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Simple model: random neural network

[Sompolinsky, Crisanti, Sommers, 1988]

ẋi = −xi +
N∑
j=1

Jijφ(xj)

All Reλj < 1 trivial dynamics xi (t)→ 0, Reλj > 1 chaos.
[Rajan, Abbott, 2006]: J = M + XΛ + balance condition
[del Molino, Pakdaman, Touboul, Weinrib, 2013] numerics

Eigenvalue analysis is not the end of the story!
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Setting the stage: reminder from algebra

A matrix J is non-normal iff JJT 6= JT J.
If a non-normal matrix can be diagonalized, it possesses two set of
eigenvectors: right rk (column) and left lk (rows). They satisfy the
eigenproblems

lkJ = lkλk , Jrk = λkrk

The diagonalization is via similarity transformation J = SΛS−1

with S and S−1 encoding eigenvectors. The eigenvectors are not
orthogonal rk · rj 6= δkj but biorthogonal lk · rj = δkj (S−1S = 1).
Resolution of identity

∑
k rk ⊗ lk = 1 (SS−1 = 1).

They are not unique. Rescaling rk → ckrk , lk → c−1k lk gives
equally good eigenvectors.
The simplest object invariant under rescaling [Chalker Mehlig 1999]

Oij = (li · lj)(rj · ri ).
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Readjusting synaptic strength seen as a perturbation

J′︷ ︸︸ ︷(
0 +1

0.5 1

)
=

J︷ ︸︸ ︷(
0 −1

0.5 1

)
+

P︷ ︸︸ ︷(
0 2
0 0

)
Dynamics of learning is a complicated problem. Can we say
anything about the dynamics of eigenvalues? Assuming that the
change in weights is small → perturbation theory

λ′k = λk + lkPrk +O(P2)

Upper bound |δλk | ¬ ||lk || · ||rk || · ||P|| = ||P||
√

(lk · lk)(rk · rk)︸ ︷︷ ︸
κ(λk )=

√
Okk

.

Eigenvalue condition number [Wilkinson 1965]
Okk controls stability of the spectrum, eigenvalues with larger
condition number can move farther.
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Transient amplification in the linearized dynamics

Linearization around the fixed point x∗ = 0

dx
dt

= −x+ Jx

If Re(λk) < 1 the system is asymptotically stable.

J1 − 1 =

(
−1 1
0 −2

)
J2 − 1 =

(
−1 10
0 −2

)
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S(t) = ||x(t)||2 - squared
Euclidean distance from
the fixed point

Initial condition
x0 = (12 ,

√
3
2 )T

[Caswell 2004]
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Transient amplification in the linearized dynamics

The problem is linear. Formal solution: x(t) = e(−1+J)tx0. Squared
norm

S(t) = xT0 e
(JT−1)te(J−1)tx0 =

N∑
j ,k=1

e−2t+λj+λk (x0 ·lk)(x0 ·lj)(rk ·rj)

For normal matrices rk · rj = δjk :

S(t) =
N∑

k=1

e2(λk−1)t(x0 · lk)2

Averaging over initial conditions: 〈S(t)〉 =
∑N

j ,k=1 e
−2t+λj+λkOjk .
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Rajan-Abbott model [PRL 97, 188104 (2006)]

ẋi = −xi +
∑
k

Jikφ(xk)

Two types of neurons: fEN excitatory (E) and fIN inhibitory (I).
Modelling populational variability: couplings distributed according
to N (µE ,

σE√
N

) and N (µI ,
σI√
N

). Mathematically, J = M + XΛ.
Addition of M to the model causes few outliers → instability of the
fixed point → chaotic dynamics in the full nonlinear model.

Balance condition: For each neuron∑
(excitations) +

∑
(inhibition) = 0 (

∑N
k=1 Jik = 0)

Eigenvalues of balanced M + XΛ are exactly the same as of
balanced XΛ. Spectral radius r2 = fEσ

2
E + fIσ

2
I
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Transient dynamics

S(t) = x0e(−1−J
T )te(−1+J)tx0
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Onset of synchronization
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Can we have more quantitative description than just
numerics?

YES!

Random matrix theory + free probability
More in ArXiv: [1805.03592]
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Conclusions

There is much more beyond the eigenvalue analysis

Inclusion of E/I balance leads to high sensitivity to
perturbations and is responsible for the transient amplification

Stability - plasticity dilemma

Random matrix theory allows for quantitative results

Work in progress, more results soon
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