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The Standard Model electroweak vacuum lies very close to the boundary between stability and
metastability, with the last option being the most likely. I will discuss a) the interplay of this so-called
"near-criticality” with physics beyond the Standard Model including possible Planckian effects; b) the
main challenges that the survival of the electroweak vacuum faces during the evolution of the Universe,
and c) possible signatures of this instability showing how Higgs fluctuations during inflation might

provide dark matter in the form of primordial black holes as well as a background of potentially
observable gravitational waves.




Life at the edge: complexity and criticality in
biological function

brain

Dante R. Chialvo
CEMSCS -Center for Complex Systems & Brain
Sciences
Universidad Nac. de San Martin / Conicet, Argentina

protein

mitochondria
"The laws of physics are simple but nature is complex”.

hialv nicet.gov.ar
Papers: www.chialvo.net

UNSAM
ESCUELA

UNIVERSIDAD DE CIENCIA
NACIONAL DE Y TECNOLOGIA
SAN MARTIN

CONICET &9

u\("" S
v on Sitemas Complejos y Ciencias dal Cerabro



mailto:dchialvo@conicet.gov.ar?subject=
http://www.chialvo.net

Outline

Today |::> -Why life is always found near criticality? (a 10 minutes
manifesto for the non-cognoscenti on “Not too rigid, neither
very flexible”)

-We apply these ideas to:
Today IZ:>  Brains (results on critical brain dynamics)

* Proteins (finite size scaling analysis on NMR data from
the PDB database) 15 min. (with Y.T. Tang,Physical
Review Letters 118, 088102, 2017)

 Mitochondria (critical fusion-fision balance of the
mitochondrial network) 15 min. (with N&E Zamponi et al,
Nature Sci. Reports 8, 363, 2018)

-Summary & questions



"In god we trust. All others, bring data" (W. Edwards Deming)
O “Emergent complex neural dynamics” Chialvo DR, Nature Physics 6 (10), 744-750 (2010)
QO ‘Learning from mistakes” DR Chialvo, P Bak. Neuroscience 90 (4), 1137-1148 (1997).
O “What kind of noise is brain noise?” Fraiman & Chialvo, Frontiers in Phys., (2011).
Q “Criticality in large-scale brain fMRI dynamics...” Frontiers in Phys. (2012).

Q “Brain organization into resting state networks emerges from the connectome at criticality”
Haimovici et al., Physical Review Letters, 110 (17), 178101 (2013).

QO ‘Large-scale signatures of unconsciousness are consistent with a departure from critical
dynamics”. Journal of The Royal Society Interface, 13 (114), 20151027 (2016).

QO “Critical Fluctuations in the Native State of Proteins” Tang QY et al., Physical Review Letters 118
(8), 088102 (2017).

QO “Mitochondrial network complexity emerges from fission/fusion dynamics” Zamponi N, et al.
Scientific Reports 8 (1), 363 (2018).

QO “La mente es critica” J. Marro & D. Chialvo. Univ. of Granada Editora, (2017).

*The results we describe are not anecdotal, they were already generalized to other systems, scales and
setups by a number of authors.



80’s 90’s nowadays

Intuition | Theory Experiments
Including Self-Organized Criticality

critical
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\ e biological systems are

shown to be complex
because the operate
near criticality.

K. Christensen, D. Chialvo, Per
disorder order Bak & Z.Olami. Brookhaven

H. Frauenfelder NYAS 1987 National Lab. (Feb. 1992).

“A Fundamental Theory to Model the Mind” by Jennifer Ouellette
in Quanta Magazine and Scientific American April, 2014.

“Criticality and phase transitions in biology” by Philip Ball
in New Scientist, 2014.

“La mente es critica”’by J. Marro & D. Chialvo. Granada Editora, 2017



What means to be “Critical” Example 1: buttons

connected phase
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What means to be “Critical” (in 5 sec) Example 3: traffic
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VWhat means to be “Critical”
-qualitatively speaking-

Traffic jams as a critical process
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- For the traffic engineer
the maximum “efficiency”
. is at the Critical point
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m For the driver the Critical density is the worst case!
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Summing up, near criticality:

The variability of the order parameter peaks at
criticality (i.e, “susceptibility”) increasing with size
as Nsome exponent

Clusters (jams/fires/buttons_bunch) of all sizes
(i.e, long range spatial correlations observed as
power law distributions of clusters).

The action of a single driver/link/tree at any point
In the system can have repercussion very far
away both in time and space. (long range
correlation and contingency)

Despite that inferactions are short-range,
correlations can be unlimited, as large as the
system itself.

These properties are universal (they don’t depend
on the details of the system (cars, buttons, etc)
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Second lecture



Outline

Today |::> -Why life is always found near criticality? (a 10 minutes
manifesto for the non-cognoscenti on “Not too rigid, neither
very flexible”)

-We apply these ideas to:
Today I:> - Brains (results on critical brain dynamics)

* Proteins (finite size scaling analysis on NMR data from
the PDB database) 15 min. (with Y.T. Tang,Physical
Review Letters 118, 088102, 2017)

 Mitochondria (critical fusion-fision balance of the
mitochondrial network) 15 min. (with N&E Zamponi et al,
Nature Sci. Reports 8, 363, 2018)

-Summary & questions



If criticality is the solution ...
what is the problem?

The brain can not work like a electrical circuit,
because a circuit is something rigid (will need
another brain to change the connections)

Synaptic are fix (at the time scale
of interest and very weak!!

Scale free clustering (ordering) without
synchronization!

13



Second day
Remember: brain pairwise correlations are always weak
Strong ordering emerging of weak pairwise correlations

Vol 440(20 April 2006/dok10.1038/nature04701 namre

ARTICLES

Weak pairwise correlations imply
strongly correlated network states in a
neural population

Elad Schneidman'?~, Michael J. Berry II°, Ronen Segev’ & William Bialek'

Biological networks have so many possible states that exhaustive sampling is impossible. Successful analysis thus
depends on simplifying hypotheses, but experiments on many systems hint that complicated, higher-order interactions
among large groups of elements have an important role. Here we show, in the vertebrate retina, that weak correlations
between pairs of neurons coexist with strongly collective behaviour in the responses of ten or more neurons. We find
that this collective behaviour is described quantitatively by models that capture the observed pairwise correlations but
assume no higher-order interactions. These maximum entropy models are equivalent to Ising models, and predict that
larger networks are completely dominated by correlation effects. This suggests that the neural code has associative or
error-correcting properties, and we provide preliminary evidence for such behaviour. As a first test for the generality of
these ideas, we show that similar results are obtained from networks of cultured cortical neurons.




...The (yet) unsolved problem: how the brain manage to produce a huge
range of cortical configurations in a flexible manner ...

namure
physics s e o S

Emergent complex neural dynamics

Dante R. Chialvo'?*

A large repertoire of spatiotemporal activity patterns in the brain is the basis for adaptive behaviour. Understanding the
mechanism by which the brain's hundred billion neurons and hundred trillion synapses manage to produce such a range of
cortical configurations in a flexible manner remains a fundamental problem in neuroscience. One plausible solution is the

involvement of universal mechanisms of emergent complex phenomena evident in dynamical systems poised near a critical
point of a second-order phase transition. We review recent theoretical and empirical results supporting the notion that the
~ brain is naturally poised near criticality, as well as its implications for better understanding of the brain.
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History (2003-2005)

Scale-Free Brain Functional Networks

Victor M. Eguiluz,' Dante R. Chialvo,” Guillermo A. Cecchi,” Marwan Baliki,” and A. Vania Apkarian®

'Instituto Mediterréneo de Estudios Avanzados, IMEDEA (CSIC-UIB), E07122 Palma de Mallorca, Spain
2Departmem of Physiology, Northwestern University, Chicago, lllinois, 60611, USA
*IBM T.J. Watson Research Center, 1101 Kitchawan Rd., Yorktown Heights, New York 10598, USA
(Received 13 January 2004; published 6 January 2005)

Functional magnetic resonance imaging is used to extract functional networks connecting correlated
human brain sites. Analysis of the resulting networks in different tasks shows that (a) the dx's%ﬂ)ution of
functional connections, and the probability of finding a link versus distance are both scale-free, (b) the
characteristic path length is small and comparable with those of equivalent random networks, and (c) the
clustering coefficient is orders of magnitude larger than those of equivalent random networks. All these
properties, typical of scale-free small-world networks, reflect important functional information about

brain states.

DOI: 10.1103/PhysRevLett.94.018102 PACS numbers: 87.18Sn, 87.19.La, 89.75.Da, 89.75.Hc

-------

[T 1Renos in Cognitive Sciences  Vol.B No.9 September 2004 '*"""""é-mm

L
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Organization, development and
function of complex brain networks

Olaf Sporns’, Dante R. Chialvo?, Marcus Kaiser® and Claus C. Hilgetag®




Partial correlations

Brain mean two-point correlation function computed from
Functional Magnetic Resonance Images during rest (no task)

Healthy volunteers

Salvador et al., Cerebral Cortex, (2005)

Most of C pairs are weak
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Ferromagnetic-paramagnetic Phase-Transition

Snapshots of spins
states in a model
system (2D Ising)

N

T>Tc

n

-t

Subcritical SuperCiritical

Snapshots of spins states in the Ising model.

Long range correlations emerges at the phase transition

18



14

Despite its lattice (short range) interactions, Ising “funcional networks

(at criticality) mimic the fat tails of functional brain networks
SubCiritical Critical SuperCritical
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From Chialvo, Balenzuela & Fraiman. The brain: What is critical —_ . L S

about it? 2008 (arXiv.org/ cond-mat/0804.0032); Fraiman, E=-J 2 <i,j> SI S] B 2k Sk
Balenzuela, Foss & Chialvo, Ising like dynamics in large-scale

brain networks. (arXiv.org/ cond-mat/0811.3721), Phys Rev. E. 1 9

(2008).




Critical Ising networks mimic brain networks

Negative correlated networks

SubCritical Critical SuperCritical
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Negative correlations with fat tails similar to the brain data appear in the
Ising data, despite the absence of negative “structural” interactions (i.e. no
“inhibitory” connectivity).
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We studied brain correlation functions ...



What truly matters is the correlation length

Choose many ROls.
Compute the average connected correlation function
for each ROI & plot it as a function of distance

Correlation length increases
with ROI size

I IIIHUI 1 l]”"ll LILBLLALL

IIIIIII
O
@,

| lllllI

T

1 llllllll 1 llllllll Ly

0 10 20 30 10 100 1000 10000
r (mm) Size (N)

The bottom line: Big, intermediate and small ROl behaves all in the same way

For example: Two places 4 mm apart on a blob of 20 voxels are as correlated

as those 40 mm apart on a blob of 4000 voxels

22
Chialvo DR & Fraiman D. (2010)



You could do the same for Mutual Information

MI(r)

MI(X;Y) = H(X) - H(X 1Y)

| Mutual information MI(r) as a function of
5 10 15 20 distance r averaged over all time series of each
r (mm) of the ROI.

10

wp ) v Mutual information increases with cluster size.

I
10 100 1000 10000
Size (N)

Rescaled mutual information

0O 05 1 15 2 Chialvo DR & Fraiman D. (2010) 23
Rescaled x= (r /)



Consequences of the increase in Correlation Length:
Anomalous scaling of the variance

N=39

N=154

N=890
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The variance of the temporal
fluctuations is independent of
the ROI size.

o variance of the fluctuations

computed for each of thirty five
ROI

variance of the fluctuations
computed for randomized data

24
Chialvo DR & Fraiman D. (2010)
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Anomalous scaling of the time dependent correlations

1 y . . .
N [ [
N=39 <C>0.5 —W‘Vﬁ i c_.=0.17
0 ! | < i
1 I | I |
N=154 «C>0.5 W $ c_.=0.17
. | . |
0
1 i | | | |
N=890 <C>05!— = | o.=0.14
L | | I
0
1 i I | I | |
N=6611 «C>0.5
N . 4 | o_.=0.10
0 240 480
Time (sec)
10-15 I I IIIIII| I I IIIIII| I I IIIIIIE
i O ]
B - - -2 - -@-g ----- Q&- - -@-Q - n
é 107 F ® ° o @@@ N ® -
o = O @ 7
-3 | | IIIIII| | | IIIIII| | | | I |
10
10’ 10*

10° Give (N) 10

Peaks of high correlation

Valleys of low correlation

The variance of the correlations

€= is independent of the ROI

size

25



correlation length: at criticality, it increases with system size
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Data from human fMRI
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Brain "meteorology” (searching for order in very large
scale, fMRI)

how we proceed:

Keep only the points and
throw away > 95% of
the data

Chialvo et al, (arXiv:
1107.4572)

First, get the instantaneous dynamics (peaks)

Independent Comp.

Point Process

Moral: large scale dynamics is preserved despite a huge data reduction (95%) most of
the information is in the peaks.

27



Brain "meteorology”

Second, identify clusters of activity (like clouds in the sky)

pixels in green belong to one cluster, blue to another, etc

| ) ) .

Time ————»

B . 100
8 L
=
Number of clouds S 50 |
d 1 | 1
_ N ;i _________ | )
Size of the 0 10° &
largest cloud ll> § e :i‘
(sort of “order” 10 ! I ! l .
parameter) 0 200 400 600

Time (sec.)
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Third, identify spatiotemporal correlations (avalanches)

Box Length

Fractal
Dimensio

Avalanches of activity are scale free

-rom Tagliazucchi et al, Frontiers in Physiol. 2012.

B 10 103
@ (samples), Size (voxels)

Lifetime PDF
Size PDF
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Identical avalanches were described in vivo & in vitro preps.
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~ourth, check for “control” versus “order” parameter
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OK, lets do some modeling

32



The Iinteractions from the human connectome

A998-

499 B
v

Plus some “simple” dynamics, actually (if
universality applies) almost any nonlinear
rule must give the exact same result...

x=0, y=-36, z=18

-Haimovici A, et al. “Brain organization into resting state networks

emerges from the connectome at criticality”. PRL (2013). 33



Getting the experimental correlations from the interactions (“Connectome")
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AR

® £8 B
.24 critical
+ /\ &g

supercritical

, dynamics
Interactions y

Connectome + Node = Ph '
dynamics ases

critical
& 100 T T TTTTT T ||I||||
0-15 | T I 0_01 :

cluster sizes

Wi
£ I;s’,—— S
-5 Il Il IIIIII| Il Il IIIIII| I;I L1l

0 0 10 10’ 102 10°
0 0.05 0.1 Cluster Size (S)
Threshold

From Haimovici et al, Phys. Rev. Letters 2013. Experimental



Getting the same correlations from the known interactions (“Connectome")

Correlation length

"2 increases with cluster
Py size exactly as seen in
° the real brain
experiments

,” e Exp.
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From Haimovici et al, Phys. Rev. Letters 2013.



The experimental dynamics
is replicated only at criticality

-Haimovici A, et al. Brain
organization into resting state
networks emerges from the
connectome at criticality. PRL
(2013).
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Anomalous scaling of short
term correlations
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Brain# Rain*
4 I
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*Peters & Neelin, Nature Phys. (2006). 30

# Tagliazucchi et al, Frontiers (2012).
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Summary

1- Some general properties, expected near the critical

point of a continuous phase transition, are seen in fMRI brain
data:

Long range correlations in space and time.

Correlation length scales with system size

Anomalous scaling of the variance of the fluctuations
Variance of the order parameter peaks at the critical point
(susceptibility)

Scaling in the clusters size distribution

Scaling of avalanches sizes distribution

2- A model based on the brain connectivity replicates the
observations ONLY at criticality, implying that “connectivity” is
not enough to understand the dynamics.

3- Despite 1 & 2 no theory is at hand to formally explain how
the brain does it...

Y
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With lost of consciousness (LOC) correlations shifted as predicted
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The Danubio
metaphor

Ailba Islond
{Leucos)

AndreiN, 2015
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The Danubio equivalent to
the brain connectome




Third lecture



Today E>

Outline

-Why life is always found near criticality? (a 10 minutes
manifesto for the non-cognoscenti on “Not too rigid, neither
very flexible”)

-We apply these ideas to:
 Brains (results on critical brain dynamics)
* Proteins (finite size scaling analysis on NMR data from

the PDB database) (Ph.D thesis of Y.T. Tang. Physical
Review Letters 118, 088102, 2017)

 Mitochondria (critical fusion-fision balance of the
mitochondrial network) 15 min. (with N&E Zamponi et al,
Nature Sci. Reports 8, 363, 2018)

-Summary & questions



PRL 118, 088102 (2017) PHYSICAL REVIEW LETTERS u;&%uﬁ#‘mn

Critical Fluctuations in the Native State of Proteins

Qian-Yuan Tang,' Yang-Yang Zhang,' Jun Wang,"” Wei Wang,"" and Dante R. Chialvo™
'National Lab of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures,

mmd Nannetemant af Phodior Nanllan Talvaeeltn Nawiina 210 Chics

*with Q-Y Tang (Nanjing Univ., China)

*with Eliana Asciutto &
Ignacio General
(UNSAM, Argentina)




“Life 1s an
equilibrium state

between synthesis

and degradation of
proteins.

Yoshinori Ohsumi

2016 Physiology and Medicine Nobel Prize




Proteins 101
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l
“Sequence” ‘W(Ipmn | b,

mRNA &
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7 Degradation A —
“Shape” . ?

Partially lolded protein "°""““‘°"

energy

Binding to othef pmems _L
Eﬂ-- o
Native structure Ly
- Fig. 1. Schematic of the folding funnel for a fast-folding 60-residue
helical peotein according to Onuchic &t al. (2). The width of the funnel
Phosphorylation reprosents entropy, and depth, the energy. The flow of the molecule
through the molten globule, folding bottleneck, or transition slate en-
samble and a glass transition region where discrele pathways

emerge are indicaled. The Iraction of native contacts correctly made,
Q. is indicated for cach coliection of stales.
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ProteiQs 100: “sausage stuffer”

1-some sausages like
water, others not

2- they have to mutually
negotiate

3- fold (extremely fast)

4- stay flexible\

each sausage = one amino acid




Even today, when people think about protein structures, most sees them like that:

MutT enzyme (pdb: 1TUM) Human pancreatic ribonuclease (pdb: 2k11)

Indeed, proteins are flexible, and their shape fluctuates:




Say something about correlation features of the protein
fluctuations, using finite-size scaling

(getting it from a experiment with relatively small size N )

P
i verylarge N =
| ©
I ¥ )
> : %0
E 1
Y i
S i
5 1
% 57 log N
= i
l \
U\
1 N
i . s
|(T - Tc) / Tc|

“control parameter”



Type of data analyzed:

* We curated a data set including > 4000 proteins
structures (ensembles from the Protein Data Bank)

* Include homo sapiens, bacteria, peptides,...

* Include only structures obtained from NMR experiments
(solvent). [No membrane proteins]

 All proteins with more than 95% of the sequence-
structure resolved.

* no more than 40% sequence similarity.

week endin

PRL 118, 088102 (2017) PHYSICAL REVIEW LETTERS 24 FEBRUARY 2017

Critical Fluctuations in the Native State of Proteins

Qian-Yuan Tang,' Yang-Yang Zhang,' Jun Wang,"” Wei Wang,"" and Dante R. Chialvo™
'National Lab of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures,
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Finite size scaling analysis of shape fluctuations

Two
ealizations
(a)
/) of the same
/) .
ety /45 ~ B protein
realizations-.._ €. %j/i
of the same y - — 0y 7
prOtein A\ \
(and its
average ‘
40 30 1 %0
Residue Index 2
First amino-acid Last amino-acid

Fluctuation (for each realization) around the mean vs. position in the chain 52



Notation

: order of the amino-acid element in the chain
“q” protein realizatdion (out of a ensemble of Q)

For the protein “q*”:

Amino-acid ‘" coordinates: 77 — [1171‘. s Yi s Z-z'.] Connected Correlation Function
1 &
Fluctuation around the mean of amino-acid “" A;, = 7r; — a T'ig
g=1
o Distance dependent covariance ((r) and cross-correlations ¢(r).
A AT —7r; Ar: - Ar;
C‘(‘]') — Zl?ﬁ] J ( J) (',)Il — = _: .] = =
S (r - mﬂ V(AT - Ar;) - (AT - AT)
tibility: .
Susceptibility: 1\ Z(),J rij)-

“Size”: N (length) R (Gyratlon Ratio).

Shapefactor: s = Na®/(L,LyL.) <-pseudo control par. i
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Finite-size scaling

analysis
Correlation
length scales
with protein
size (N)
Residue packing: R, ~ N 1/3
Correlation length: £ ~ R,
Shape factor: s ~ R, ~ N™1/3
Susceptibility: x ~ s™° ~ R, ~ N
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» Highly susceptible proteins (i.e. critical) are more
frequent

20
> 15 20
DAl . —35 40
= /R —47 52
R 68
e
2 i
S e 13— 149
= . 194
o9
O . | ]
3
Shape factor s
Sequences which are able to fold into Other sequences (resulting in densely
a shape exhibiting high susceptibility packed rigid proteins) are less frequent
are more frequent (evolutionary (not selected?.)

selected ?).
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- The most frequent shapes are highly susceptible

Number of Proteins
(\ =~ @) o0
-} -) o -)
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Shape factor s

Shape factor s,
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Don't trust the numbers, look if qualitatively makes sense

correlation length

(" Subcritical Critical Supercritical
8 =
* 9A C;k@ ‘%\ \ :4".“‘.3
1QGM._ 1DV 1EO
Q
10 A Mﬁ : SR
1FVS 2KHH 2L5R
11 A @f} oy, W= N
L@AJW 3 2GD3 2FS| IRVS
protein size _ o~
12 A | ngff
Q)
G 1IDL 2HGL ICKW




 Results fro structures derived from X-ray

crystallography look very similar

B factors

NMR X-ray diffraction
PDB: 2H35 PDB: 2W72

Hemoglobin

Left: Ribbon diagram of the C_alpha set superposed by least squares.
Right:Putty cartoon of B-factor variation on the mean structure (colored
from low to high)
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_02-
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Comparison with molecular dynamics results looks
promising

0.8

0.4}

Correlation (r)

_02 i i i
0 10 20 30 40
Distancer (A)

Connected Correlation Functions computed from the PDB
structure (RMN) and from C_alpha structures derived from
molecular dynamics (MD) (work in progress with 1G & EA)



Blah-Blah-logy

* The finite size scaling analysis of proteins shows that the
“native state” is critical.

« out of 4000 the most frequently observed are the highly
susceptible ones (which has also a preferred shape)

The implications are numerous:

- Different type of sequence-structure predictions
- Different view of allosteric changes
- protein-protein interaction (critical?)

work in progress:

-Analysis conducted for x-ray crystallography B-factors shows
similar results

-Molecular dynamics results are pretty consistent too.

-toy model
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Hoang (Padova) model

non local radius of curvature

local radius of T~
curvature

s hydrophobic interaction

o ’
b c

1]

S
r_. r c‘ I z

Hoang et al, PNAS (2004) 101 (21) 7960-7964

0.8

0.6

0.4

0.2

!

barrel

swollen

-

Lingle

(~helix



UNSAM
UNIVERSIDAD
NACIONAL DE
SAN MARTIN

UNIVERSIDAD
NACIONAL DE
SAN MARTIN

Come visit us!

CEMSC3 -Center for Complex Systems & Brain Sciences
Universidad Nac. de San Martin
Conicet, Argentina



, - Cortes J. na (
SRS |kerbasque Ribeiro-

Q-Y Tang  (Bilbao, Spain) Téixera
Nanjing UFCSPA.
Univ. Brazil
(China

-~

DanieleA
Sissa, Trieste; I

Ana Carolina

Thanks to all collaborators

e
Hess L.

Silvina
Ignac:o Cifre UNR,

Horovitz
arcelong)  posario, .(NIMH

Arg.) U3¢

F Parisi.
UNSAM

Eliana Asciutto, Alonso Amo
Ignacio General Arg,)
(UNSAM) . -
=™ Tomas Grigera.
n UN La Plata
ag) ’l
- -a M. Zarepour,
S. Cannas,
O. Billoni,
F. Tamarit
Famaf UNC,
Cordoba, Arg.

-~ B E
v - | ~
3 .‘.l. '

N. & E. Zamponi
Inimec, Cordoba, Arg

Storm Colaboration
Marina Simian, Rocio
Sampayo, (INS); F.

« Stefani, P, Aramendia
(CIBION).

Montoya P. Munoz M, S rol \ =
(Psychology, UIB, , '

Mallorca, iam

Vasquez B.
(Cuernavaca,
Mex.)

Granada, Spain)
Optogenetics Project
J. Mansell, UChicago;
D. Plenz, NIH.

P. Kanold, UMaryland;
S.Panzeri

E. Gudowska J. Ochab, M.
Nowak,T. Marek, M. Fafrowicz.
Jagellonian University,
Krakow, Poland.

Undversitat di bes
Illes Balears




Correlation length plotted on a
log-log scale vs reduced IT-Tcl/
Tc. (slope is the critical

correlation length, £ (um)

0.1
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: E
ellar vesicle passing through
a miscibility critical point at Tc 32.5°C. FIG. 1. Fluorescence micrographs of vesicles of diameter
Scale bar is 20 um. The bottom row (A—C) 200 um. (a) As temperature changes from 7T > TC. (T =
shows Ising model simulations at rescaled 31.25°C, T, = 309) to T ~ T (T = 31.0°C), fluctuations in

lipid composition grow. Below 7., at T = 28°C, domains
appear. Scale bar = 10 um. (b) A movie of composition fluc-
tuations within a vesicle above T.. Large fluctuations persist for

from Honerkamp-Smith et al seconds (white arrows), whereas small ones disappear by the
H

next frame (black arrow). Scale bar = 20 um.
Biophysical Journal 95, 236,(2008)

temperatures

from Honerkamp-Smith et al, PRL 108,(2012) 65



