

Embodied AI: How complex motion arises from single-neuron controllers

Frederike Kubandt

June 2018

Institute for Theoretical Physics Goethe University Frankfurt For simulation videos, go to https://github.com/fkubandt/wheeled_snake_robots

Designing a Robot Controller without relying on

- central computing
- environmental sensors
- learning algorithm

- information about body composition
- internal communication

But then, what do we have?

Design of the Controller

B. Sàndor

Design of the Controller

$$x^{(a)} = \cos(\varphi)$$
$$F = k \cdot (x^{(t)} - x^{(a)})$$
$$M = r \cdot F \sin(\varphi)$$

$$\tau \dot{x} = x^{(a)} - x$$
$$x^{(t)} = \tanh(x)$$

System Equations

Adding friction factor $-rf\omega$ leads to

$$\begin{aligned} \tau \dot{x} &= \cos(\varphi) - x \\ \dot{\varphi} &= \omega \\ I \dot{\omega} &= M_{\text{eff}} = r \left(k \left(\tanh(x) - \cos(\varphi) \right) \sin(\varphi) - f \omega \right) \end{aligned}$$

System Equations

Adding friction factor $-rf\omega$ leads to

$$\begin{aligned} \tau \dot{x} &= \cos(\varphi) - x \\ \dot{\varphi} &= \omega \\ I \dot{\omega} &= M_{\text{eff}} = r \left(k \left(\tanh(x) - \cos(\varphi) \right) \sin(\varphi) - f \omega \right) \end{aligned}$$

set of relevant (stable) fixpoints:

$$x^* = \cos(\varphi_0^*),$$

$$\omega^* = 0,$$

$$\varphi_0^* = n\pi$$

System Equations

Adding friction factor $-rf\omega$ leads to

$$\begin{aligned} \tau \dot{x} &= \cos(\varphi) - x \\ \dot{\varphi} &= \omega \\ I \dot{\omega} &= M_{\text{eff}} = r \left(k \left(\tanh(x) - \cos(\varphi) \right) \sin(\varphi) - f \omega \right) \end{aligned}$$

mean velocity depends on klimit cycles dominate for $k > k_c \approx 0.54$

Implement this controller in simple robot:

cylindric body with two wheels

wheels are controlled **indepedently** by **identical** controllers

no communication or coupling except mechanical link to body

 \rightarrow forward and backward driving, rotation, rest

- wall destroys the limit cycle of forward motion
- the system converges to other limit cycle or fixpoint
- time delay between impacts introduces curves

Autonomous Change of Direction

- slope introduces a counterforce \rightarrow similar effect
- on slopes, no (stable) fixpoints exist
- no arbitrarily low upward velocity

Chain of Robots

add complexity by creating a chain of robots:

5 identical two-wheeled robots allow (damped) motion along pitch and yaw axis

 \rightarrow 10 independent controllers, mechanically coupled \equiv 10 "neurons"

different locomotion patterns emerge, depending on all parameters, e.g.

- motorstrength k
- damping of the joints D
- friction parameter f

$$D = 0.005$$

 $k = 2$

$$\begin{array}{l} \mathsf{D}=0.005\\ \mathsf{k}=2.9 \end{array}$$

Interaction with Environments

In a structured environment, autonomous changes between locomotion patterns occur.

high variability of modules' relative positions \rightarrow collision can introduce change between gaits and high variance in resulting direction.

Exploratory behaviour

Interaction with Environments

- complex behaviour emerges from very simple controllers that are coupled mechanically
- proprioception in a dynamical system allows autonomous changes between locomotion patterns as a response to structured environment
- coordinated and uncoordinated behaviour can be realized

Further work on this topic

- it could be shown, that the emergent behaviour is very robust toward mismatches of motor strength and even motor failure
- it seems to be sensitive to mechanical deviations and small-scale environmental structures

F. Kubandt Robustness and Synchronization in a Chain of Two-Wheeled Robots, Thesis, Institute for Theoretical Physics, Goethe University Frankfurt

- with adaptation (second neuron), the controller was succesfully transferred to a physical two-wheeled robot EV3 (for the chain this remains to be tested)
- for the 2-neuron controller, kick-control for top-down transition between attractors could be successfully implemented in simulation and EV3

B. Sàndor, M. Nowak, T. Koglin, L. Martin, and C. Gros. Kick control: using the attracting states arising within the sensorimotor loop of self-organized robots as motor primitives. Frontiers in Neurorobotics preprint.

Variation of Motor Strength

coupled (ground)

uncoupled (air)

Variation of Motor Strength

coupled (ground)

uncoupled (air)

For realization in a physical system, the controller was adapted:

 \rightarrow two neurons to avoid zero-crossing

work by M. Nowak

The controller was implemented in Lego EV3

work by M. Nowak