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Outline
-Why life is always found near criticality? (a 10 minutes 
manifesto for the non-cognoscenti on “Not too rigid, neither 
very flexible”)   

-We apply these ideas to:

• Brains  (results on critical brain dynamics)  

• Proteins (finite size scaling analysis on NMR data from 
the PDB database) 15 min.  (with Y.T. Tang,Physical 
Review Letters 118, 088102, 2017) 

• Mitochondria (critical fusion-fision balance of the 
mitochondrial network) 15 min. (with N&E Zamponi et al, 
Nature Sci. Reports 8, 363, 2018)

-Summary & questions

Today

Today



“Emergent complex neural dynamics” Chialvo DR, Nature Physics 6 (10), 744-750 (2010)

“Learning from mistakes” DR Chialvo, P Bak. Neuroscience 90 (4), 1137-1148 (1997).

“What kind of noise is brain noise?” Fraiman & Chialvo, Frontiers in Phys., (2011).

“Criticality in large-scale brain fMRI dynamics…”  Frontiers in Phys. (2012).

“Brain organization into resting state networks emerges from the connectome at criticality” 
Haimovici et al., Physical Review Letters, 110 (17), 178101 (2013).

“Large-scale signatures of unconsciousness are consistent with a departure from critical 
dynamics”. Journal of The Royal Society Interface, 13 (114), 20151027 (2016).

“Critical Fluctuations in the Native State of Proteins”  Tang QY et al., Physical Review Letters 118 
(8), 088102 (2017).

“Mitochondrial network complexity emerges from fission/fusion dynamics”  Zamponi N, et al.  
Scientific Reports 8 (1), 363 (2018).

“La mente es crítica” J. Marro & D. Chialvo. Univ. of Granada Editora, (2017).

*The results we describe are not anecdotal, they were already generalized to other systems, scales and 
setups by  a number of authors.

"In god we trust. All others, bring data" (W. Edwards Deming)



80’s 90’s nowadays

K. Christensen, D. Chialvo, Per 
Bak & Z.Olami. Brookhaven 
National Lab. (Feb. 1992).  H. Frauenfelder NYAS 1987 

 Intuition  Theory
Including Self-Organized Criticality

 Experiments

Physicals, social and 
biological systems are 
shown to be complex 
because the operate 
near criticality.  

“A Fundamental Theory to Model the Mind” by Jennifer Ouellette
in Quanta Magazine and Scientific American April, 2014.
 
“Criticality and phase transitions in biology”  by Philip Ball 
in New Scientist, 2014.

“La mente es crítica” by J. Marro & D. Chialvo. Granada Editora, 2017

critical



disconnected phase 

continuos phase transition  

Moral: largest variability 
at the transition, largest 
cluster increases with N.
 

largest cluster ~ N ∂

peak variability ~ N ß

connected phase 

do it many times and 
plot the average    
and the variance of 
the number of 
buttons 

number of links  
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What means to be “Critical” Example 1: buttons



Structure 
(the network of 
streets) “phases”

Individual 
Non-linear 
Dynamics 
(drivers)  

“solid”

“gas”
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What means to be “Critical” (in 5 sec) Example 3: traffic  
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For the traffic engineer 
the maximum “efficiency” 
is at the Critical point

- Free flow 

-Jamming
Two phases

What means to be “Critical”   
-qualitatively speaking- 

Traffic jams as a critical process 
   

Density of cars (space)

Fl
ow

 o
f  

ca
rs

 (t
im

e)

Many carsFew cars

Critical

Number of vehicles passing through a point 
(flow) as a function of the density of vehicles  



Higher efficiency and  
unpredictability both at criticality 
(counterintuitive, and important 
for management…)

          Density  of cars
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e At criticality the travel 

time’ variability is 
maximum  

Jams of all sizes 

          size of the jam   
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Critical

For the driver the Critical density is the worst case!
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• The variability of the order parameter peaks at 
criticality (i.e, “susceptibility”) increasing with size 
as Nsome exponent 

• Clusters (jams/fires/buttons_bunch) of all sizes 
(i.e, long range spatial correlations  observed as 
power law distributions of clusters). 

• The action of a single driver/link/tree at any point 
in the system can have repercussion very far 
away both in time and space. (long range 
correlation and contingency) 

• Despite that interactions are short-range, 
correlations can be unlimited, as large as the 
system itself. 

These properties are universal (they don’t depend 
on the details of the system (cars, buttons, etc) 

Summing up, near criticality: 



Second lecture



Outline
-Why life is always found near criticality? (a 10 minutes 
manifesto for the non-cognoscenti on “Not too rigid, neither 
very flexible”)   

-We apply these ideas to:

• Brains  (results on critical brain dynamics)  

• Proteins (finite size scaling analysis on NMR data from 
the PDB database) 15 min.  (with Y.T. Tang,Physical 
Review Letters 118, 088102, 2017) 

• Mitochondria (critical fusion-fision balance of the 
mitochondrial network) 15 min. (with N&E Zamponi et al, 
Nature Sci. Reports 8, 363, 2018)

-Summary & questions

Today

Today
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The brain can not work like a electrical circuit, 
because a circuit is something rigid (will need 
another brain to change the connections) 

Synaptic interactions are fix (at the time scale 
of interest and very weak!! 

Scale free clustering (ordering) without 
synchronization!  

If criticality is the solution … 
what is the problem? 
 



Second day
Remember: brain pairwise correlations are always weak
Strong ordering emerging of weak pairwise correlations
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…The (yet) unsolved problem: how the brain manage to produce  a huge 
range of cortical configurations in a flexible manner … 



History (2003-2005)



Most of C pairs are weak

Metric Multidimensional Scaling

The functional distances between regions in the healthy group
mean data were approximated by the graphical distances be-
tween them in the two-dimensional space of Figure 4: regions
that are functionally similar are plotted in close proximity. This
analysis confirms many of the organizational features already
highlighted: symmetrical regions are often paired in the same
neighbourhood of the space and the overall configuration
broadly respects anatomical relations between regions.
Superimposed on the MDS plot are lines corresponding to

the significant pairwise inter-regional partial correlations listed
in Table 2. This again highlights the predominance of local
intrahemispheric and symmetric interhemispheric connections.

Small World Properties

We thresholded the unihemispheric partial correlation matrix
of the healthy volunteers so that any partial correlation with P <
0.05 was represented by an edge between the corresponding
regional vertices (and all other possible edges were set to zero).
For this network, the clustering coefficient CP was 0.25 and the
mean minimum path length LP was 2.82. Corresponding param-
eters for a random graph with the same number of nodes
were: CP

random=0.12 and LP
random=2.58. In other words, local

clustering or cliquishness of connections in the brain network
was approximately two times greater than in the random net-
work, CP/CP

random=2.08, whereas path length between any two
brain regions was approximately the same as in the random

Figure 2. Dependency of functional connectivity on anatomical distance and frequency components of fMRI time series. Top panel: Plot of functional connectivity between regions
(healthy group mean partial correlation; y-axis) versus Euclidean distance (D, mm; x-axis) between regional centroids in Talairach space. Symmetric interhemispheric connections
are highlighted by red circles. Partial correlations generally decay as a function of increasing anatomical distance between regions; this relationship is described by the inverse
square law, r ~ 1/D2, fitted to the data (solid line). Green dashed lines represent the 5 and 95% quantiles for the mean partial correlations estimated in each 1 cm bin of the distance
distribution. Middle panel: Plot of inter-regional partial correlations versus Euclidean distance for the patient with brainstem ischaemia. Note that symmetrical connectivity is
relatively attenuated, compared to the healthy group, whereas the relationship between anatomical distance and short-range connectivity is preserved. Bottom panel: Plot of
healthy group mean partial correlations between regions subtended by high frequency components of the time series (y-axis) versus partial correlations subtended by low frequency
components (x-axis). The solid line is the line of identity, y5 x; symmetric interhemispheric connections are highlighted by red circles. Inter-regional connectivity consistently tends
to be stronger based on low-frequency components of the time series.

Cerebral Cortex September 2005, V 15 N 9 1337

 at N
IH

 Library on O
ctober 17, 2016

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 
 Salvador et al., Cerebral Cortex, (2005) 

β = 0.47+0.2 

 α= 0.45

 Expert et al., J. Royal Soc. (2010) 

Brain mean two-point correlation function computed from 
Functional Magnetic Resonance Images during rest (no task)

C decays with distance as a power 
law
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Snapshots of spins 
states in a model 
system (2D Ising)

Snapshots of spins states in the Ising model.          

 Long range correlations emerges at the phase transition

Subcritical SuperCriticalCritical

T<TC T>TCT~TC

TC

order

disorder

Ferromagnetic-paramagnetic Phase-Transition
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Despite its lattice (short range) interactions, Ising “funcional networks” 
(at criticality) mimic the fat tails of functional brain networks

Ising

Brain

E=−J Σ <i,j> Si Sj – B Σk Sk 

Only local positive interactions          

From Chialvo, Balenzuela & Fraiman. The brain: What is critical 
about it? 2008 (arXiv.org/ cond-mat/0804.0032); Fraiman, 
Balenzuela, Foss & Chialvo, Ising like dynamics in large-scale 
brain networks. (arXiv.org/ cond-mat/0811.3721), Phys Rev. E. 
(2008).

Positive correlated networks

SubCritical Critical SuperCritical
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Critical Ising networks mimic brain networks

Negative correlations with fat tails similar to the brain data appear in the 
Ising data, despite the absence of negative “structural” interactions (i.e. no 
“inhibitory” connectivity). 

Ising

Brain

Negative correlated networks

SubCritical SuperCriticalCritical



We studied brain correlation functions …
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The bottom line: Big, intermediate and small ROI behaves all in the same way

For example: Two places 4 mm apart on a blob of 20 voxels are as correlated 
as those 40 mm apart on a blob of 4000 voxels

Choose many ROIs. 
Compute the average connected correlation function 
for each ROI & plot it as a function of distance  

C
or

re
la

tio
n 

le
ng

th
 

Correlation length increases 
with ROI size   

Chialvo DR & Fraiman D. (2010)

What truly matters is the correlation length  
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Mutual information increases with cluster size.  
 

Mutual information MI(r) as a function of 
distance r averaged over all time series of each 
of the ROI.

Rescaled mutual information
 

MI(X;Y) = H(X) - H(X | Y)

You could do the same for Mutual Information 

Chialvo DR & Fraiman D. (2010)
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The variance of the temporal 
fluctuations is independent of 
the ROI size.

variance of the fluctuations 
computed for each of thirty five 
ROI

variance of the fluctuations 
computed for randomized data

Consequences of the increase in Correlation Length: 
Anomalous scaling of the variance

Chialvo DR & Fraiman D. (2010)



25

The variance of the correlations
 is independent of the ROI 
size

Peaks  of high correlation

Valleys  of low correlation

Consequences of the increase in Correlation Length: 
Anomalous scaling of the time dependent correlations



Data from human fMRI

(Fraiman & Chialvo, 2011)

Data from optogenetic
2P recording in behaving 
mice AI cortex
 Plenz & Chialvo, 2017

correlation length: at criticality, it increases with system size 
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First, get the instantaneous dynamics  (peaks)

Moral: large scale dynamics is preserved despite a huge data reduction (95%)  most of 
the information is in the peaks.

Brain “meteorology” (searching for order in very large 
scale, fMRI) 
how we proceed:
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Brain “meteorology”

Time

Number of clouds

Size of the 
largest cloud
(sort of “order” 
parameter)

Second, identify clusters of activity (like clouds in the sky)
pixels in green belong to one cluster, blue to another, etc
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Avalanches of activity are scale free

From Tagliazucchi et al, Frontiers in Physiol. 2012.

Fractal 
Dimension

Lifetime PDF
Size PDF

Third, identify spatiotemporal correlations (avalanches)
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Identical avalanches were described in vivo & in vitro preps.
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D

cultured rat cerebral cortex (Beggs & Plenz, 2003)

Optogenetic 2P recording in behaving mice AI cortex (Plenz & Chialvo,2017)
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Spontaneous fluctuations of brain 
activity evolve as in a continuous 
phase transition, being most of the 
time at a regime with the largest 
variance 

Fourth, check for “control” versus “order” parameter 
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OK,  lets do some modeling 
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The interactions from the human connectome

Plus  some “simple” dynamics, actually (if 
universality applies) almost any nonlinear 
rule must give the exact same result…
 

-Haimovici A, et al. “Brain organization into resting state networks 
emerges from the connectome at criticality”. PRL (2013).



100 101 102 103

Cluster Size (S)

10-5

10-4

10-3

10-2

10-1

100

P(
S)

T<Tc
Tc
T>Tc
Exp.

supercritical

critical

subcritical

Experimental

Critical	point

cl
us

te
r s

iz
es

From Haimovici et al, Phys. Rev. Letters 2013.

critical

supercritical

subcritical

Connectome			+ Node	
dynamics =		Phases			

Toy	model

Getting the experimental correlations from the interactions (“Connectome")

?

Interactions dynamics 



Getting the same correlations  from the known interactions (“Connectome")

Correlation length  
increases with cluster 
size exactly as seen in 
the real brain 
experiments

critical

Super	
critical

Sub	
critical

Only at criticality 
the model 
replicates the 
exp. data

Experimental	results	
(real	brains).

m
od

el
From Haimovici et al, Phys. Rev. Letters 2013.

}
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Anomalous	scaling	of	short	
term	correlations

The	experimental	dynamics	
is	replicated	only	at	criticality

-Haimovici	A,	et	al.	Brain	
organization	into	resting	state	
networks	emerges	from	the	
connectome	at	criticality.	PRL	
(2013).
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1- Some general properties, expected near the critical 
point of a continuous phase transition, are seen in fMRI brain  
data: 
✓ Long range correlations in space and time. 
✓ Correlation length scales with system size 
✓ Anomalous scaling of the variance of the fluctuations 
✓ Variance of the order parameter peaks at the critical point 

(susceptibility)  
✓ Scaling in the clusters size distribution  
✓ Scaling of avalanches sizes distribution  
2- A model based on the brain connectivity replicates the 
observations ONLY at criticality, implying that “connectivity” is 
not enough to understand the dynamics. 
3- Despite 1 & 2  no theory is at hand to formally explain how 
the brain does it… 

 

 Summary



OK, the data shows the 
brain is critical while 

conscious…

How brain correlations will 
be affected with lost of 
consciousness  (LOC)
(Propofol anaesthesia) 
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With lost of consciousness  (LOC) correlations shifted as predicted 

long-range 
temporal 
correlations 

SC!

FC!

A!

C D!

EB

Time! Time!

A!

C D!

EB

U
(x
)!

x!

Near!

t1! t2! t0!

B!
C! D!

E!

U
(t)
!

Time!t1!t0! t2! Time!

U
(t)
!

t1!t0! t2!

Far!

t1!

t0!

C

E!

D!

B!

t2!

U
(x
)!

x!

WakeLOC

Sp
ac

e
Ti

m
e

 P
ot

en
tia

l

Divorce of 
spatial 
correlations 
from 
interactions

voxels,i.e.as
opposed

to
brain

dynam
ics,those

of
the

w
ater

phantom
w

ere
tem

porally
uncorrelated.

W
e

conducted
voxel-w

ise
statisticaltests

to
assess

the
effect

ofthe
condition

on
H

and
low

-frequency
pow

er
(figure

2).W
e

observed
a

significant
effect

of
the

condition
(W

,S,LO
C

and
R

)
on

H
(both

D
FA

and
w

avelet-estim
ated)

and
0.01–0.1

H
z

pow
er.This

w
as

observed
in

a
set

of
regions

com
prising

the
thalam

us,the
ventrom

edialand
orbitofrontalcortices,the

fron-
taland

rolandic
operculi,the

superior
and

m
edialfrontalgyri

and
the

anterior
cingulate

and
bilateral

insular
cortices.

Post
hoc

t-tests
betw

een
W

and
allotherconditions

revealed
signifi-

cant
decreases

only
for

the
com

parison
versus

LO
C

.
Sim

ilar
results

can
also

be
observed

in
the

first-order
autoregressive

coefficientofBO
LD

signals(electronic
supplem

entary
m

aterial,
figure

S2).Statisticalparam
etric

m
apsare

presented
in

figure
2a

(bottom
panel).Figure

2b
show

s
a

ranking
ofthe

top
10

auto-
m

ated
anatom

icallabelling
(A

A
L)

atlas
[37]

regions
based

on
the

statistical
significance

of
the

contrast
W

versus
LO

C
.The

extent
of

the
overlap

betw
een

the
three

different
m

etrics
is

show
n

in
figure

2c
as

a
joint

rendering
of

differences
in

H
(both

D
FA

and
w

avelet-estim
ated)

and
0.01–0.1

H
z

pow
er.

N
o

significantdifferences
w

ere
observed

in
term

s
ofthe

good-
ness

of
fit

(R
2)

of
the

D
FA

fluctuation
function.

The

covariance
betw

een
the

statistical
significance

m
aps

derived
from

all
three

m
etrics

is
show

n
in

electronic
supplem

entary
m

aterial,figure
S3.

W
e

then
studied

the
coupling

betw
een

anatom
ical

and
functionalconnectivity.A

tfirst,w
e

restricted
both

functional
and

anatom
ical

connectivity
netw

orks
to

a
subnetw

ork
encom

passing
the

executive
control

netw
ork

reported
in

reference
[15],because

this
R

SN
overlapped

w
ith

the
regions

w
here

w
e

found
a

breakdow
n

of
long-range

tem
poralcorre-

lations
during

LO
C

(see
electronic

supplem
entary

m
aterial,

figure
S4).For

both
D

TIand
D

SIanatom
icalconnectivity

net-
w

orks
and

alm
ost

all
link

densities,w
e

observed
decreased

sim
ilarity

betw
een

anatom
ical

and
functional

connectivity
netw

orks
during

LO
C

relative
to

W
(figure

3a).
A

fterw
ards,w

e
studied

the
localsim

ilarity
betw

een
the

ana-
tom

icaland
functionalfirstneighboursofallindividualnodesin

w
hole-brain

netw
orks.

The
netw

ork
nodes

associated
w

ith
decreased

anatom
ical–functionalcoupling

during
LO

C
relative

to
W

are
show

n
in

figure
3b.D

ifferencesencom
passed

the
thala-

m
us,as

w
ellas

the
m

edialprefrontalcortex,anteriorcingulate
cortex,

frontal
and

rolandic
operculi

and
the

bilateral
insular

cortex.A
ranking

ofA
A

L
regions

by
their

percentage
ofnodes

w
ith

significant
differences

is
presented

in
figure

3c.
The

H
urst exponent (D

FA
)

10

0.4
0.9

–20
–6

10

0.4
0.9

–20
–6

10

0.4
0.7

–20
–6

(a)time

WSLOCR

H
urst exponent (w

avelet)
low

-frequency pow
er

H
urst exponent (D

FA
)

S

–20

–10 0

R
L

O
C

% difference versus wake

*
S

–20

–10 0

R
L

O
C *

*

S
–10 –5 0

R
L

O
C *

*

(b)
H

urst exponent (w
avelet)

low
-frequency pow

er

Figure
1.Anatom

icalspecificity
oflong-range

tem
poralcorrelations

and
low-frequency

(0.01–
0.1

Hz)
fluctuations.(a)

Anatom
icaloverlays

ofthe
m

ean
Hurst

exponent
(DFA

and
waveletestim

ation)and
low-frequency

powerforallexperim
entalconditions;long-range

tem
poralcorrelationsand

low-frequency
fluctuations

were
predom

inantly
observed

in
corticaland

subcorticalgrey
m

atter.(b)
Differences

in
globalHurst

exponents
and

low-frequency
power

relative
to

the
values

m
easured

during
wakefulness

(*p
,

0.05,Bonferronicorrected
form

ultiple
com

parisons).(Online
version

in
colour.)

rsif.royalsocietypublishing.orgJ.R.Soc.Interface13:20151027 4

 on January 27, 2016
http://rsif.royalsocietypublishing.org/

D
ow

nloaded from
 

Journal of the Royal Society 
Interface (2016).

white	noise	(	α	~	0.5)

pink	noise	(	α		~	1)

R~ FC/SC 
(Ratio between 
number of observed 
paths over all 
posible paths) 
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The Danubio 
metaphor

 



 
The Danubio equivalent to 
the brain connectome

 



Third lecture
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• Brains  (results on critical brain dynamics)  

• Proteins (finite size scaling analysis on NMR data from 
the PDB database)  (Ph.D thesis of Y.T. Tang. Physical 
Review Letters 118, 088102, 2017) 

• Mitochondria (critical fusion-fision balance of the 
mitochondrial network) 15 min. (with N&E Zamponi et al, 
Nature Sci. Reports 8, 363, 2018)

-Summary & questions

Today



 *with Q-Y Tang (Nanjing Univ., China)

*with Eliana Asciutto & 
Ignacio General 
(UNSAM, Argentina)
(UNSAM)  



non

2016	Physiology	and	Medicine	Nobel	Prize	
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Proteins 101

biology physics

“Sequence”

“Shape”

entropy

en
er

gy



Proteins 100: “sausage stuffer”

each sausage = one amino acid

1-some sausages like 
water, others  not
2- they have to mutually 
negotiate 

3- fold (extremely fast)

4- stay flexible

Se
qu

en
ce

 (H
HP

HP
..)



 Even today, when people think about protein structures, most sees them like that:

Human pancreatic ribonuclease (pdb: 2k11)MutT enzyme (pdb: 1TUM)

Indeed, proteins are flexible, and their shape fluctuates:



Say something about correlation features of the protein 
fluctuations, using finite-size scaling
(getting it from a experiment with relatively small size N )

 

|(T	-	Tc)	/	Tc|

log	N

lo
g	
	q
ua
nt
ity

“control	parameter”

very	large	N

tiny	N
very	small	N

small	N

“S
us
ce
pt
ib
ili
ty
”
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Type of data analyzed:

• We curated a data set including > 4000 proteins 
structures (ensembles from the Protein Data Bank)

• Include homo sapiens, bacteria, peptides,…  
• Include only structures obtained from NMR experiments 

(solvent). [No membrane proteins]
• All proteins with more than 95% of the sequence-

structure resolved.
• no more than 40% sequence similarity. 



rij 

�~ri,q

�~rj,q

i 

j 
(a)                                       (b) 

(c) 
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Finite size scaling analysis of shape fluctuations 

Two 
realizations 
of the same 
protein Many 

realizations 
of the same 
protein 
(and its 
average)

First amino-acid Last amino-acid

Fluctuation (for each realization) around the mean vs. position in the chain 
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Notation

• “i” : order of the amino-acid element in the chain 
• “q”: protein realizatdion (out of a ensemble of Q )

 For the protein “q*”:
• Amino-acid “i” coordinates:

• Fluctuation around the mean of amino-acid “i”:  
 

• Susceptibility:

• “Size”: N (length) Rg ; (Gyration Ratio).

• Shape factor:
 

<- pseudo control par.

Connected	Correlation	Function
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Correlation length 

> 4000 proteins 
share
a  single scaling 
law
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Finite-size scaling 
analysis 

Correlation 
length scales  
with protein 
size (N)

Susceptibility  
scales with 
protein size (N)

χm ∼ (sm − sc ) −γ 

χm ∼ N
αγ/ν 
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• Highly susceptible proteins (i.e. critical) are more 
frequent  

Sequences which are able to fold into 
a shape exhibiting high susceptibility 
are more frequent (evolutionary 
selected ?).

susceptibility
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Other  sequences (resulting in densely 
packed rigid proteins) are less frequent 
(not selected?.)

lines															
	loops													

dense	packed
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• The most frequent shapes  are highly susceptible



• Don't trust the numbers, look if qualitatively makes sense
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• Results fro structures derived from X-ray 
crystallography  look very similar

NMR
PDB: 2H35

X-ray diffraction
PDB: 2W72

Hemoglobin

C_alphas B	factors

Left: Ribbon diagram of the C_alpha set superposed by least squares.
Right:Putty cartoon of B-factor variation on the mean structure (colored 
from low to high)

Data-based Analysis: X-Ray diffraction results
bi ⇠ h�x

2
i iX-ray crystallography B factors:

Magnitude of fluctuation: |�xi| ⇠
p

bi

Z-score of the fluctuation:
Zi =

|�xi|� µ

�

C(Z)
ij = Zi · Zj

Correlations in Z-score:

A B

Data-based Analysis: X-Ray diffraction results
bi ⇠ h�x

2
i iX-ray crystallography B factors:

Magnitude of fluctuation: |�xi| ⇠
p

bi

Z-score of the fluctuation:
Zi =

|�xi|� µ

�

C(Z)
ij = Zi · Zj

Correlations in Z-score:

A B



• Comparison with molecular dynamics results looks 
promising

Connected Correlation Functions computed from the PDB 
structure (RMN) and from C_alpha structures derived from 
molecular dynamics (MD) (work in progress with IG & EA)
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• The finite size scaling analysis of proteins shows that  the 
“native state” is critical. 

• out of 4000 the most frequently observed are the highly 
susceptible ones (which has also a preferred shape)  

The implications are numerous: 
- Different type of sequence-structure predictions 
- Different view of allosteric changes 
- protein-protein interaction (critical?) 
-  … 
work in progress: 
-Analysis conducted for x-ray crystallography B-factors shows 
similar results 
-Molecular dynamics results are pretty consistent too. 
-toy model

 Blah-Blah-logy 
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Hoang  (Padova) model

Hoang et al, PNAS (2004) 101 (21) 7960-7964
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Giant unilamellar vesicle passing through 
a miscibility critical point at Tc 32.5°C. 
Scale bar is 20 um. The bottom row (A–C) 
shows Ising model simulations at rescaled 
temperatures  
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from Honerkamp-Smith et al, 

Biophysical Journal 95, 236,(2008)

Correlation length plotted on a 
log-log scale vs reduced |T-Tc|/
Tc.  (slope is the critical 

Experimental Observations of Dynamic Critical Phenomena in a Lipid Membrane

Aurelia R. Honerkamp-Smith,1 Benjamin B. Machta,2 and Sarah L. Keller1,*
1Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA

2Department of Physics, Cornell University, Ithaca, New York 14850, USA
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Near a critical point, the time scale of thermally induced fluctuations diverges in a manner determined

by the dynamic universality class. Experiments have verified predicted three-dimensional dynamic critical

exponents in many systems, but similar experiments in two dimensions have been lacking for the case of

conserved order parameter. Here we analyze the time-dependent correlation functions of a quasi-two-

dimensional lipid bilayer in water to show that its critical dynamics agree with a recently predicted

universality class. In particular, the effective dynamic exponent zeff crosses over from !2 to !3 as the

correlation length of fluctuations exceeds a hydrodynamic length set by the membrane and bulk

viscosities.

DOI: 10.1103/PhysRevLett.108.265702 PACS numbers: 82.70.Uv, 64.60.Ht, 68.35.Rh, 87.16.dt

Lipids self-assemble in water to form sheets that are two
molecules thick, within which the lipids are free to diffuse.
When composed of several lipid species, these two-
dimensional (2D) liquid membranes can demix into coex-
isting liquid phases, termed Lo and Ld, over a range of
temperatures and compositions, and can exhibit critical
behavior [1–4]. Among 2D critical phenomena, composi-
tion fluctuations in membranes are rather unique in that
their large sizes and long decay times are accessible
to optical microscopy. For example, Fig. 1 and the
Supplemental Material [5] show a vesicle (a spherical
membrane shell) in which correlated regions reaching
10 !m persist for seconds [5]. Direct visualization of these
equilibrium fluctuations has recently been used to show
that static critical exponents for lipid membranes are con-
sistent with the 2D Ising universality class [3,6]. Here
we exploit the ability to visualize the dynamics of these
fluctuations to examine for the first time the dynamic
critical phenomena in this system. We find that although
the statics are 2D phenomena, the critical dynamics are
modified by hydrodynamic coupling to the surrounding
three-dimensional (3D) fluid.

Static critical exponents, which describe how observ-
ables such as correlation length vary as the critical point is
approached, are identical for all systems in a given univer-
sality class, independent of their detailed microscopic
physics [7,8]. For example, although membranes have a
conserved order parameter and ferromagnets do not, mem-
branes exhibit static exponents " ¼ 1:2# 0:2 and # ¼
0:124# 0:03, consistent with the expected 2D Ising values
of " ¼ 1 and # ¼ 1=8 [3]. Results in plasma membrane
vesicles are also consistent with 2D Ising exponents " ¼ 1
and $ ¼ 7=4 [6]. Systems that are in the same static
universality class can fall into different dynamic universal-
ity subclasses determined by conservation laws constrain-
ing how fluctuations dissipate [9]. The critical exponent z
for each dynamic subclass quantitatively describes the

scaling of the dynamics. It relates how the correlation
time %s diverges as temperature T approaches the critical
temperature Tc, such that %s / jðT % TcÞ=Tcj%"z where "
is the static critical exponent. Experiments measure an
effective exponent zeff that approaches z as T ! Tc and
& ! 1. The dynamic subclasses relevant to 2D systems
with conserved order parameter are notable equally for
their wealth of theoretical predictions [9–11] and for the
lack of experiments that systematically test those
predictions.
Only a few previous measurements of dynamic critical

exponents in 2D systems exist. Most experiments have
been conducted on magnetic films. Using ferromagnetic
films of ! two monolayers, Dunlavy and Venus found
"z ¼ 2:09# 0:06, with " ¼ 1 [12]. Fewer experiments

FIG. 1. Fluorescence micrographs of vesicles of diameter
200 !m. (a) As temperature changes from T > Tc (T ¼
31:25 'C, Tc ( 30:9) to T ! Tc (T ¼ 31:0 'C), fluctuations in
lipid composition grow. Below Tc, at T ¼ 28 'C, domains
appear. Scale bar ¼ 10 !m. (b) A movie of composition fluc-
tuations within a vesicle above Tc. Large fluctuations persist for
seconds (white arrows), whereas small ones disappear by the
next frame (black arrow). Scale bar ¼ 20 !m.
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