ecologies.

(3) Understand probability, risk,and uncertainty. Despite three centuries of great progress, we are
still at the very beginning of a true understanding. Can we understand uncertainty and risk better
by integrating frequentist, Bayesian, subjective, fuzzy, and other theories of probability, or is an
entirely new approach required?

(4) Understand data mining, simultaneous inference, and statistical de-identification (Miller
1981). Are practical users of simultaneous statistical inference doomed to numerical simulations in
each case, or can general theory be improved? What are the complementary limits of data mining
and statistical de-identification in large linked databases with personal information?

(5) Set standards for clarity, performance, publication and permanence of software and
computational results.




MATHEMATICS IN BIOLOGY
VIEWPOINT

Introductory Science and Mathematics Education
for 21st-Century Biologists

William Bialek™* and David Botstein®3*

'Department of Physics, “Department of Molecular
Biology, >Lewis-Sigler Institute for Integrative
Genomics, Princeton University, Princeton, NJ 08544,
USA.

*To whom correspondence should be addressed. E-
mail: botstein@princeton.edu

Galileo wrote that "the book of nature is written in the language of mathematics”;
his quantitative approach to understanding the natural world arguably marks the
beginning of modern science. Nearly 400 years later,

e propose that a way out of this
dilemma is a unified introductory science curriculum that fully incorporates math-
ematics and quantitative thinking.

6 FEBRUARY 2004 VOL 303 SCIENCE www.sciencemag.org



Retina:
entry to the visual system

input:
125 milions
receptors

output:
1 milion
ganglion
cells




All the sensory
stimuli are turned
into sequences of
identical impulses

— spike trains

Coding
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| had arranged electrodes on the
optic nerve of a toad in connection
with some experiments on the

retina.
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| had arranged electrodes on the
optic nerve of a toad in connection
with some experiments on the
retina. The room was nearly dark
and | was puzzled to hear repeated
noises In the loudspeaker attached
to the ampilifier, noises indicating
that a great deal of impulse activity
was going on.




Edgar Douglas Adrian
1889-1977

| had arranged electrodes on the
optic nerve of a toad in connection
with some experiments on the
retina. The room was nearly dark
and | was puzzled to hear repeated
noises in the loudspeaker attached
to the amplifier, noises indicating
that a great deal of impulse activity
was going on. It was not until |
compared the noises with my own
movements around the room that |
realized | was in the field of vision
of the toad's eye and that it was
signaling what | was doing.




Neural impulses encode
sensory information

Sensory neurons ; M My WWWM
generate stereotypical | & ] |

impulses (action .
potentials, spikes)
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Pulse frequency encodes
stimulus amplitude

200 Hz

firing rate (spikes/s)

Control (nerve killed)

Muscle relaxed

T | I
1 2 3

weight (grams)

Cell activity grows with 109

the stimulus amplitude

100g

Spikes — Rieke et al.




firing rate (spikes/s)

Adaptation

|
0 5 10 15 20 25

duration (s)

Long stimulus leads to a
decrease in spiking activity

Spikes — Rieke et al.
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Professor E. D. Adrian, on The Physical Background of
Perception
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Max Born (Oxford University Press, Oxford, 1949)
Natural philosophy of cause and chance: being the Waynflete Lectures
delivered in the College of St. Mary Magdalen, Oxford, in Hillary term, 1948

Here | must refer to the previous Waynflete Lectures given by
Professor E. D. Adrian, on The Physical Background of
Perception, because the results of physiological investigations
seem to me in perfect agreement with my suggestion about the
meaning of reality in physics. The messages which the brain
receives have not the least similarity with the stimuli. They consist
in pulses of given intensities and frequencies, characteristic for
the transmitting nerve-fiber, which ends at a definite place of the
cortex. All the brain 'learns' [...] is a distribution or 'map’ of pulses.
From this information it produces the image of the world by a
process which can metaphorically be called a consummate piece
of combinatorial mathematics: it sorts out of the maze of
indifferent and varying signals invariant shapes and relations
which form the world of ordinary experience.
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The CODING / ;
problem o "

v (ommy/s)

Find out conditional

probability PJ[r | s] to

generate response r
to stimulus s.

P(nlv)

The problem of
researcher: we give
the same stimulus

many timeS and P(v) ‘ P(n)
study the statistics of : b
the responses. S .

Spikes — Rieke et al.



The DECODING
Problem

Find out conditional
probability P[s | r]
Of the stimulus s,
which generated

response r.

The problem of the
brain: we get a spike
train and want to
guess the stimulus.

T ; 1
v,, (omm/s)
na

30 4

ma
o

» 20 A1

10 1

r
o

-20

T
30 -20

0
20
v 2 30

Spikes — Rieke et al.

v (ommy/s)

P(nlv)

10

n

T
20




What information is encoded by a cell?
How to identify this code from

morphology membrane biophysics connectome

Open problem

E. de Schutter; Wikipedia; Blue Brain Project



2. Kinematics of spike trains



How neuron works

apical
dendrite

Current entering the cell leads to
generation of action potentials
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Recorded
responses

Raster plot —
result of several repetitions

stimulus
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Recorded

responses

Information contained

In spike trains

Spike times
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Information contained
In spike trains

Spike times
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Stochastic point processes

e Start recording at time O
® Spikes recorded at times 1, t2,..., 1ty
e Spike times ¢+ are random variables

T ™5 5 T trl—rt‘-'rrq'r
BN RONE W L0, L") - o oMDwNe @
o0
R :’.---a
e ® o o WOE oo -.u- °
** . ‘e Q-:ﬁ .:'." #-i“-.-

.- e e sece Tk ) |
AR SRS 3, ,'l"db """""lb ‘ \‘-"7"-5
A ":-1' Ve o B .r% ‘lu .-0 -]
e Poo® e % o --l N
o * o -’ -u ol W ’d‘ ""'

It Y R T i v

04 06 08 1 1.2
Spike times



Local description in time

* Probability of generating a spike around t
Pr[1 eventin (t,t + At)|No.t |=: M| No.t ) At

Ny.; is the total history of spiking:
Nox={0<ti <ta<---<t; <tNN(t) =3}

* We call A\(¢; No.:) conditional intensity
or hazard function



Stochastic intensity

* \(t; No.+) may depend on:
* time after the stimulus onset, ¢
* the whole history of spike generation
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for the description of spiking activity



Stochastic intensity

 \(t; No.+) may depend on:
* time after the stimulus onset, ¢
* the whole history of spike generation

® Impractical and unnecessary
for the description of spiking activity

* To simplify, specify the memory model



Example 1. Memoryless model

® Poisson model:
spike generation depends solely on time

A = \(t)
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Incorrect physiologically,
the spikes can be generated arbitrarily close



Example 1. Memoryless model

® Poisson model:
spike generation depends solely on time

A = \(t)

®* Problem:
Incorrect physiologically,
the spikes can be generated arbitrarily close

* Advantage:
Easy to estimate; despite lack of refraction
it can well reflect the true spiking activity
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Poisson process: properties

Divide experiment time (0,T] into M intervals ot




Poisson process: properties

Divide experiment time (0,T] into M intervals 0t

Pr|spikes in intervals containing tq,to,...,ts] =
S

[ (At))6t) f[l {1 — ((n — %) 5t> 54

g=1

(1 = A(t;)ot)

.
I
[



Poisson process: properties

Pr[spikes in intervals containing t1, %o, ..., ts] =
S M
1
A(t;)ot) - I —A n——|ot)ot
[T 111 (o 2) )

(1 = A(t;)ot)

|
p—t

J

Thus the probability density to observe a specific spike train history is

o : Pr[spikes in int. cont. t1,to,...,t5]
p(NO:T) — hmM—>oo (5t)°

[Ty At) - imaroo [Tney [1— A ((n — &) 6t) ot]




Poisson process: properties

Compute the logarithm of the last term

1 [ ((n-5)%) -
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Poisson process: properties

Compute the logarithm of the last term

1 [ ((n-5)9) -

~ M LA ((n— 1) 6t) 8t + o(6t2)]
~ =0ty A ((n - 3) ot)
2 — [Tt



Poisson process: properties

Compute the logarithm of the last term
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Poisson process: properties

Compute the logarithm of the last term

mﬁ[l—w@—%)&ﬂ:




Poisson process: properties

Therefore

p(No.1) = (H)\ ) —/T)\(t)dt

For a homogeneous Poisson process (A = const.)

p(No.r) = XS e ™M



Poisson process: properties

What is the probability to observe exactly n spikes during the
time of experiment (0,T]?

/ dt; / dto- - / dt, \"e M
t1
\e M / dt; / dto- - / dt.,,
t1 1

’)’L

P(O,T] kd

)\n —>\T
n'



Poisson process: properties

We obtain the Poisson distribution (hence the name)

AT)™ _ar

P(O,T] [n] = TL' e




Poisson process: properties

We obtain the Poisson distribution (hence the name)

P(O,T] [n] —

(AT)"

n!

€—>\T

For inhomogeneous process:

Poln] = — ( /O A(t)dt) exp

_ /O oy




What is the firing rate”

o) = fim PIN(E+60) = N@)

5t—0+ ot



What is the firing rate?

. E[N(t+6t)— N(t)]
r(t) = Jim, 5

In the Poisson process:



What is the firing rate?

. E[N(t+6t)— N(t)]
r(t) = Jim, 5

In the Poisson process:

BIN (1)) = i::lnpo ] =
_ in% ( /O t)\(T)d7'>neXp {— /O tA(T)dT} _ ‘/O AV
Thus
r(t) = lim [ Mty _ (1)



Example 2: renewal processes

« 7 —time from the last spike

* The basic quantity:
distribution of inter-spike intervals (ISI)

P(71)At := Pr(spike during(7, 7 + At) N
Nno spikes during(0, 7))



Example 2: renewal processes

« 7 —time from the last spike

* The basic quantity:
distribution of inter-spike intervals (ISI)

P(71)At := Pr(spike during(7, 7 + At) N

N no spikes during(0, 7))

 Another useful notion: survival function

S(7)

Pr(no spikes until 1)
[ dr’ P(7)
1 — fOT dr’ P(1")
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Example 2: renewal processes
* Conditional intensity

A(T)At := Pr(spike during (7,7 + At) |
| no spikes during(0, 7))

 Relation between X\, Pand S

P(7)At = Pr(spike during (7,7 + At) N 0 spikes until 7)
= Pr(spike during(7, 7 + At) |0 spikes until 7)-
-Pr(0 spikes until 7)
= A\(7)At - S(7)

e Thus




Example 2: renewal processes
P(7) = A7) - 5(7)

We can now express any of these quantities in terms of any other.

Examples:

S(r) =1 —/OTdsP(s) _ /TOOdSP(s)

_ P0)
M) = 1 — [, dsP(s)

P(r) = A(r) exp {— /O ds )\(s)}

dS(T)
dt

P(t) = —




What is the firing rate?
()= lim E[N(t 4 6t) — N(t)]

_ St—0+ ot
Alternatively:

e el o]



What is the firing rate?
M) = Tim E[N(t+ 6t) — N(t)]

_ St—0+ Ot
Alternatively:

1 00 —1 00 —1
,o L { / TP(T)} _ { / 5(7)}
(T) 0 0
In the homogeneous Poisson process:
—1 —1
> 1
V= e_)‘T} = {—} = A
I ;

The equality between firing rate and intensity holds
only for the Poisson process!!! In general — no.



>

Example 2.1:

Poisson process |
In a uniform Poisson process with K

Pa(s)

intensity A the survival function is "o 20 40
s [ms]
_?\ _
S(s)=e ™ e
Inter-spike interval distribution is
exponential "0 20 20
s [ms]
i~y 0.4
P(s)=xe 5
802
0.0

s [ms]



Example 2.2:
Poisson process with refraction

If we add refractory period to the Poisson
process

0 f < A\?bs
N =me = L o

r for s> A2bs

Inter-spike interval distribution takes the
form

P(s) = 0 for s < A?bs
| rexp[—r(s — A?P%)]  for s > A3bs

Gerstner, Kistler, 2002

vw

Pa(s)

Sqls)

Po(s) [kHz]

02}

01 ¢t

0.0

1.0

0.0

0.4t

02}

0.0

EID
s [ms]

40

40

EID
s [ms]

40



Example 3: IMI model —
Inhomogeneous Markov Interval

* Assume we only know the current time t
and the time 7 since the last spike

A=A, 1)

We call such model the IMI model

Kass, Ventura, 2001



Example 3: IMI model —
Inhomogeneous Markov Interval

* Assume we only know the current time t
and the time 7 since the last spike

A=A, 1)

We call such model the IMI model

® \We shall limit ourselves
to multiplicative IMI models:

At,7) = A () Ao (7)

Kass, Ventura, 2001



IMI| model

* \We have two factors in the model:
At, ) = A (t)Aa(T)
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* \i(t) —response to the stimulus, receptive
field or equivalent properties of the cell



IMI| model

* \We have two factors in the model:
At, 7) = A (t)Aa(T)

* \i(t) —response to the stimulus, receptive
field or equivalent properties of the cell

» X\2(7) — local modulation of this activity,
e.g. due to refractive properties of cell
membrane



Estimation — proposition:
first get A2

* Find a fragment of the recording with
,spontaneous” activity. There A1 = const
and ISI distribution describes A2 (7)
[renewal process]

Wojcik et al. 2009



Estimation — proposition:
first get A2

* Find a fragment of the recording with
,spontaneous” activity. There A1 = const
and ISI distribution describes A2 (7)
[renewal process]

e The connection between A2(7) and the
probability distribution of ISI P(7) is

P(T
Ao (T) = )
1 - fo dSP(S) Perkel,
] T 1 Gerstein
P(1) = Xa(7) exp —/ ds Ao(s)| Moore
Wojcik et al. 2009 - Jo | 1967




Example ISI distribution

157 157 - -

' p(ISI)I p(ISI)

107 10

10

0 0.2 0.4 102 0 0.2 0.4

1SI [s] ISI [s] 1SI [s]
Sc8u1?2

® red — experimental distribution
® blue — smoothed with gaussian kernel

® black — best fit of a parametric model
(gamma distribution)



Ao obtained

* blue — ent3u’/

smoothed with
gaussian kernel

® pblack — best fit of
a parametric model
(gamma distribution)

0 0.2 0.4



Estimation of \q
from )\2

* Probability to generate
a spike in iI-th response

nr of run

rate




Estimation of \q
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nr of run

* Probability to generate
a spike in iI-th response Is

pi([t, t+ 5t]) = )\1(?5))\2(7’2')5?5

where™ is the time since
the last spike before t

rate




Estimation of \q
from )\2

nr of run

* Probability to generate
a spike in iI-th response Is

pi([t, t+ 5t]) = )\1(?5))\2(7’2')5?5

where™ is the time since
the last spike before t

®* From here, approximately
(AR
M= =0,

rate




A (t) =
ent3u7 v=10 1( ) <)\2(Tz)>z v=20
nonparametric | | m | R

40 )\2 (7‘) 1 }
20 0.5 1 1|.5Cz S[S]é 25 3
0 0 5
0 0.2 0.4 .
7- 2.5+
parametric : ﬁ
(gamma) £, | e 4




nr of run rate nr of run

rate

Spike times for cell: ent3u7; velocity: left; stim: 10

exp poisson
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Time-rescaling theorem

Let O <uy <us <---<u, <T be arealization
of a point process with conditional intensity

A(t[ Ny )

Define a transformation

Aug) = / NN, du,

for k=1,...,n. Then A(u;)give a
homogeneous Poisson process of unit rate.

Brown et al. 2002



Goodness of fit test

Compute rescaled ISI: 7, = A(ur) — Alug_1)
Transform 7y to a new variable, zp = 1 — exp (—7%)

Then 2z are independent uniform variables on the
Interval

Order Zk from smallest to largest and plot
cumulative values of uniform density against the
ordered Zgs.

If the model is correct, resulting curve will be
diagonal



Test of the model quality

0.8}

0.6}

0.4}

—1mi

Cumulative Distribution Function

0.2} o
---gamma imi
0: poisson
0 0.2 0.4 0.6 0.8 1

ent3u7 v=100 Quantiles



Test of the model quality
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0.4}

Cumulative Distribution Function

0.2} o
-=--gamma imi
oL poisson
0 0.2 0.4 0.6 0.8 1

ent5u3 v=1000 Quantiles



Be carefull!!!



Problem 1

* \We assumed the last 0.5s of our experiment
IS ,spontaneous activity”.

°® |s that so?



Spontaneous? — sometimes yes!

Cell: Sc8ui12
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Spontaneous? — sometimes no!

Cell; ent3u7
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Problem 2

® \We assumed our data can be explained by a
model dependent on the time of the model
and the time from the last spike.

* |s that reasonable?



nr of run

IMI OK? — sometimes yes!

0.2 0.4 0.6 0.8
spike times
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Summary for spike trains

® Spike trains are realizations
of point processes

o T

nere iIs more than Poisson process

o T

Nree ISsues:

ow do
ow do
ow do

think about the data”? [the model]
estimate the model from data?
use the model to generate surrogates?

®* Model comparison:

* Time-rescaling theorem



Challenges

 BRAIN: Record spikes from all the neurons
* Inference from limited system sampling



And now for something
totally different

Or not totally?

Point processes can be useful
in the description of behavior



Transgenic mice with
Alzheimer disease (APP.V717l)
learn in a social context,
but not individually



but individually only
when they are sleepy



Procedure

ANIMALS:

Three groups of APP.V7171 transgenic mice and their wild type siblings
at different age:

1. Young — 5-month old (WT = 12, APP.V7171 = 11)

2. Middle-aged — 12-month old (WT =12, APP.V7171 = 12)

3. Old — 18-month old (WT = 10, APP.V7171 = 10).

BEHAVIORAL TESTING:

1. Morris Water Maze — to measure individual spatial learning and memory.
2. IntelliCage tests — to measure ability to learning of spatial tasks
with appetitive reinforcement:
* group learning,
* individual learning.

1 week 3 weeks

Morris IntelliCage

mixed genotypes separated genotypes
Water « group learning « group learning

Maze * individual learning e individual learning



Procedure

ANIMALS:

1. Young — 5-month old (WT = 12, APP.V7171 = 11)

BEHAVIORAL TESTING:

2. IntelliCage tests — to measure ability to learning of spatial tasks
with appetitive reinforcement:
* group learning,

1 week 3 weeks

mixed genotypes IntelliCage separated genotypes
* group learning « group learning



Microprocessor I nte I I | Cag e Bottles with liquid

4 Learning corners with dual reward @® NewBehavior



Learning corner




Group learning

Setup of experiments in IntelliCage

mixed separated
2,0 |O O
Qiéf% / g;;%} CQ“ WT, wild-type mice

@ APP.V717I mice

o] [ON
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EA o
Q%E%% % gﬁ% Q plain water
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% visits in corner
with sugar water

Group learning

00 mixed separated
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1 st 5th 1 st 5th 1 st 5th 1 st

B WT young
1 APP.V7171 young



tice number

Point process view:
raster plot

Time [h]




tice number

Point process view:
Post Stimulus Time Histogram

S5mo ZEP cage? type wild

40

Rate [event/h]

Time [h]



Frobability

tice number

Point process view:
learning

5mo SEP cage? type wild
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APP.V717l

WT mice, mixed

WT mice, separated

Number of visits

00000000
~ @ B ¥ ® &

pJemal UM Jaulod Ul SYSIA JO %,

Number of visits

00000000
N ©® b ¥ ® & -~

pJemal UM Jaulod Ul SYSIA JO %,

Time [h]

Time [h]

APP V7171 mice, mixed

APP V7171 mice, separated

Cc

Number of visits

Time [h]

00000000
~ ©® I ¥ ® N -

plemal YIM Jaulod Ul SYSIA JO 9

Number of visits

Time [h]

00000000
N © B ¥ ® & ~

plemal YIM Jaulod Ul SYSIA JO 9



% of visits
in corner with reward

% of visits
in corner with reward
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Model of learning and behavior

Modeling behavior as a sequence of actions

* Animal makes sequential decisions before action
(I go to the corner n)

* Action is rewarded immediately after decision
(,static action choice”)

* The reward depends on action taken
(e.g. water — 0, sweet water — 4)

* We consider only decisions taken, time is ignored



Model of learning and behavior:
decision making

« Select a corner with probability depending
on remembered reward (softmax)

exp(Bmy,) ol
Z?:l eXp(ﬁm’&) 0.6

o

n:

0.4

* Update the remembered
reward m, immediately 8
depending on the current ¢
reward r, (Wagner-Rescorla rule) ™

Mpa1 = My + €(ry — My,)



Model of learning and behavior:
decision making

* Individual learning

— With probability 7-a mouse makes a decision
based on its own experience

e Social influence

— With probability & mouse selects a corner
depending on the history of visits of all the mice



Model of learning
example: young mice

WT, separated 0.7 WT, mixed _
0.7 —_— : — Fitted model
06 oer parameters
0.5} 0.5
041 041 wtplain 1.14
0.3 03p tgplain 1.06
0.2} 0.2} wtsugar 3.73
01 , , , , 0.1 . . . . tgsugar 1.74
0 100 200 300 400 500 0 100 200 300 400 500 \/tbeta 0.60
tgbeta 0.59
wteps 0.03
061 1 0-6r tgeps 1.67
0.51 1 0.5F wtmstart 1.39
0.4} : 0.4 tgmstart 4.00
0.3 W i 0.3}
—  exp
0-21 | 0-21 — model|]
0.1 0.1

0 100 200 300 400 500 107100 200 300 400 500



Conclusions

Individual examination in the IntelliCage tasks disclosed cognitive
impairment in APP.V717] mice as early as at the age of 5 months.

APP.V7171 mice housed in group with wild-type animals,
successfully acquired the spatial task in the IntelliCage.

APP.V717]1 mice when separated from their wild-type siblings,
showed memory only during inactive phase of day.

Social context may alleviate the learning deficit of the APP.V717I
mouse model of amyloid pathology in Alzheimer's disease.
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