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Darwinian view of life



An evolutionally conserved search strategy:
Levy flight

http://www.androidblues.com/visualperception.html

Eye position

Ariel et al. 2015
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Conventional view
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Levy flight emerges from                                            
the 2nd-order stochastic optimization
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Kusmierz and Toyoizumi 2017
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The 2nd-order stochastic optimization:
The middle between Brownian and Levy searches

Kusmierz and Toyoizumi 2017



Synaptic plasticity

scitechdaily.com



Optimal synaptic plasticity: 
A synaptic plasticity rule for maximizing information transmission
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Firing rate dependency and meta-plasticity

Toyoizumi et al. 2005
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High average activity env.

Theory

Kirkwood et al. 1996

Normal env.

Dark env.

Experiment

With an energy constraint….



STDP and weight-dependency

Toyoizumi et al. 2007

With a cost of maintaining synapses….
Theory

Bi and Poo 1998

Experiment



A Local Learning Rule for 
ICA and PCA



Information maximization using multiple output neurons

Independent component analysis (ICA)

Bell and Sejnowski 1995

Hidden sources sensory input neural activity
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Non-local engineering rule



Hidden sources sensory input neural activity

Non-local learning rule

A typical setup for ICA
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Error-gated Hebbian rule (EGHR)

Isomura and Toyoizumi 2016
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A local ICA rule:
Modulation of Hebb’s rule by a third factor

"̇#$ ∝ & ' ( '# )$

Paille et al. 2013

presynaptic
postsynaptic

global third-factor
(e.g. GABA, neuromodulator, glial factor, etc.)



Dynamics of EGHR

• EGHR is an approximation 
of the Infomax rule around 
the solution. Stability of the 
solution is roughly the 
same.

• No spurious solutions if 
the source distribution is 
near Gaussian.

• Unlike some heuristic 
rules, no preprocessing 
(e.g. whitening) is 
necessary.

"̇#$ ∝
&⟨( ) *⟩
&"#$



EGHR is robust to the number of sources
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Each output neuron describes a 
source if a marker is located on 
one of the axes.



Separating mixtures of natural images
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error

Isomura and Toyoizumi 2016



Separating movie clips

Source

Mixed input

Output

Isomura and Toyoizumi 2016



Not only separating 
sources but also 

extracting major features 
by PCA



A local learning rule for PCA

Isomura and Toyoizumi, submitted
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PCA + ICA
"̇#$ ∝ (1 −))+ , - ,# .$ + )+012 ., , ,#.$

https://www.youtube.com/watch?v=tyRgk4AerTw&feature=youtu.be



EGHR vs a cascade of PCA & ICA

Isomura and Toyoizumi 2018



Large-scale and parallel 
neuromorphic computation

Merolla et al. 2014

Proposed rule (parallel)

Conventional rules (serial)



Summary

• We have developed a local ICA&PCA algorithm, EGHR, that 
requires only global information sharing by a third plasticity 
factor.

• EGHR is more robust than conventional local ICA rules. 

• EGHR is suitable for parallel blind-source separation and feature 
extraction by neuromorphic hardware.

• Generally, information decoding is hard if neural activities are 
correlated. The independent coding by EGHR can work with a 
simple decoding scheme. 
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