QCD lecture 5

November 5, 2025

Infrared divergences

$$S_F^R = \frac{i}{p} \left(1 + \frac{\alpha(\mu^2)}{4\pi} C_F \left(\ln \left(\frac{-p^2}{\bar{\mu}^2} \right) - 1 \right) \right)$$

Divergent for p^2 = 0. This is infrared divergence (from the lower int. limit). It can be regularized by going to the number of dimensions higher than 4. Before expansion, change $\varepsilon \to -\kappa$

$$S_F^R(p) = \frac{i}{p} \left(1 - \frac{\alpha_s}{4\pi} C_F \left(\frac{\bar{\mu}^2}{-p^2} \right)^{\varepsilon} \left(\frac{1}{\varepsilon} + 1 \right) + \frac{\alpha_s}{4\pi} C_F \frac{1}{\varepsilon} \right)$$

Infrared divergences

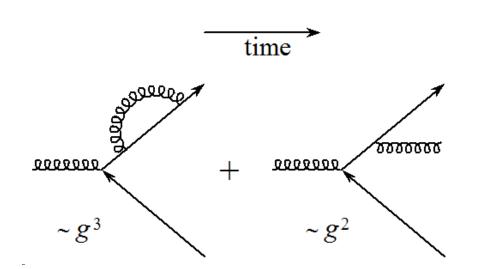
$$S_F^R = \frac{i}{p} \left(1 + \frac{\alpha(\mu^2)}{4\pi} C_F \left(\ln \left(\frac{-p^2}{\bar{\mu}^2} \right) - 1 \right) \right)$$

Divergent for p^2 = 0. This is infrared divergence (from the lower int. limit). It can be regularized by going to the number of dimensions higher than 4. Before expansion, change $\varepsilon \to -\kappa$

$$S_F^R(p) = \frac{i}{p'} \left(1 - \frac{\alpha_s}{4\pi} C_F \left(\frac{-p^2}{\bar{\mu}^2} \right)^{\kappa} \left(-\frac{1}{\kappa} + 1 \right) - \frac{\alpha_s}{4\pi} C_F \frac{1}{\kappa} \right)$$

$$= \frac{i}{p'^2 = 0} \frac{i}{p'} \left(1 - \frac{\alpha_s}{4\pi} C_F \frac{1}{\kappa} \right).$$

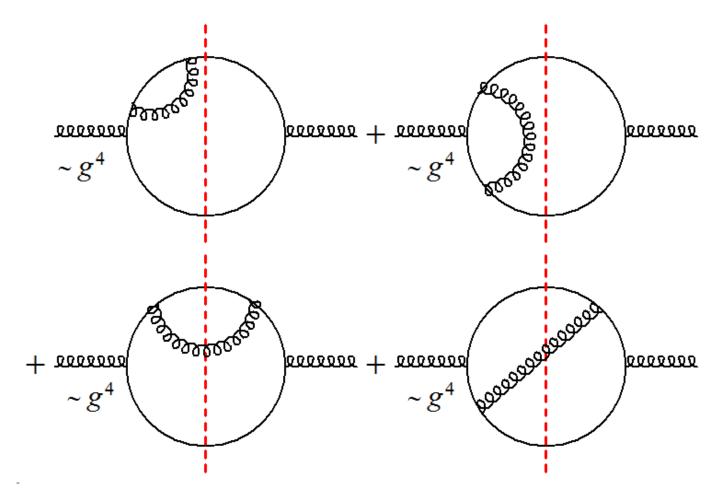
Infrared divergencies



One cannot distinguish a single electron from an electron accompanied by a zero energy foton or a collinear foton (for massless fermion).

One has to sum over such degenerate states.

Infrared divergencies



Here IR singularities cancel out

Infrared singularities

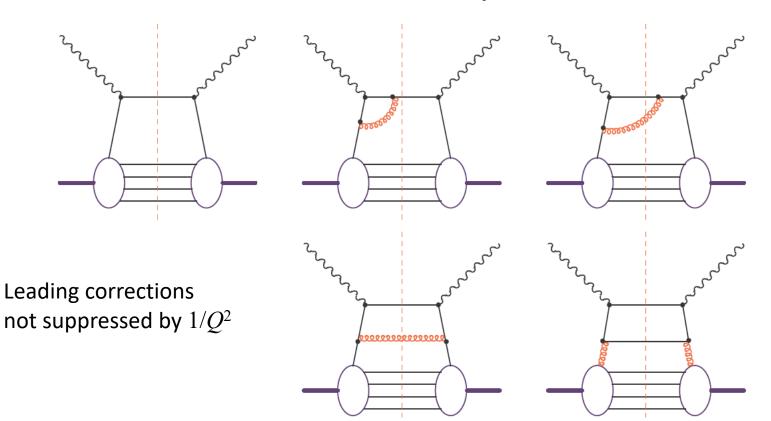
IR singulariteis arise when the theory has massless particles (photon, gluon)

- when energy of photon (gluon) is small soft singularity
- when for massless fermion photon (gluon) is parallel to that fermion
 collinear singularity

Bloch – Nordsieck theorem (basically derived for QED) Kinoshita – Lee – Nauenberg theorem (generalized to QCD)

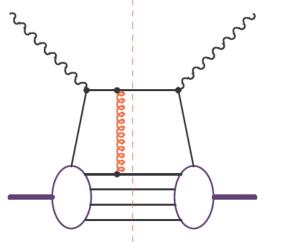
Kinoshita-Lee-Nauenberg (KLN) theorem assures that a summation over degenerate initial and final states removes all infrared (IR) divergences in QCD.

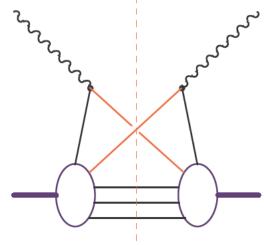
This very broad topic, beyond the scope of this lecture



photon scatters off the gluon

Non-leading corrections suppressed by $1/Q^2$





$$yp = E(1, 0, 0, 1)$$

$$yp = z(yp)$$

$$yp$$

$$k = \omega(1, \sin\theta\sin\varphi, \sin\theta\cos\varphi, \cos\theta)$$

$$\frac{1}{p'^2} = \frac{1}{(yp-k)^2} = \frac{1}{2ypk} = \frac{1}{2E\omega(1-\cos\theta)}$$

Ignoring overall minus sign

$$yp = E(1, 0, 0, 1)$$

$$p' = z(yp)$$

$$yp$$

$$k = \omega(1, \sin\theta\sin\varphi, \sin\theta\cos\varphi, \cos\theta)$$

$$|\mathcal{M}|^2 d^4k \, \delta(k^2) \sim \sin^2 \theta \frac{\omega d\omega \, d\cos \theta}{\omega^2 (1 - \cos \theta)^2} \sim \frac{d\omega}{\omega} \frac{d\theta^2}{\theta^2}$$

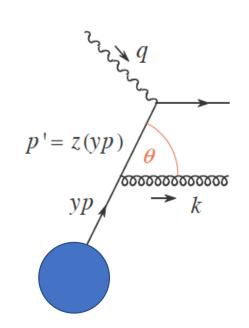
$$\frac{d\omega}{\omega} \frac{d\theta^2}{\theta^2}$$

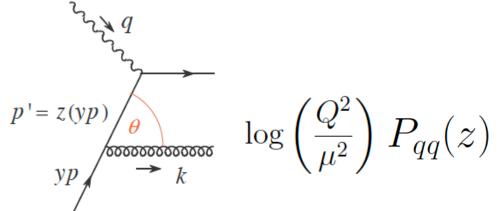
- soft (cancel) $\omega \to 0$
- collinear (remain) $\theta \to 0$

In dimensional regularization:

$$\left(\frac{Q^2}{\mu^2}\right)^{\kappa} \frac{1}{\kappa} = \frac{1}{\kappa} + \log\left(\frac{Q^2}{\mu^2}\right)$$

Poles can be absorbed into bare parton densities. Logs can be summed up to all orders. Factrozation. Coefficients of the poles are universal functions of z

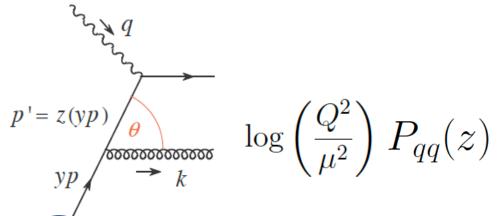




 $\log\left(\frac{Q^2}{\mu^2}\right)\,P_{qq}(z) \begin{tabular}{l} lt turns out that potentially large logs are multiplied by universal functions of the momentum fraction z (with respect to the emitting parton) z (with the emitting$

Here $P_{qq}(z) = P_{q \leftarrow q}(z)$ is a probability of "finding"

a quark of the longitudinal momentum fraction z in initial quark

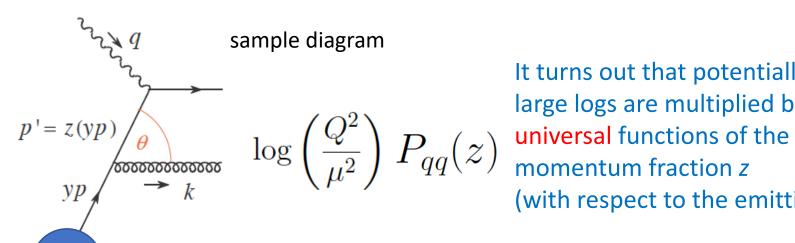


 $\log\left(\frac{Q^2}{\mu^2}\right)\,P_{qq}(z) \ \, \begin{array}{l} \text{lt turns out that potentially} \\ \text{large logs are multiplied by} \\ \text{universal functions of the} \\ \text{momentum fraction } z \\ \text{(with respect to the emitting parton)} \end{array}$

Here
$$P_{qq}(z) = P_{q \leftarrow q}(z)$$
 is a probability of "finding"

a quark of the longitudinal momentum fraction z in initial quark

$$P_{qq}(z) = C_F \left(\frac{1+z^2}{1-z}\right)_{+}$$



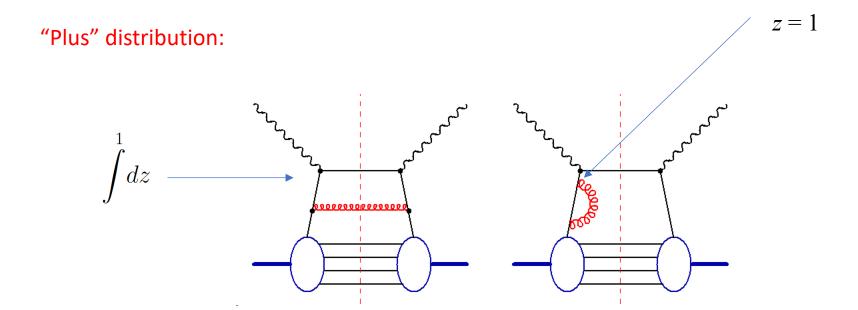
It turns out that potentially large logs are multiplied by (with respect to the emitting parton)

Here
$$P_{qq}(z) = P_{q \leftarrow q}(z)$$
 is a probability of "finding"

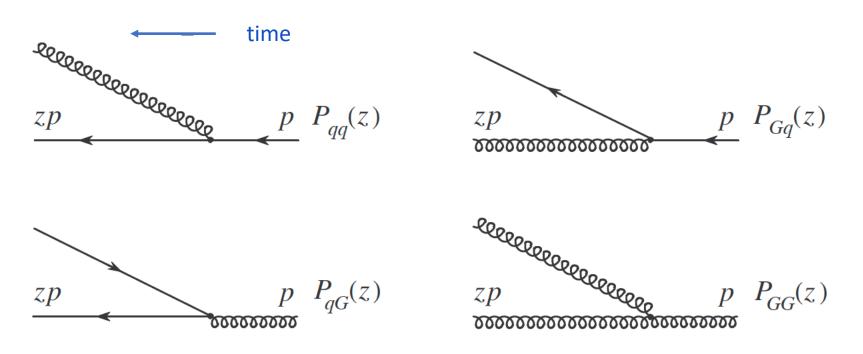
a quark of the longitudinal momentum fraction z in initial quark

$$P_{qq}(z) = C_F \left(\frac{1+z^2}{1-z}\right)_+$$
 "Plus" distribution:
$$\int_-^1 dz \; (\ldots)_+ g(z) = \int_-^1 dz \; (\ldots) \left[g(z) - g(1)\right]$$

appears because of the virtual diagram for which z = 1

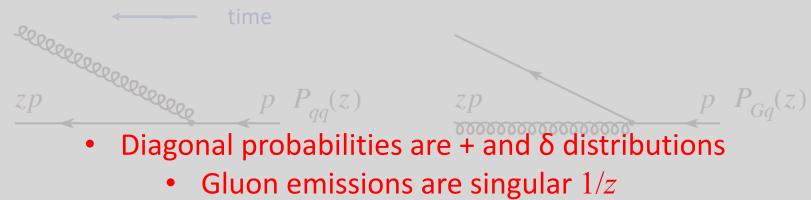


Different diagrams give extra contribution at z=1 in different gauges. The result is the same: no singularity at z=1.



$$P_{qq}(z) = C_F \left(\frac{1+z^2}{1-z}\right)_+, \quad P_{Gq}(z) = C_F \frac{1+(1-z)^2}{z}, \quad P_{qG}(z) = \frac{1}{2} \left[z^2 + (1-z)^2\right]$$

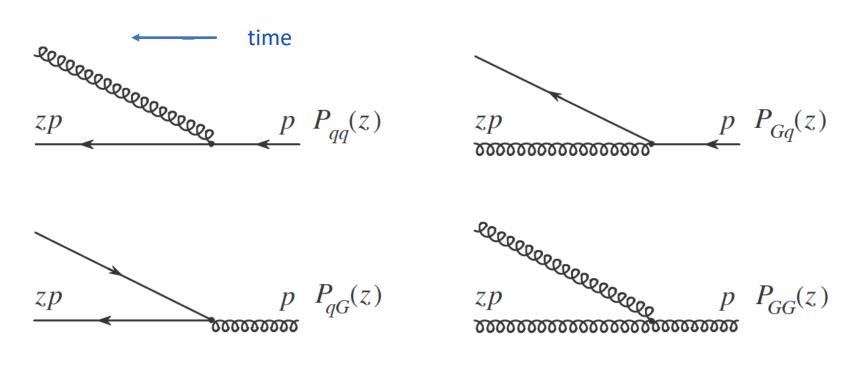
$$P_{GG}(z) = 2C_A \left[\frac{z}{(1-z)_+} + \frac{1-z}{z} + z(1-z) \right] + \frac{1}{2} \left(\frac{11}{3} C_A - \frac{2}{3} n_f \right) \delta(1-z)$$



- - Gluon emissions are singular 1/z

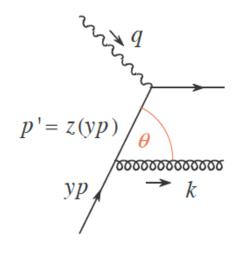
$$P_{qq}(z) = C_F \left(\frac{1+z^2}{1-z}\right)_+, \quad P_{Gq}(z) = C_F \frac{1+(1-z)^2}{z}, \quad P_{qG}(z) = \frac{1}{2} \left[z^2 + (1-z)^2\right]$$

$$P_{GG}(z) = 2C_A \left[\frac{z}{(1-z)_+} + \frac{1-z}{z} + z(1-z) \right] + \frac{1}{2} \left(\frac{11}{3} C_A - \frac{2}{3} n_f \right) \delta(1-z)$$



$$P_{qG}(z) = P_{\overline{q}G}(z), \qquad P_{Gq}(z) = P_{G\overline{q}}(z),$$

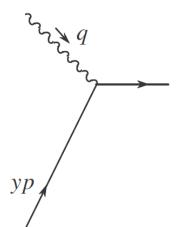
$$P_{qq}(z) = P_{Gq}(1-z), P_{GG}(z) = P_{GG}(1-z), P_{qG}(z) = P_{qG}(1-z)$$



on-shell condition

$$0 = (zyp + q)^2 = 2zy pq + q^2 = 2M\nu zy - Q^2$$

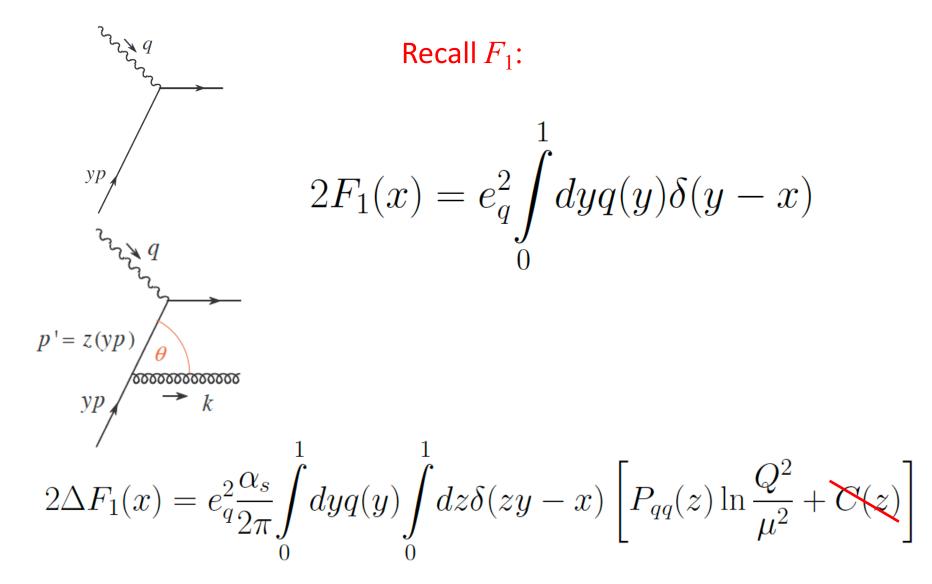
$$zy = \frac{Q^2}{2M\nu} = x$$



Recall
$$F_1$$
: $F_1(x) = \frac{1}{2} \sum_{i} e_i^2 f_i(x)$

Lowest order diagram:

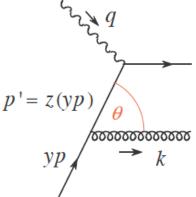
$$2F_1(x) = e_q^2 \int_0^\infty dy q(y) \delta(y - x)$$



Correction to F_1 large logs

$$q(x, \mathbf{Q}^2) = q(x, \mathbf{\mu}^2) + \frac{\alpha_s}{2\pi} \ln \frac{\mathbf{Q}^2}{\mu^2} \int_x^1 \frac{dy}{y} P_{qq} \left(\frac{x}{y}\right) q(y, \mathbf{\mu}^2) + \dots$$

$$= q(x, \mu^2) + \frac{\alpha_s}{2\pi} \ln \frac{Q^2}{\mu^2} P_{qq} \otimes q(\mu^2) -$$



Convolution:

DGLAP Evolution Equation

$$\frac{d}{d \ln Q^2} = Q^2 \frac{d}{dQ^2} \quad \Longrightarrow \quad q(x, Q^2) = q(x, \mu^2) + \frac{\alpha_s}{2\pi} \ln \frac{Q^2}{\mu^2} P_{qq} \otimes q(\mu^2) + \dots$$

Evolution eq.

Dokshitzer, Gribov, Lipatov Altarelli, Parisi

$$\frac{d}{d \ln Q^2} q(x, Q^2) = \frac{\alpha_s}{2\pi} P_{qq} \otimes q(Q^2)$$

Such an equation sums up all powers $\frac{\alpha_s}{2\pi} \ln \frac{Q^2}{\mu^2}$

Leading Log Approximation (LLA)

DGLAP Evolution Equations

Full set of DGLAP equations:

$$Q^{2}\frac{d}{dQ^{2}}q_{i}(x,Q^{2}) = \frac{\alpha_{s}(Q^{2})}{2\pi} \left[P_{qq} \otimes q_{i}(Q^{2}) + P_{qG} \otimes G(Q^{2}) \right]$$

$$Q^{2}\frac{d}{dQ^{2}}G(x,Q^{2}) = \frac{\alpha_{s}(Q^{2})}{2\pi} \left[P_{Gq} \otimes \sum_{i} q_{i}(Q^{2}) + P_{GG} \otimes G(Q^{2}) \right]$$

We need an input at one scale Q_0^2 and then we can evolve them up to some other Q^2 note that index i runs over quarks and antiquarks when we construct a difference, called non-singlet, gluons cancel

$$q_i^{NS}(x, Q^2) = q_i(x, Q^2) - \overline{q}_i(x, Q^2)$$

DGLAP Evolution Equations

Define:

$$q^{S}(x,Q^{2}) = \sum_{i} \left(q_{i}(x,Q^{2}) + \overline{q}_{i}(x,Q^{2}) \right)$$

$$q_i^{NS}(x, Q^2) = q_i(x, Q^2) - \overline{q}_i(x, Q^2)$$

DGLAP Evolution Equations

$$Q^{2} \frac{d}{dQ^{2}} q^{NS}(x, Q^{2}) = \frac{\alpha_{s}(Q^{2})}{2\pi} P_{qq} \otimes q^{NS}(Q^{2})$$

$$Q^{2} \frac{d}{dQ^{2}} q^{S}(x, Q^{2}) = \frac{\alpha_{s}(Q^{2})}{2\pi} \left[P_{qq} \otimes q^{S}(Q^{2}) + 2n_{f} P_{qG} \otimes G(Q^{2}) \right]$$
$$Q^{2} \frac{d}{dQ^{2}} G(x, Q^{2}) = \frac{\alpha_{s}(Q^{2})}{2\pi} \left[P_{Gq} \otimes q^{S}(Q^{2}) + P_{GG} \otimes G(Q^{2}) \right]$$

DGLAP for Mellin moments

Moments of the convolution

$$M_{\underline{n}} = \int_{0}^{1} dx \, x^{n-1} P \otimes f = \int_{0}^{1} dx \, x^{n-1} \int_{0}^{1} dz \int_{0}^{1} dy \, \delta(zy - x) P(z) f(y)$$

$$= \int_{0}^{1} dz \, z^{n-1} P(z) \int_{0}^{1} dy \, y^{n-1} f(y) = P_{n} f_{n} = \gamma^{n} f_{n}$$

 γ^n anomalous dimension

convolution is replaced by a product

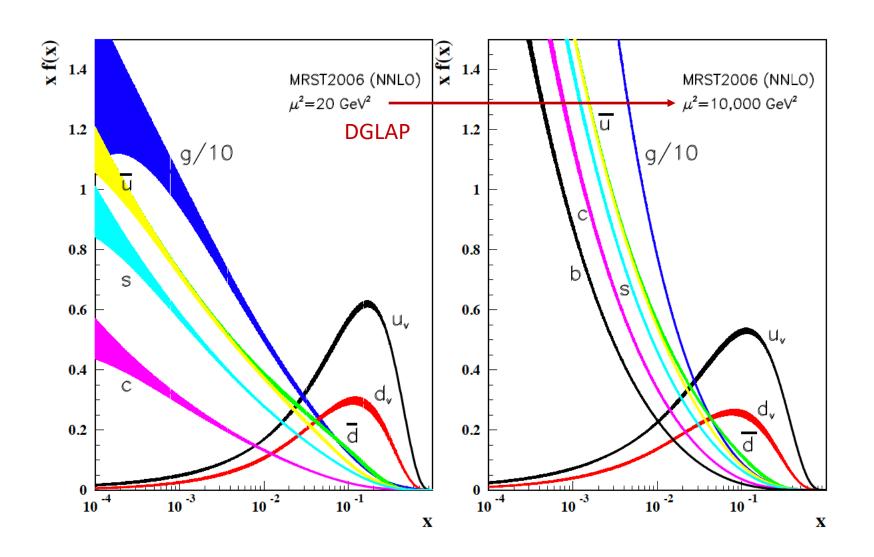
DGLAP for Mellin moments

$$t = \log Q^{2} \qquad \frac{dq_{n}^{NS}(t)}{dt} = \frac{\alpha_{s}(t)}{2\pi} \gamma_{qq}^{n} q_{n}^{NS}(t)$$

$$\frac{d}{dt} \begin{bmatrix} q_{n}^{S}(t) \\ G_{n}(t) \end{bmatrix} = \frac{\alpha_{s}(t)}{2\pi} \begin{bmatrix} \gamma_{qq}^{n} & 2n_{f}\gamma_{qG}^{n} \\ \gamma_{Gq}^{n} & \gamma_{GG}^{n} \end{bmatrix} \begin{bmatrix} q_{n}^{S}(t) \\ G_{n}(t) \end{bmatrix}$$

$$\frac{\alpha_s(t)}{2\pi} = 2 a_s(t) = 2 \frac{1}{\beta_0 t}$$

Numerical solutions



HERA F_2 : data vs. theory

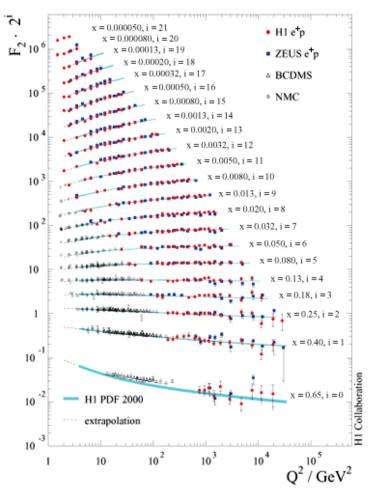


FIG. 2: Structure function F_2 as a function of Q^2 based on HERA-I measurements of H1 [2, 3] and ZEUS [4] collaboration compared to results from fixed target experiments BCDMS [5] and NMC [6].