Excitatory/inhibitory balance and eigenvector non-orthogonality of a synaptic connectivity matrix

Wojciech Tarnowski

 joint work with E. Gudowska-Nowak, M. A. Nowak, D. R. Chialvo, J. K. Ochab
Based on ArXiv: [1805.03592]

Department of Theory of Complex Systems
Faculty of Physics, Astronomy and Applied Computer Science Jagiellonian University in Kraków

Supported by 0225/DIA/2015/44 and MAESTRO DEC-2011/02/A/ST1/00119

Zakopane, 17th June 2018

Simple model: random neural network

[Sompolinsky, Crisanti, Sommers, 1988]

$$
\dot{x}_{i}=-x_{i}+\sum_{j=1}^{N} J_{i j} \phi\left(x_{j}\right)
$$

All $\operatorname{Re} \lambda_{j}<1$ trivial dynamics $x_{i}(t) \rightarrow 0, \operatorname{Re} \lambda_{j}>1$ chaos. [Rajan, Abbott, 2006]: $J=M+X \Lambda+$ balance condition [del Molino, Pakdaman, Touboul, Weinrib, 2013] numerics

Eigenvalue analysis is not the end of the story!

Setting the stage: reminder from algebra

A matrix J is non-normal iff $J J^{T} \neq J^{T} J$.
If a non-normal matrix can be diagonalized, it possesses two set of eigenvectors: right $\mathbf{r}_{\mathbf{k}}$ (column) and left $\mathbf{I}_{\mathbf{k}}$ (rows). They satisfy the eigenproblems

$$
\mathbf{I}_{k} J=\mathbf{I}_{k} \lambda_{k}, \quad J \mathbf{r}_{k}=\lambda_{k} \mathbf{r}_{k}
$$

The diagonalization is via similarity transformation $J=S \wedge S^{-1}$ with S and S^{-1} encoding eigenvectors. The eigenvectors are not orthogonal $\mathbf{r}_{k} \cdot \mathbf{r}_{j} \neq \delta_{k j}$ but biorthogonal $\mathbf{I}_{k} \cdot \mathbf{r}_{j}=\delta_{k j}\left(S^{-1} S=\mathbf{1}\right)$. Resolution of identity $\sum_{k} \mathbf{r}_{k} \otimes \mathbf{I}_{k}=\mathbf{1}\left(S S^{-1}=\mathbf{1}\right)$.
They are not unique. Rescaling $\mathbf{r}_{k} \rightarrow c_{k} \mathbf{r}_{k}, \mathbf{I}_{k} \rightarrow c_{k}^{-1} \mathbf{I}_{k}$ gives equally good eigenvectors.
The simplest object invariant under rescaling [Chalker Mehlig 1999]

$$
O_{i j}=\left(\mathbf{I}_{i} \cdot \mathbf{I}_{j}\right)\left(\mathbf{r}_{j} \cdot \mathbf{r}_{i}\right)
$$

Readjusting synaptic strength seen as a perturbation

$$
\overbrace{\left(\begin{array}{cc}
0 & +1 \\
0.5 & 1
\end{array}\right)}^{J^{\prime}}=\overbrace{\left(\begin{array}{cc}
0 & -1 \\
0.5 & 1
\end{array}\right)}^{J}+\overbrace{\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)}^{P}
$$

Dynamics of learning is a complicated problem. Can we say anything about the dynamics of eigenvalues? Assuming that the change in weights is small \rightarrow perturbation theory

$$
\lambda_{k}^{\prime}=\lambda_{k}+\mathbf{I}_{k} P \mathbf{r}_{k}+\mathcal{O}\left(P^{2}\right)
$$

Upper bound $\left|\delta \lambda_{k}\right| \leqslant\left\|\mathbf{I}_{k}\right\| \cdot\left\|\mathbf{r}_{k}\right\| \cdot\|P\|=\|P\| \underbrace{\sqrt{\left(\mathbf{I}_{k} \cdot \mathbf{I}_{k}\right)\left(\mathbf{r}_{k} \cdot \mathbf{r}_{k}\right)}}_{\kappa\left(\lambda_{k}\right)=\sqrt{O_{k k}}}$.
Eigenvalue condition number [Wilkinson 1965]
$O_{k k}$ controls stability of the spectrum, eigenvalues with larger condition number can move farther.

Transient amplification in the linearized dynamics

Linearization around the fixed point $x^{*}=0$

$$
\frac{d \mathrm{x}}{d t}=-\mathbf{x}+J \mathbf{x}
$$

If $\operatorname{Re}\left(\lambda_{k}\right)<1$ the system is asymptotically stable.

$$
J_{1}-\mathbf{1}=\left(\begin{array}{cc}
-1 & 1 \\
0 & -2
\end{array}\right) \quad J_{2}-\mathbf{1}=\left(\begin{array}{cc}
-1 & 10 \\
0 & -2
\end{array}\right)
$$

$S(t)=\|\mathbf{x}(t)\|^{2}$ - squared Euclidean distance from the fixed point

Initial condition
$x_{0}=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)^{T}$
[Caswell 2004]

Transient amplification in the linearized dynamics

The problem is linear. Formal solution: $\mathbf{x}(t)=e^{(-1+J) t} \mathbf{x}_{\mathbf{0}}$. Squared norm

$$
S(t)=\mathbf{x}_{0}^{T} e^{\left(J^{T}-\mathbf{1}\right) t} e^{(J-\mathbf{1}) t} \mathbf{x}_{0}=\sum_{j, k=1}^{N} e^{-2 t+\lambda_{j}+\lambda_{k}}\left(\mathbf{x}_{0} \cdot \mathbf{I}_{k}\right)\left(\mathbf{x}_{0} \cdot \mathbf{l}_{j}\right)\left(\mathbf{r}_{k} \cdot \mathbf{r}_{j}\right)
$$

For normal matrices $\mathbf{r}_{k} \cdot \mathbf{r}_{j}=\delta_{j k}$:

$$
S(t)=\sum_{k=1}^{N} e^{2\left(\lambda_{k}-1\right) t}\left(\mathbf{x}_{0} \cdot \mathbf{I}_{k}\right)^{2}
$$

Averaging over initial conditions: $\langle S(t)\rangle=\sum_{j, k=1}^{N} e^{-2 t+\lambda_{j}+\lambda_{k}} O_{j k}$.

Rajan-Abbott model [PRL 97, 188104 (2006)]

$$
\dot{x}_{i}=-x_{i}+\sum_{k} J_{i k} \phi\left(x_{k}\right)
$$

Two types of neurons: $f_{E} N$ excitatory (E) and $f_{l} N$ inhibitory (I). Modelling populational variability: couplings distributed according to $\mathcal{N}\left(\mu_{E}, \frac{\sigma_{E}}{\sqrt{N}}\right)$ and $\mathcal{N}\left(\mu_{I}, \frac{\sigma_{I}}{\sqrt{N}}\right)$. Mathematically, $J=M+X \Lambda$. Addition of M to the model causes few outliers \rightarrow instability of the fixed point \rightarrow chaotic dynamics in the full nonlinear model.

Balance condition: For each neuron $\sum($ excitations $)+\sum($ inhibition $)=0 \quad\left(\sum_{k=1}^{N} J_{i k}=0\right)$
Eigenvalues of balanced $M+X \Lambda$ are exactly the same as of balanced $X \Lambda$. Spectral radius $r^{2}=f_{E} \sigma_{E}^{2}+f_{I} \sigma_{I}^{2}$

Transient dynamics

$$
S(t)=\mathbf{x}_{0} e^{\left(-1-J^{T}\right) t} e^{(-1+J) t} \mathbf{x}_{0}
$$

Onset of synchronization

Can we have more quantitative description than just numerics?

YES!

Random matrix theory + free probability
More in ArXiv: [1805.03592]

Conclusions

- There is much more beyond the eigenvalue analysis
- Inclusion of E / I balance leads to high sensitivity to perturbations and is responsible for the transient amplification
- Stability - plasticity dilemma
- Random matrix theory allows for quantitative results

Work in progress, more results soon

