Simulations of minimum bias and the underlying event, MC tuning and predictions for the LHC

Craig Buttar, Arthur Moraes, Ian Dawson
University of Sheffield

Outline

• Multi-parton scattering
• Tuning of PYTHIA
• Tuning using Jetweb
• LHC predictions
• Energy extrapolation and comparison with PHOJET
• Application to central jet veto in Higgs searches
• Summary+future work
How to describe low-pt behaviour?

\[\sigma_{2\rightarrow2} > \sigma_{pp} \text{ at } p_T \sim 5\text{GeV} \]

Different approaches but all many to multi-parton scattering

\[\bar{n} = \frac{\sigma_{\text{hard}}}{\sigma_{pp}} \]

\[\sigma_{\text{hard}} = \int_{p_T \sim \text{min}}^{s/4} \frac{d\sigma}{dp_t^2} \text{d}p_t^2 \]

(simple scenario with sharp cut-off)
Evidence for multi-parton interactions

Direct

\[p\bar{p} \rightarrow \gamma / \pi^0 + 3 \text{jets} + X \]

CDF

Indirect

UA5 KNO distributions

D0 multijet analysis

HERA photoproduction

CDF underlying event

Craig Buttar ISMD 2003
PYTHIA model

Multiple interactions solve total xsect problem
Need to tame the PT divergence over QCD cross-section

Parameters of the model:
• p_T-min → Abrupt vs smooth cut-off
• Energy dependence → $p_{t0} = 1.9 \text{GeV} \left(\frac{\sqrt{s}}{1\text{TeV}} \right)^{0.16}$
• Impact parameter → Matter distribution → Number of interactions and fluctuations

Parameters not looked at: string drawing, effect of ISR (CDF)
Minimum bias data:

<table>
<thead>
<tr>
<th>Experiment</th>
<th>References</th>
<th>Colliding beams</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERN – ISR</td>
<td>Phys. Rev. D 30 528 (1984)</td>
<td>pp at (\sqrt{s} = 30.4, 44.5, 52.6) and 62.2 GeV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDF - Tevatron</td>
<td>Phys. Rev. D 41 2330 (1990)</td>
<td>pp at (\sqrt{s} = 1.8) TeV</td>
</tr>
</tbody>
</table>

Set \(\pi^0, K^0_s \) and \(A^0 \) stable

Multiplicity information: \(\langle n_{ch} \rangle, dN/d\eta, \) KNO, FB, etc.
Use ‘complex’ scenario with smooth cut-off

Use ‘double-gaussian’ Matter distribution

Abrupt cut-off generates too few interactions
Pt-min is $\sim 1.9\text{GeV}$ default value
The underlying event requires less activity \(\Rightarrow \) higher pt
Lose ‘unification’ of min-bias and underlying event

CDF Run 1 underlying event analysis

Alternatively increase the core size
This reduces the core density-reducing activity

Craig Buttar ISMD 2003
The rapidity distributions are insensitive to the matter distribution.

Agreement with KNO improves as it reduces the large fluctuations in multiplicity.
<table>
<thead>
<tr>
<th>minimum bias</th>
<th>underlying event</th>
</tr>
</thead>
</table>
| **MSUB(94) = 1**
(D=0)
MSUB(95) = 1
(D=1) | **MSUB(95) = 1**
(D=1) |
| **MSTP(51) = 7**
(D=7) | **MSTP(51) = 7**
(D=7) |
| **MSTP(81) = 1**
(D=1) | **MSTP(81) = 1**
(D=1) |
| **MSTP(82) = 4**
(D=1) | **MSTP(82) = 4**
(D=1) |
| **PARP(82) = 1.8**
(D=1.9) | **PARP(82) = 1.8**
(D=1.9) |
| **PARP(84) = 0.5**
(D=0.2) | **PARP(84) = 0.5**
(D=0.2) |
| **PARP(90) = 0.16**
(D=0.16) | **PARP(90) = 0.16**
(D=0.16) |
| π^0, K^0_s, and Λ^0 stable
(D=decay’s on!) | MC distributions corrected. |

“D” = PYTHIA’s default

- **Non-diff. + d.diff.**
- **Double Gaussian**
- **Core size**
- **Primary vertex**
- **Minimum bias**
- **Underlying event**
- **CTEQ 5L**
- **Multiple interactions**
- **PT0**
- **PT0 energy dependence**
- **Exclude 8% of chd. tracks**

Craig Buttar ISMD 2003
Jetweb

Jetweb is a database tool for tuning MCs
J Butterworth and S Butterworth:

http://jetweb.hep.ucl.ac.uk

• Collection of plots from OPAL, H1, ZEUS, CDF, D0, UA5 publications, stored as distributions

• Generates events using (currently PYTHIA or HERWIG) and uses HBOOK to generate histograms to compare to data

• χ^2/DF calculated for distributions

• Fits are stored for future reference and comparison to different
Jetweb comparison

<table>
<thead>
<tr>
<th>Energy</th>
<th>dN/dη fit χ^2/DF</th>
<th>KNO fit χ^2/DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 (UA5)</td>
<td>16.9</td>
<td>17.7</td>
</tr>
<tr>
<td>900 (UA5)</td>
<td>11.3</td>
<td>22.9</td>
</tr>
<tr>
<td>1800 (E735)</td>
<td>27.2</td>
<td>27.2</td>
</tr>
</tbody>
</table>

Jetweb fits generated by B. Waugh, UCL
LHC predictions

\[
\left(\frac{UE(LHC)}{MB(LHC)} \right)_{\rho_{\text{particle}}} = \frac{4.4}{2.6} = 1.7
\]

\[
\left(\frac{UE(CDF)}{MB(CDF)} \right)_{\rho_{\text{particle}}} = \frac{2.3}{7.0} = 0.33
\]

\[
\begin{array}{|c|c|c|}
\hline
\text{LHC prediction} & \text{dN/d}\eta\text{ (}\eta=0\text{)} & \text{N}_{ch}\text{ jet-}\text{p}_t=20\text{GeV} \\
\hline
1.8\text{TeV (pp)} & 4.1 & 2.3 \\
14\text{TeV (pp)} & 7.0 & 7.0 \\
\text{increase} & \sim\times1.8 & \sim\times3 \\
\hline
\end{array}
\]
PYTHIA vs PHOJET: Minimum bias

- PYTHIA6.214 - tuned
- PHOJET1.12

$p\bar{p}$ at $\sqrt{s} = 1.8$ TeV

$p\bar{p}$ at $\sqrt{s} = 200$ GeV

Charged particle multiplicity, N_{ch}

NSD interactions

Craig Buttar ISMD 2003
PYTHIA vs PHOJET: Underlying event

CDF Run 1 underlying event analysis
Extrapolation to the LHC-Comparison with PHOJET

- **PYTHIA** exceeds exp. extrapolation.

Plots:

- **PYTHIA** and **PHOJET** comparisons across energies.
- Distributions of **dN/d\(\eta\)** at \(\eta = 0\) for LHC.
- Transverse \(<N_{\text{ch}}\>\) values.

Equations:

\[
0.023 \ln(s) - 0.025 \ln(s) + 2.5
\]

\[
\sqrt{s} \text{ (GeV)}
\]

LHC Data Points:

- UA5 53, 200, 546 and 900 GeV
- CDF 630 and 1800 GeV

PYTHIA6.214-tuned PHOJET1.12:

- \(x 3\) increase
- \(x 1.5\) increase
VBF Signal ($H \rightarrow WW \rightarrow l\nu l\nu$)

Prospects for the search for a standard model Higgs boson in ATLAS using VBF, S. Asai et al, SN-ATLAS-2003-024 \(\rightarrow\) EPJ

- forward tagging jets
- correlated leptons
- **low hadronic activity in central region**
- central Higgs production

Tag jet cuts
- Candidates are two highest P_T jets in opposite hemispheres: $|\Delta \eta| > 3.8$
- $P_T^1 > 40 \text{GeV}; P_T^2 > 20 \text{GeV}$
- $M_{jj} > 550 \text{GeV}$

Important discovery channel
For Higgs in mass range $120-200 \text{GeV}$
Central-jet veto:
Cut non-tag jets in $|\eta|<3.2$
$P_T>20\text{GeV}$

<table>
<thead>
<tr>
<th>Model</th>
<th>CJV efficiency</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default pythia</td>
<td>82%</td>
<td>8.1</td>
</tr>
<tr>
<td>Default DG</td>
<td>71%</td>
<td>7.5</td>
</tr>
<tr>
<td>AM tuning</td>
<td>76%</td>
<td>7.6</td>
</tr>
<tr>
<td>Paper</td>
<td>86%</td>
<td>8.2</td>
</tr>
</tbody>
</table>

Pythia 6.214
Jetweb comparison
Preliminary

ZEUS precision di-jet
Photoproduction data

<table>
<thead>
<tr>
<th>Jet ET-range</th>
<th>dσ/dxγ</th>
<th>χ²/DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-90</td>
<td>1.4</td>
<td>3.1</td>
</tr>
<tr>
<td>25-35</td>
<td>6.8</td>
<td>2.0</td>
</tr>
<tr>
<td>17-25</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>14-17</td>
<td>4.0</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Increasing sensitivity to Underlying event

Default Pythia

Tuned Pythia
Summary and conclusions

- PYTHIA(+PHOJET) can be ‘tuned’ to give a good description of minimum bias and underlying event data from 200GeV-1800GeV. Main parameters are: p_T-min and the proton matter distribution.
- PYTHIA overestimates particle multiplicities predicted by extrapolations of data, and predictions from PHOJET at LHC energies.
- Underlying event activity at the LHC is greater than at Tevatron by $\sim x3$ using tuned PYTHIA.
- Compare to tunings using initial state radiation (suggested by R Field (CDF)).
- Use Jetweb to compare to wider range of data: HERA, other Tevatron data.
PHOJET

- Developed mainly for soft and semi-hard particle production.

- Implements ideas of **Dual Parton Model** for low-\(p_T\) processes.

- **Multiple Pomeron** exchanges (sea-quark multi-chains) enhances the event activity.

- Limited to production mechanisms of strong interactions.

- However, useful tool for **MB** and **UE** studies where jets are involved.