ZEUS results on inclusive diffraction

Marta Ruspa
Torino University

XXXIII International Symposium on Multiparticle Dynamics
Krakow, Poland
September 5-11, 2003

on behalf of

- Diffractive cross section
- Q^2 and W dependences
- Diffractive structure function Q^2 and β dependences

Marta Ruspa
ISMD2003
Inclusive diffraction $\gamma^* p \rightarrow Xp$

- $\gamma^* p$ cross section
 \[
d\sigma_{\gamma^* p}^D \frac{d\sigma_{e^+ e^- \rightarrow Xp}}{dM_X} = \frac{\pi Q^2 W}{\alpha(1 + (1 - y)^2)} \frac{d^3\sigma_{e^+ e^- \rightarrow Xp}}{dQ^2 dM_X dW}
\]

- 3-fold differential diffr. structure function
 \[
 F_2^{D(3)}(\beta, Q^2, x_{IP}, t) = \frac{\beta Q^4}{4\pi\alpha^2(1 - y + y^2 / 2)} \frac{d\sigma_{e^+ e^- \rightarrow Xp}}{d\beta dQ^2 dx_{IP}}
 \]

Marta Ruspa
ISMD2003
Selection of events $\gamma^* p \rightarrow Xp$ with M_x method

Properties of M_x distribution:

- flat vs $\ln M_x^2$ for diffractive events
- exponentially falling for decreasing M_x for non-diffractive events

\[\frac{dN}{d\ln M_x^2} = D + c \cdot \exp(b \cdot \ln M_x^2) \]

- D, c, b from a fit to data
- contamination from reaction $e^p \rightarrow eXN$

Forward Plug Calorimeter (FPC):

CAL acceptance extended by 1 unit in pseudorapidity from $\eta=4$ to $\eta=5$

\rightarrow higher M_x and lower W

\rightarrow if $M_x > 2.3$ deposits $E_{FPC} > 1$ GeV recognized and rejected!

Marta Ruspa

ISMD2003
Selection of events $\gamma^* p \rightarrow Xp$ with LPS method

\[x_L = \frac{p'_z}{p_z} \]

- Measurement of t distribution
- Free of p-diss background
- Low acceptance \rightarrow low statistics
Cross section Q^2 dependence (LPS method)

- Transition to a constant cross section as $Q^2 \rightarrow 0$
 (similar to total cross section $\sigma_{\gamma p}$)

- Main features of the data described by BEKW parameterization
 (Bartels, Ellis, Kowalski and Wüsthoff)

$F_T^{q\bar{q}} \sim \left(\frac{x_0}{x_{IP}} \right) n_T(Q^2) \beta(1 - \beta)$
$F_T^{q\bar{q}} \sim \left(\frac{x_0}{x_{IP}} \right) n_\sigma(Q^2) \ln \left(1 + \frac{Q^2}{Q_0^2} \right)(1 - \beta)^\gamma$

- $q\bar{q}$ fluctuations dominant at low Q^2

Extension to lower Q^2, higher W, higher M_x
Cross section W dependence (M_x method)

$\gamma^p \rightarrow X N$ cross section

$$
\frac{d\sigma_{\gamma^p \rightarrow X N}^{\text{diff}}(M_x, W, Q^2)}{dM_x} = \frac{\pi Q^2 W}{\alpha(1 + (1 - y)^2)} \cdot \frac{d^3 \sigma_{ep}^{\text{diff}}}{dQ^2 dW dM_x}
$$

p-dissociation events with $M_N < 2.3$ GeV included

- $M_x < 2$ GeV: weak W dependence
- $M_x > 2$ GeV: $d\sigma/dM_x$ rises with W
\(\alpha_{IP} \) from diffractive and total \(\gamma^* p \) scattering

Diffractive cross section:

\[
\frac{d\sigma_{t\text{ diff}}}{dM_X^2} \sim (W^2)^2(\alpha_{IP}^{\text{diff}}(t) - 1)
\]

- Form fit to data
- Value of \(\alpha_{IP}^{\text{diff}} \) higher than soft Pomeron
- Indication of a rise of \(\alpha_{IP}^{\text{diff}} \) with \(Q^2 \)

Total cross section:

\[
\sigma_{t\text{ tot}}^\gamma = \frac{4\pi\alpha}{Q^2} F_2(x,Q^2) \sim \frac{1}{W^2} \text{Im} T_{\gamma^* p \rightarrow \gamma^* p}(W^2,t=0) \sim (W^2)^{\alpha_{IP}^{\text{tot}}(0)-1}
\]

Data (4<M_X<8 GeV) consistent with the same \(W \)-dependence for the diffractive and the total cross section:

\[
\alpha_{IP}^{\text{diff}} \sim 1 + (\alpha_{IP}^{\text{tot}} - 1)/2
\]
$F_2^{D(3)}$ Q^2 dependence (LPS method)

- Positive scaling violation at all values of x_{IP}
- $F_2^{D(3)} \propto Q^2$ at low Q^2
- Data well described by BGK saturation model

Extension to higher x_{IP}

Marta Ruspa
ISMD2003
$F_2^{D(3)} \beta$ dependence (LPS method)

- Different β dependences in diffractive and nondiffractive regions
- Data well described by BGK saturation model

Extension to higher x_{IP}

Marta Rusda
ISMD2003
$F_2^{D(3)}$ at fixed x_{IP} (M$_X$ method)

ZEUS

$F_2^{D(2)}(\beta, Q^2) = x_{IP}F_2^{D(3)}(x_{IP}, \beta, Q^2) |_{x_{IP}=x_0}$

- Maximum near $\beta = 0.5$ consistent with a $\beta (1 - \beta)$ behaviour suggesting main contribution from a quark antiquark state.

- For high β $F_2^{D(2)}$ decrease with rising Q^2.

- As $\beta \to 0$ $F_2^{D(2)}$ rises. The rise becomes more strong as Q^2 increases.

Evidence for pQCD evolution
Summary and outlook

- Recent data from ZEUS with improved precision and extended kinematic range
 - Q^2 dependence of the diffractive cross section softens for $Q^2 \to 0$
 - W dependence of diffractive and total cross section similar at high Q^2
 - data described by dipole models (BEKW, saturation)

- New data in the high x_{IP} region:
 - scaling violations of $F_2^{D(3)}$ at all x_{IP}
 - different β dependences of $F_2^{D(3)}$ at low x_{IP} and high x_{IP}

- Indication for α_{IP} to rise with Q^2 in diffraction

- $F_2^{D(2)}$ pQCD like evolution with β and Q^2