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For simulation videos, go to
https://github.com /fkubandt/wheeled_snake_robots



Designing a Robot Controller without relying on

e central computing e information about body

e environmental sensors composition
e learning algorithm e internal communication



But then, what do we have?



Design of the Controller
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Design of the Controller
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x®) = tanh(x)



System Equations

Adding friction factor —rfw leads to

Tx = cos(p) — x

p=uw

I = Megs = r(k(tanh(x) - cos(<p)) sin(p) — fw)




System Equations

Adding friction factor —rfw leads to

Tx = cos(p) — x

p=uw

I = Megs = r(k(tanh(x) - cos(<p)) sin(p) — fw)

set of relevant (stable) fixpoints:

x* = cos(¢py),
w* =0,
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System Equations

Adding friction factor —rfw leads to

TX = cos(p) — x

p=uw

16 = Magt = r(k(tanh(x) - cos(ga)) sin(ip) — fw)

two symmetric limit cycles — forward and backward rotation
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Two-wheeled Robot

Implement this controller in simple robot:

cylindric body with two wheels

wheels are controlled indepedently by
identical controllers

no communication or coupling except
mechanical link to body

— forward and backward driving, rotation, rest



Autonomous C

e of Direction

e wall destroys the limit cycle of
forward motion

e the system converges to other
limit cycle or fixpoint

e time delay between impacts
introduces curves



Autonomous C

Uslope
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% incline ( = Counterforce)

e slope introduces a counterforce
— similar effect

e on slopes, no (stable) fixpoints
exist

e no arbitrarily low upward

velocity



Chain of Robots

add complexity by creating a chain of robots:

5 identical two-wheeled robots E
allow (damped) motion along pitch and yaw axis

N
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— 10 independent controllers, mechanically
coupled
= 10 "neurons”
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Chain of Robots
different locomotion patterns emerge, depending ‘4

on all parameters, e.g. ( .
e motorstrength k
e damping of the joints D l
e friction parameter f ’
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Emerging Locomotion Patterns

D = 0.005
k=2
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Emerging Locomotion Patterns

D = 0.005
k=29
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Interaction with Environments

In a structured environment, autonomous changes between locomotion
patterns occur.
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Interaction with Environments

high variability of modules’ relative positions
— collision can introduce change between gaits and high variance in
resulting direction.

Exploratory behaviour
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Interaction with Environments
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Interaction with Environments
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Conclusions

e complex behaviour emerges from very simple controllers that are
coupled mechanically

e proprioception in a dynamical system allows autonomous changes
between locomotion patterns as a response to structured
environment

e coordinated and uncoordinated behaviour can be realized
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Further work on this topic

e it could be shown, that the emergent behaviour is very robust
toward mismatches of motor strength and even motor failure

e it seems to be sensitive to mechanical deviations and small-scale
environmental structures
F. Kubandt Robustness and Synchronization in a Chain of Two-Wheeled Robots, Thesis, Institute for Theoretical Physics,

Goethe University Frankfurt

e with adaptation (second neuron), the controller was succesfully
transferred to a physical two-wheeled robot EV3 (for the chain this
remains to be tested)

e for the 2-neuron controller, kick-control for top-down transition
between attractors could be successfully implemented in simulation

and EV3
B. Sandor, M. Nowak, T. Koglin, L. Martin, and C. Gros. Kick control: using the attracting states arising within the
nsorimotor loop of self-organized robots as motor primitives. Frontiers in Neurorobotics preprint.
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Variation of Motor Strength

uncoupled (air) coupled (ground)



Variation of Motor Strength
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Real-World Implementation

For realization in a physical system, the controller was adapted:
— two neurons to avoid zero-crossing
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work by M. Nowak



Real-World Implementation

The controller was implemented in Lego EV3

work by M. Nowak



Real-World Implementation
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