Independent Component Analysis of Electrophysiological Data

Scott Makeig

Institute for Neural Computation University of California San Diego

> 58th Cracow School of Theoretical Physics Zakopane, Poland

> > June, 2018

The EEGLAB environment (sccn.ucsd.edu/eeglab) is now available in the Neuroscience Gateway (NSGportal.org)

... In future, optional NSG computation of EEGLAB pipelines will be available directly via the EEGLAB menu itself

Each EEG channel records variations in a double-ended voltage difference between (at least) two electrodes

Each EEG channel thereby constitutes a *particular spatial filter* receptive to sources located all over the brain surface – but particularly receptive to a *complex distribution* of cortical areas – *NOT* only to one radially oriented bit of cortex located directly below *one* of the *two* (or more) channel electrodes!

Very broad projected scalp potentials

1 million active minicolumns Summed scalp projection of the 1M sources.

0

-0.13

m٧

0.3

time (seconds)

0.2

0.1

One emerging, spatially coherent effective source region

patch cohen

Z. Akalin Acar & S. Makeig (2015)

2.4

0

-2.4

mA/mm²

Local coherence change only – *no* change in spectrum or amplitude

0.5

0.4

Scalp epiphenomena !

Scalp projection

Z. Akalin Acar & S. Makeig (2012)

Scalp epiphenomena

Phenomena

Epiphenomenal

epiphenomena -secondary effects or byproducts that arise from but do not causally influence a process.

Two spatially stationary cortical effective sources

Summed scalp projection

Z. Akalin Acar & S. Makeig (2012)

Summed scalp projections of 13 effective brain sources

Epiphenomenal Impressions

Causal Phenomena

Z. Akalin Acar & S. Makeig (2016)

Zeynep Akalin Acar & Scott Makeig '06

But how to find EEG effective sources?

Cloud art: Berndnaut Smilde

S. Makeig, 2016

Blind EEG Source Separation by Independent Component Analysis Tony Bell, ICA can find distinct EEG source developer CSF activities -- and their 'simple' scalp of Infomax Skull maps! **ICA** Scalp Independent Component Analysis of Electroencephalographic Data The field Internet, Public Ing Kitter F-D: Th**a** 61.08 tes They Ch MORAL Arr Thigs. Ca. - 8246-960 and the local data Parts Place Pres Formate 3. Scienceshi word Taylor Multin Instant and of Fourier Symposis Company Constant and the state of the local division in the of the second strength of the fails hanking, incl. that some Photosis Instalay, 217, 764 MARK An Thep, Ch. (0.06.000) for Thep, Ch. Home, proand the second second Reason while these articipation devices and the differest which is a state of the second pairs on the boson made includes articly generated white inclusion. This marked encoding of This lives by sydness while did the local of spotting the Arigs, Souther of for the halopedent component fordper (Vin seguri of the and the same of the state of the particular day parties and an and the same way and the same state of the state of the state of the same state of the anno iamharke her the afairst keiholes. Pro tas's of capity legisles. While adjust the two Hills and an annual data presented

(FUE) data substati Daring a menufaci andrare tambée subinger à C/C/n technique tenerative le different contain andre di Un top 4 energies agregate de la different d'Els contracteurs filse and reserve also, cor excension filses aller agresse. El C/n 4 equité d'actuative productive filse (presentes, behalting et plus and technique and quickly agresse filse (PC) and have approace C/n chernels. (c) Kanag-Gaussian (n FO) and halos, technique and te model and quickly cardinations in FO(2) and halos. Inter and technique (C) Kanag-Gaussian (n FO) and halos. Inter and technique technique (C) a classing in the attantist and technique (C) a filse of another in the attantist and technique (C).

S. Makeig, S. Enghoff (2000)

Infomax ICA learning approach

How to make the outputs statistical independent? Minimize their redundancy or mutual information.

Blind EEG Source Separation by ICA

Information-based Signal Processing

ICA Assumptions

 Mixing is linear at electrodes Propagation delays are negligible Component locations are fixed ? Component time courses are independent • # components <= # scalp channels Contribution to EEG **# Scalp channels**

Effective sources

Are EEG effective source signals independent?

Properties of EEG Independent Components

- Maximally Temporally Independent
- Concurrently Active and Spatially Overlapping
- Dipolar Scalp Maps (Delorme et al., 2012)
- Functionally Distinct
- Between-Subject Similarity / Complexity

Onton, Makeig (2006)

ICA finds Non-Brain Independent Component (IC) Processes ...

... separates them from the remainder of the data ...

J. Onton & S. Makeig

... and also separates cortical brain IC processes

Julie Onton & S. Makeig (2006)

Single Session - Two Maximally

IC11

Important Result (2012)

Those linear decompositions of multi-channel EEG data that find ICs whose time courses are **more nearly** temporally **independent Also find more ICs** whose scalp maps are highly **'dipolar'** – i.e., ICs compatible with the spatial projection of a source process in a single local cortical patch (or, a non-brain artifactual source)– whose location can be accurately estimated using a equivalent dipole model

More nearly *independent* component time courses ←→ Larger number of *dipolar* component scalp projections Hypothesis: Dipolar ICs = Localized effective source processes

Delorme et al., *PLOS One*, 2012

Delorme et al., *PLOS One*, 2012

S. Makeig, 2011

Are locations of EEG *effective sources* similar across tasks?

Are *effective source* locations within task similar across participants?

Effective Source Density Visual Working Memory

Sternberg letter memory task

dipoledensity()

Effective Source Density Eyes-closed emotion imagination

>> dipoledensity()

Effective Source Density Letter twoback with feedback

Letter twoback with feedback

Effective Source Density Auditory novelty oddball

Auditory oddball plus novel sounds

Effective Source Density A. Old/new word memory

Word memory (old/new) task

Effective Source Density B. Visually cued selective response

Visually cued button press task

Are source dynamics similar across participants?

Example: frontal midline theta cluster

Rissling et al., 2014

Can ICA reveal subject differences?

Auditory Deviance Response

The deepest mental trap in electrophysiology lurks in the word "THE" !!!

Rissling et al., 2014

PEAK AMPLITUDES	ERP	r²	
Scalp Electrode (Fz)			
Verbal IQ (WRAT)	P3a	0.11	
Functional Capacity (UPS	RON	0.12	MMN P3ª RON MMN P3ª RON
R Superior Tomporal			
Working Memory (LNS Reorder)	RON	0.15	
Verbal IQ (WRAT)	RON	0.15	
Immediate Verbal Memory (CVLT)	RON	0.28	
Delayed Verbal Memory (CVLT)	RON	0.26	
Functional Capacity (UPSA)	MMN	0.48	S * N
Functional Capacity (UPSA)	RON	0.26	
R Inferior Frontol			5 AMA AMA
Negative Symptoms (SANS)	RON	0.36	> - manual till / times weighted the Party of
Psychosocial runctioning (301)	KUN	0.24	Alley Com A. P. Marter
Auditory Attention (LNS Forward)	MMN	0.38	-2'µV -2'
Working Memory (LNS Reorder)	MMN	0.30	
Verbal IQ (WRAT)	MMN	0.46	Contri SZ
/entral Mid Cingulate			
Positive Symptoms (SAPS)	RON	0.29	
Negative Symptoms (SANS)	P3a	0.36	
Immediate Verbal Momory (C)/LT)		0.41	
Delayed Verbal Memory (CVLT)	RON	0.24	
Verbal IQ (WRAT)	RON	0.29	
Executive Functioning (WCST)	RON	0.24	
Anterior Cingulate			
Functional Status (GAF)	MMN	0.18	
Functional Status (GAF)	RON	0.17	
Immediate Verbal Memory (CVLT)	RON	0.25	
Delayed Verbal Memory (CVLT)	RON	0.17	
Medic: Cronorontal			
Positive Symptoms (SAPS)	P3a	0.40	
Negative Symptoms (SANS)	P3a	0.54	
Psychosocial Functioning (SOE)	. Ja	0.37	
Functional Capacity (UPSA)	P3a	0.32	
Dorsal Mid Cingulate			
Verbal IQ (WRAT)	P3a	0.15	
Executive Functioning (WCST)	MMN	0.18	

	PEAK LATENCIES	ERP	r²	ΔΓ)R
	Scalp Electrode (Fz) n/a			MMN P3a RON	MMN P3a RON
	<u>Functional capacity</u> (UPSA) Delayed Verbal Memory (CVLT)	MMN MMN	0.25 0.17		\mathbf{O}
	Negative Symptoms (SANS) Psychosocial Functioning (SOE) Executive Euroctioning (WCST)	RON RON MMN	0.51 0.25		4
	Executive Functioning (WCST)	P3a	0.28		
	Negative Symptoms (SANS) Negative Symptoms (SANS) Psychosocial Functioning (SOF)	P3a NCN P3a	0.33 0.33 0.31	Cntrl	SZ
ζ	Verbal IQ (WRAT) Executive Functioning (WCST)	MMN P3a	0.25 0.30		
	Antenet Congulate Functional Capacity (UPSA) Verbal IQ (WRAT) Auditory Attention (LNS-Forward)	RON MMN MMN	0.17 0.24 0.17		
	Medial Orbitofrontal Negative Symptoms (SANS) Positive Symptoms (SAPS)	RON	0.41 0.40		
	Auditory Attention (LNS-Forward) Executive Functioning (WCST) Dorse Mid Cingulate	MMN P3a	0.29 0.32		
	Negative Symptoms (SANS) Negative Symptoms (SANS) Global Functioning (GAF)	MMN P3a RON	0.20 0.17 0.24		
	Functional Capacity (UPSA)	РЗа	0.13		

Rissling et al., 2014

EEG Source Localization

LORETA = Low-Resolution Electrical Tomography

Arthur Tsai et al., Neurolmage,

High-Resolution Distributed Source Localization using a multiscale patch basis

- 0. Build a high-res. cortical surface mesh; give each voxel an oriented dipole.
- 1. Compute a 'dictionary' of Gaussian patches conforming to the cortical surface centered at each cortical mesh voxel.
- 2. Use a 'sparsifying' approach to find the sum of the *fewest* of these patches that together produce the given source scalp or grid map.

Zeynep Akalin Acar,, S. Makeig, G. Worrell, '09-'16

High-resolution source localization requires an *electrically* accurate head model

Handheld 3-D electrode position recording system software

Currently by hand 1-by-1. Soon by machine learning. Brain imaging during movement – How?

• Current advances in ministurination, computer power, and informationbased signal processing max boost 1 and wite ing modality:

→ Mobile Brain/Body Imaging (MoBI)

Brain/body

Concept:

Combine whole-header, aging and wholeeye gaze tracking, and wholebody motion capture recording in a real-world 3-D environment.

~1,000,000 GHz

Mobile Brain/Body Imaging

Record what the brain does, What the brain experiences, And what the brain organizes.

S. Makeig 2007

MoBI Lab at SCCN, UCSD

Lab Streaming Layer software for synchronous multi-stream, multiplatform recording and feedback freely available online (paper in progress): github.com/labstreaminglayer

Extensible Data Format (kclf) for multimodal data collection and storage.

SNAP – a python-based framework running on Unity for control of simple o complex MoBI experiments.

MoBILAB – a Matlab-based multimodal data browser and pre-processing app.

S. Makeig, 2016

Now feasible – Low-cost MoBI Systems

Any **EEG** System Low-Cost

MoBI

< \$500 < \$500 Emotiv motion capture Neuroheadset Eye Tribe eye tracker Leap Motion hand/finger tracker < \$100

< \$500 Touchscreen

< \$1000 Full Body **Wireless Inertial Motion Capture**

> LSL software drivers exist for all these (and more) devices

< \$100

Brain imaging of natural cognition -- actions & interactions

Imaging Human Agency and Social Interactions

ECoG Source Analysis

Invasively Monitored Head --Forward Electrical Model

> Electrical Brain Source Analysis for ECoG

Intact Head --Forward Electrical Model

Neuroelectromagnetic Forward Head Modeling Toolbox (NFT) Independent Component Source of ECoG Data

Source Patch in Sulcus Estimated using the Forward Head Model

Akalin Acar, Palmer, Makeig, 2009

Akalin Acar, Palmer, Makeig, 2009

Zeynep Akalin Acar,, S. Makeig, G. Worrell, '09-'16

Just as, currently, MRI & fMRI signals are only interpreted after transformation from sensor space to *brain* source space,

So too, in future, electrophysiological signals should (and will) be interpreted only after suitable transformation from EEG|ECoG|LFP sensor space to brain *effective source* space.

→ The dependence on spatially stable source dynamics forced by ICA is artificial; more general models of spatiotemporal field trajectories (e.g., using deconvolutive ICA or complex ICA).