An optimization approach to understand biological search

Taro Toyoizumi RIKEN Center for Brain Science

Darwinian view of life

An evolutionally conserved search strategy: Levy flight

Bacteria Eye position

Ariel et al. 2015

http://www.androidblues.com/visualperception.html

Conventional view

Levy flight emerges from the 2nd-order stochastic optimization

smoothness

gradient

$$\Delta \propto (H + \beta I + \xi_H)^{-1} (\vec{g} + \vec{\xi}_G)$$

Step-size

$$\Delta = \frac{\xi_G}{\xi_H}$$

Step-size distribution

$$p(\Delta) = \frac{1}{\pi} \frac{1}{1 + \Delta^2}$$

The 2nd-order stochastic optimization: The middle between Brownian and Levy searches

Synaptic plasticity

scitechdaily.com

Optimal synaptic plasticity:

A synaptic plasticity rule for maximizing information transmission (Linsker 1988)

Firing rate dependency and meta-plasticity

With an energy constraint....

Experiment

Kirkwood et al. 1996

Toyoizumi et al. 2005

STDP and weight-dependency

With a cost of maintaining synapses....

Toyoizumi et al. 2007

Bi and Poo 1998

A Local Learning Rule for ICA and PCA

Information maximization using multiple output neurons

Bell and Sejnowski 1995

Independent component analysis (ICA)

$$\dot{W}_{ij} \propto (W^{-T})_{ij} - g(u_i) x_j$$

Non-local engineering rule

A typical setup for ICA

$$g(u_i) = -\left(\log p_s(u_i)\right)'$$

Bell and Sejnowski 1995

$$\dot{W}_{ij} \propto (W^{-T})_{ij} - g(u_i)x_j$$

Non-local learning rule

Error-gated Hebbian rule (EGHR)

Bell and Sejnowski 1995 $\dot{W}_{ij} \propto (W^{-T})_{ij} - g(u_i)x_j$

$$\langle F(u)g(u)\rangle \approx \langle F'(u)\rangle$$

holds around the ICA solution.

Isomura and Toyoizumi 2016

$$E(u) \equiv E_0 - \sum_{i} \int_{-\infty}^{u_i} g(z) dz$$

$$\dot{W}_{ij} \propto E(u)g(u_i)x_j$$

A local ICA rule: Modulation of Hebb's rule by a third factor

Paille et al. 2013

global third-factor (e.g. GABA, neuromodulator, glial factor, etc.)

Dynamics of EGHR

$$\dot{W}_{ij} \propto \frac{\partial \langle E(u)^2 \rangle}{\partial W_{ij}}$$

- EGHR is an approximation of the Infomax rule around the solution. Stability of the solution is roughly the same.
- No spurious solutions if the source distribution is near Gaussian.
- Unlike some heuristic rules, no preprocessing (e.g. whitening) is necessary.

EGHR is robust to the number of sources

Each output neuron describes a source if a marker is located on one of the axes.

Separating mixtures of natural images

Separating movie clips

Source

Mixed input

Output

Not only separating sources but also extracting major features by PCA

A local learning rule for PCA

Oja 1989

$$\dot{W}_{ij} \propto u_i(x_j - \sum_k u_k W_{kj})$$

$$\langle F(u)g(u)\rangle \approx \langle F'(u)\rangle$$

Isomura and Toyoizumi, submitted

$$E_{PCA}(x,u) \equiv \sum_{j} (x_j^2 - \langle x_j^2 \rangle) - \sum_{i} (u_i^2 - \langle u_i^2 \rangle)$$

$$\dot{W}_{ij} \propto E_{PCA}(x,u)u_ix_j$$

PCA + ICA

 $\dot{W}_{ij} \propto (1 - \beta)E(u)g(u_i)x_j + \beta E_{PCA}(x, u)u_ix_j$

EGHR vs a cascade of PCA & ICA

Isomura and Toyoizumi 2018

Large-scale and parallel neuromorphic computation

Proposed rule (parallel)

Conventional rules (serial)

Merolla et al. 2014

Summary

- We have developed a local ICA&PCA algorithm, EGHR, that requires only global information sharing by a third plasticity factor.
- EGHR is more robust than conventional local ICA rules.
- EGHR is suitable for parallel blind-source separation and feature extraction by neuromorphic hardware.
- Generally, information decoding is hard if neural activities are correlated. The independent coding by EGHR can work with a simple decoding scheme.

Collaborator

Lukasz Kusmierz (RIKEN)

Takuya Isomura (RIKEN)

Funding

Thank you