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Abstract. Noncommutative geometry aims to provide a set of mathe-
matical tools to describe spacetime, gravity and quantum field theory
at small scales. The paper reviews the idea that noncommutative spaces
are described in terms algebras and their geometry is encoded in spec-
tral triples, which are basic ingredients of the new notion of Riemannian
spin geometry adapted to the language of operator algebras. Using this
background we propose a new idea of conformally rescaled and curved
spectral triples, which are obtained from a real spectral triple by a non-
trivial scaling of the Dirac operator. The obtained family is shown to
share many properties with the original spectral triple. We compute the
Wodzicki residue and the Einstein-Hilbert functional for such family on
the four-dimensional noncommutative torus.
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1. Introduction

It is commonly believed that when approaching the smallest scale of physics,
Planck length, current image of space (or space-time) as a differentiable man-
ifold should break down. Still, is not clear whether this would call for a new
notion of space or whether we will only need a better consistent description of
quantum theory including the theory of quantum gravity. The latter, quan-
tum theory of gravity, which is the long-awaited dream of theoretical physics,
is still unattainable despite various attempts and huge efforts.

One of possible hints where to look for solutions is coming from simple
physical considerations. Even though at the moment our limits of measure-
ment are still quite low when compared to the Planck length – we measure

Based on the talk at the XXXIII Workshop on Geometric Methods in Physics in Bia lowieża
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distances of 10−15m, which is roughly the size of a proton, and time differ-
ence of the order of 10−18s, while the Planck length is 10−35m – the question
about possible limits of our measurement accuracy remains valid. Already in
1958 Salecker and Wigner [29] suggested that quantum mechanics implies:

δl ≥
(

~l
mc

) 1
2

,

which combined with the general relativity and Schwarzschild radius gives a
rough estimate

δl ≥ (ll2P )
1
3 ,

where lp is Planck length.

As the uncertainty relations are linked to noncommutativity of the ob-
servables in quantum theory we should expect that positions itself should be
a noncommutative algebra. To link such description with the classical tools
of Riemannian geometry we need to look for a more general mathematical
theory, which would imply both geometry as well a noncommutativity like in
a quantum theory. The Noncommutative Geometry is a proposition, which
goes into this direction.

The paper is organised as follows: we briefly review basic ideas and dic-
tionary of noncommutative geometry and spectral triples (for a more compre-
hensive introduction with details, examples and references see [26, 27]). Based
on the introduced notion we then propose a family of conformally rescaled
geometries and study their fundamental properties. As a particular example
we present the result of pure gravity functional (Einstein-Hilbert action) for
the four-dimensional noncommutative torus, computed first with the use of
the Wodzicki residue on the algebra of pseudodifferential symbols as well as
using a ”naive” approach based on the formalism of moving frames adapted
to the noncommutative setting.

2. From Spaces and Algebras

Classical geometry is based on the principle of describing spaces, which are
sets of points equipped with some additional structures. However, the notion
of a function (in particular a continuous function if we have a topological
space) appears to be more fundamental. In quantum theory this is even more
important, since the classical phase space (space of possible positions and mo-
menta) of a physical object is no longer a space. Moreover, what we usually
describe as a state of a physical object corresponds to the expectations values
of these operators for a given state (a normalized vector) in the Hilbert space.
However, the above picture lacks one significant ingredient, the metric, the
ability to measure the noncommutative space. Noncommutative Geometry
is the first sound mathematical concept, which proposes a consistent way of
creating a geometry of quantum-like spaces. Its long term goal is to provide



Conformally rescaled noncommutative geometries 3

a meaningful definition of geometry, which would describe both the funda-
mental interactions as we know them together with the notion of quantised
space (for some arguments and models see for instance [13]).

2.1. The theorems behind it: Gelfand-Naimark

The basic ideas of noncommutative geometry lie in the theorems, which
demonstrated that one can describe topological spaces using the algebra of
continuous functions. Such functions form an algebra, more precisely a C∗-
algebra. The latte is an involutive Banach algebra, that is, a complex normed
algebra, which is complete as a topological space in the norm, and for every
element a ∈ A:

||aa∗|| = ||a||2.
It is easy to see that with the supremum norm on the space of continuous
functions C(X) for some topological space we have:

Remark 2.1. If X is a (locally) compact Hausdorff space and C(X) is the
algebra of continuous functions on X, then C(X) is a commutative (non)
unital C∗-algebra.

However, a typical example of a C∗-algebra comes from linear bounded
operators on a Hilbert space:

Remark 2.2. Take a separable Hilbert space H and B(H), the algebra of all
bounded operators on H (with the operator norm). It is a C∗ algebra. Any
norm closed subalgebra of B(H) is a C∗-algebra.

What makes these two remarks interesting is the following couple of
theorems:

Theorem 2.3 (Gelfand-Naimark-Segal, [20]). Every abstract C∗-algebra A is
isometrically ∗-isomorphic to a concrete C∗ algebra of operators on a Hilbert
space H. If the algebra A is separable then we can take H to be separable.

Theorem 2.4 (Gelfand-Naimark [19]). If a C∗ algebra is commutative then it
is an algebra of continuous functions on some (locally compact, Hausdorff)
topological space.

So, shortly speaking – all C∗ algebras are subalgebras of bounded oper-
ators on a Hilbert space and the commutative ones correspond 1 : 1 to locally
compact Hausdorff spaces. This makes all noncommutative C∗-algebras per-
fect candidates for noncommutative spaces, or spaces with singularities.

2.2. Dictionaries and examples

So far we had just given an idea that there exists a natural way to consider
some objects, which have no counterparts as topological spaces yet still share
a lot of common features with them. A simple example are just finite di-
mensional matrices (like Mn(C)), which for n > 1 form a noncommutative
algebra, also, their direct sums. A different, more sophisticated example (one
of the best known ones), is, for instance the so-called noncommutative torus.
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Example 2.5 (Irrational Rotation Algebra aka Noncommutative Torus).
Consider the Hilbert space L2(S1) and the following operators:

(Uf)(z) = zf(z), (V f)(z) = f(e2πiθz),

where 0 < θ < 1 is an irrational real number. We define T2
θ as a C∗-algebra

generated by the unitary operators U, V, U∗, V ∗. We easily check that:

UV = e2πiθV U.

In fact one just take the above relation as the defining relation of the
noncommutative torus. Although there is no geometric picture what this al-
gebra corresponds to (as there is no space) a good intuition is that the alge-
bra describes the space of all possible leaves of Kronecker foliation (with the
parameter θ) of the usual torus. If θ is irrational then all leaves are homeo-
morphic to the real line and the set of all leaves is not even Hausdorff. Yet
passing to the algebra (one can understand it as a certain groupoid algebra)
we have a much better description and can study it as a noncommutative
manifold.

Remark 2.6. Let us note that although many of the ”noncommutative spaces”
(like the noncommutative torus above) are described in terms of deformations
of manifolds (families of algebras, which for a certain value of a parameter
give a commutative algebra of functions on a manifold) this is not always the
case.

In the previous sections we indicated an equivalence between commuta-
tive C∗-algebras and spaces. Following the standard literature we just want
to point out that this correspondence could be promoted to other topological
constructions, like continuous maps between spaces, Cartesian products etc.
The following dictionary provides the necessary links:

TOPOLOGY ALGEBRA

locally compact Hausdorff topological space nonunital C∗-algebra
homeomorphism automorphism
continuous proper map morphism
compact Hausdorff topological space unital C∗-algebra
open (dense) subset (essential) ideal
compactification unitization
Stone-Čech compactification multiplier algebra
Cartesian product tensor product (completed)

Of course, the above notions are (almost) purely topological and we would
like to extend them to more geometric objects. The noncommutative geom-
etry is a programme to establish such correspondence and use it to study
objects in the same way differential geometry is used to study spaces. Below
is an approximate version of the extended version of the dictionary of non-
commutative geometry.
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DIFFERENTIAL GEOMETRY NONCOMMUTATIVE GEOMETRY
vector bundle finitely generated projective module
differential forms differential forms
differential forms Hochschild homology
de Rham cohomology cyclic cohomology
vector fields operators
group Hopf algebra
Lie algebra Hopf algebra
principal fibre bundle Hopf-Galois extension
measurable functions von Neumann algebra
infinitesimals compact operators
metric Dirac operator
spinc geometry spectral triple
spin geometry real spectral triple
integrals exotic traces

3. Spectral triples and the Dirac operator

In differential geometry the recipe to construct the Dirac operator over a spin
manifold is rather easy. You start with a compact, closed Riemannian mani-
fold with a fixed metric g. Then you find the Clifford algebra bundle, choose
your favourite spinor bundle, then lift the Levi-Civita metric connection to
the spinor bundle. If you compose it with the Clifford map then you obtain
a first order differential operator on smooth sections of the spinor bundle.
A nontrivial statements can then be proven - that D is, in fact, an elliptic
operator, extends to selfadjoint operator on the square-summable sections of
the spinor bundle, has compact resolvent and hence a discrete spectrum.

However, a different approach is to use the operational definition. Take
an algebra of smooth functions C∞(M) represented on a Hilbert space of
some sections of a suitable vector bundle overM and look for operators, which
behave like the Dirac operators. The crucial point is, of course, in the work
”like”. What we require is that D needs to be a first order differential operator
with compact resolvent. Having that assured, one recovers the differential
calculus (the bimodule of differential one-forms) by setting:

df := [D, f ], f ∈ C∞(M),

understood further as an operator on the Hilbert space. An arbitrary one-
form will be

∑
f [D, g]. Moreover, the following formula gives a nice way to

recover the metric on your manifold:

d(x, y) = sup
||[D,f ]||≤1,f∈C∞(M)

|f(x)− f(y)|, ∀x, y ∈M.

These are just the examples – as from the spectral information about
the Dirac operator we can recover a lot of information about the additional
structures on the manifold. Apart from the differential calculus and the metric
we can construct the measure and discover the dimension of the manifold.
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3.1. The noncommutative generalisation

We are ready to define what is expected to replace Riemannian spin geometry
in the realm of noncommutative algebras. The idea of spectral triples is based
on the properties of Dirac operators and constructions we discussed earlier.

Definition 3.1 (see [3, 4]). A real (even) spectral triple is given by the data
(A, π,H, D, J, (γ)), where A is an involutive algebra, π its faithful bounded
star representation on a Hilbert space H, D an selfadjoint operator with com-
pact resolvent, such that [D,π(a)] is bounded for every a ∈ A, γ is (in the
even case) a hermitian Z2 grading, Dγ = −γD, and J is an antilinear isom-
etry such that:

[Jπ(a)J−1, π(b)] = 0, ∀a, b ∈ A,
and [

Jπ(a)J−1, [D,π(b)]
]

= 0, ∀a, b ∈ A.
The latter requirement is called the order-one condition. The dimension of
the real spectral triple is defined as the integer n, such that there exists an
n-Hochschild cycle with coefficients in the bimodule A⊗Aop,

a0 ⊗ b0 ⊗ a1 ⊗ · · · ⊗ an = c ∈ Z0(A,A⊗Aop),
for which

π(c) = π(a0)
(
Jπ(b0)J−1

)
[D,π(a1)] · · · [D,π(an)] = γ.

Moreover, one assumes further relations:

DJ = εJD, J2 = ε′, Jγ = ε′′γJ.

where ε, ε′, ε′′ are ±1 depending on n modulo 8 according to the following
rules:

n mod 8 0 1 2 3 4 5 6 7
ε + – + + + – + +
ε′ + + – – – – + +
ε′′ + – + –

If we do not assume existence of J , we have a spectral triple without
real structure. If the spectral triple is odd then γ as described above does not
exist and the cycle condition reduces to πD(c) = 1.

It is reasonable to assume always that the subalgebra of elements of A
which commute with D is C (in case of the unital algebra A). Otherwise the
differential algebra defined by D shall be degenerate, that is there shall be a
nontrivial kernel of d in A. We call spectral triples such that [D,π(a)] = 0
implies a ∈ C non-degenerate, we always consider only such triples.

The following tells us that the motivating example of spin geometry
with Dirac operator is indeed described in this language:

Remark 3.2. If A = C∞(M), M a spin Riemannian compact manifold, H =
L2(S) is the Hilbert space of summable sections of the spinor bundle and D
the Dirac operator on M then to (A,H, D) is a spectral triple (with a real
structure).
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The above definition (which was shown more or less in this form) was
proposed by Connes in [2] then developed later by many authors. Details of
the proof of the above theorem could be found in [1].

In fact, spectral triples over commutative algebras (which satisfy some
additional requirements) are only of that type, thanks to Connes’ reconstruc-
tion theorem [8]. In other words, commutative spectral triples are equivalent
(in the sense of 1:1 correspondence) to compact spin manifolds.

3.2. Examples of spectral triples

Several examples of genuinely noncommutative spectral geometries have al-
ready been constructed. The list includes the noncommutative torus [2], [23],
more general θ-deformations of manifolds (of which the NC Torus is a spe-
cial case) [5], Moyal deformation [18], finite matrix algebras: ⊕iMni

(C) [22]
as well as some specific examples of quantum groups and quantum spaces
[9, 12].

We shall review here very briefly the example of the spectral triple
over the noncommutative tori, which shall be later used to modify the Dirac
operator and introduce a new family of noncommutative metrics.

Example 3.3. We use the standard presentation of the algebra of d-dimensional
noncommutative torus as generated by d unitary elements Ui, i = 1, . . . , d,
with the relations

UjUk = e2πiθjkUkUj , 1 ≤ j, k ≤ d,
where 0 < θjk < 1 is real and antisymmetric. The smooth algebra A(Tdθ) is
then taken as an algebra of elements

a =
∑
β∈Zd

aβU
β , ,

where aβ is a rapidly decreasing sequence and

Uβ = Uβ1

1 · · ·U
βd

d , β ∈ Zd.

The natural action of U(1)d by automorphisms, gives, in its infinitesimal
form, d linearly independent derivations on the algebra, which are determined
by the action on the generators:

δk(Uj) = δjkUj , ∀j, k = 1, . . . , d,

here δjk denotes the Kronecker delta.
The algebra of the noncommutative torus A(Tdθ) has a canonical trace:

t(a) = a0,

where 0 = {0, 0, . . . , 0} ∈ Zd. The trace is invariant with respect to the action
of U(1)d, hence it is closed,

t(δj(a)) = 0, ∀j = 1, . . . , d, ∀a ∈ A(Tdθ).
By H we denote the Hilbert space of the GNS construction with respect

to the trace t on the C∗ completion of A(Tdθ) and π the associated faithful rep-
resentation. The elements of the smooth algebra A(Tdθ) act on H as bounded
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operators by left multiplication, whereas the derivations δi extend to densely
defined selfadjoint operators on H with the smooth elements of the Hilbert
space, A(Tdθ), in their common domain.

To construct a Dirac operator one usually restrict to the equivariant
case [25] postulating that the spectral triple has U(1)d as the global isometry
group. The equivariant Dirac operator (which we can also call flat) is defined
over H⊗ Cr, where r = 2[ n2 ], as:

D =

n∑
i=1

γiδi,

and γi are selfadjoint generators of the Clifford algebra:

γiγj + γjγi = −2δij .

3.3. Getting numbers out of spectral triples

Having a spectral triple we have very little information on its geometry apart
from the data hidden in the properties of the Dirac operator. To recover this
information we use the spectrum of D.

Let T be a compact positive operator on a separable Hilbert space such
that for sufficiently large r > 0 the operator T r is trace class. Therefore, the
function:

ζT (z) := Tr |T |z,
is well defined and holomorphic for <(z) > r. Taking the analytic continu-
ation of ζT (z) to the rest of the complex plane we obtain a function, which
has (possibly) some poles. We may then set for any d ∈ R:

τ(T ) := Resz=dζT (z).

It appears that for a genuine Dirac-type or Laplace-type operator and
most of the known operators for spectral triples the residue is nonzero only
for some discrete subset of R. In fact, if D is the Dirac operator on a spin
manifold of dimension n then the function ζ|D|−1 (if D has a kernel it is
certainly finite dimensional and we can neglect it) may have only first order
poles only at integers on the real axis not exceeding n and, in particular,
has a nonzero residue at z = n (which is proportional to the volume of the
manifold). One usually shortens the notation writing ζD (meaning ζ|D|−1).

Note, that the zeta function we may look at its poles which are located
generally in a half of the complex plane and are not necessarily real. The
collection of all points, which are the poles of the zeta function of the oper-
ator D from a given spectral triple we call the dimension spectrum. So, the
dimension is not a number - it is a discrete set in a complex plane !

Remark 3.4. The dimension spectrum of a compact spin manifold M , given by
its spectral triple (C∞(M), L2(S), D) is contained in a set: {n, n−1, n−2, . . .}
where n is the classical dimension of M . In fact, z = n is always in the
dimension spectrum, whereas not all of other the points of the set may belong
to the dimension spectrum.
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Remark 3.5. The dimension spectrum may contain complex numbers (with
nonzero imaginary part) and any real numbers (for instance, if one considers
fractals) see [14], for an example.

3.4. Families of Dirac operators

A single Dirac operator is an interesting object in itself but it corresponds
exclusively (in the classical case) to one fixed metric and one chosen spin
structure. However, once we have such Dirac operator for a given spectral
triple, we might construct an entire family of them by taking all inner fluc-
tuations of Dirac operators:

DA = {D′ : D′ = D +A},

where A is a self-adjoint one-form A =
∑
i ai[D, bi] and A = A∗. Classically

this corresponds to the twisting of the Dirac operator by a (trivial in this
case) complex line bundle, or – using physics terminology – adding the U(1)
gauge field. A generalisation, which involves twisting by nontrivial line bundle
is also possible.

Of course, one could ask a question whether the family we get depends
on the starting point (that is whether the family is the same if we start with
the Dirac already perturbed by a one-form) and it is very convenient that
indeed the inner fluctuation of inner fluctuation are inner fluctuations so the
family we obtain is not dependent on the initial choice. If we restrict ourselves
to real spectral triples then there is a huge difference between the classical
(commutative situation) when we have:

Lemma 3.6. Commutative real spectral triples (Dirac-type operators over spin
manifolds) admit no fluctuations of the type A =

∑
i ai[D, bi], however, might

admit higher-order fluctuations if their dimension d > 2.

The proof is based on the relations from the definition 3.1 and the fact,
that the real structure for commutative spectral triples over spin manifolds
is related to complex conjugation: JfJ−1 = f∗. Therefore on one hand side,
a real fluctuation of the Dirac operator must be:

DA = D +A+ εJAJ−1,

as only then JDA = εDAJ . But since A is a selfadjoint one-form and the
algebra is commutative:

Ja[D, b]J−1 = εa∗[D, b∗] = −ε(a[D, b])∗ = −εa[D, b],

hence the fluctuation term identically vanishes. However, observe that this
shall be different once the ’fluctuations” are allowed to be (more generally)
higher-order forms - as then the nontrivial commutation between one-forms
will be significant. In particular, in any odd dimensions one can ”fluctuate”
the Dirac operator of a commutative real spectral triple by a scalar term Φ:

DΦ = D + Φ, Φ = Φ∗ ∈ A,

but only in dimension 3 this has a geometric interpretation of a torsion.
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4. Conformally rescaled spectral triples

A completely different family of Dirac operators and spectral triples has been
suggested recently for noncommutative tori [6]. While originally the proposed
setup used twisted spectral triples, it has a natural formulation in the lan-
guage of spectral triples. In fact, the rephrasing of the original construction
in the language, which we present below fits amazingly well into the entire
picture of spectral geometry.

Our starting point is a real spectral triple (A, D,H, J) and a positive
element h > 0, h ∈ A.

Definition 4.1. A conformally rescaled Dirac operator Dh = hoDho where
ho = JhJ−1 defines a conformally rescaled spectral triple over A: (A,H, Dh).

Note that the triple is not real. Below we verify that all crucial conditions
are satisfied. First of all, since ho is in the commutant of A, for every a ∈ A:

[Dh, π(a)] = ho[D,π(a)]ho ∈ B(H).

Since h commutes with γ so does Ho and therefore if the spectral triple was
even γ still provides the Z2 grading for the conformally rescaled triple. The
cocycle condition is also satisfied. If c = a0 ⊗ b0 ⊗ a1 ⊗ · · · ⊗ an = c is the
desired cycle for D then ch = a0 ⊗ b0(ho)−2n ⊗ a1 ⊗ · · · ⊗ an is good for Dh:

πDh
(ch) = π(a0)

(
Jπ(b0)J−1

) (
Jπ(h2n)J−1

)
[Dh, π(a1)] · · · [Dh, π(an)]

= π(a0)
(
Jπ(b0)J−1

)
(ho)−2n(ho[D,π(a1)]ho) · · · (ho[D,π(an)]ho)

= πD(c).

Furthermore let us compute the resolvent:

(Dh − λ)−1 = (ho)−1(D − λ(ho)−2)−1(ho)−1.

But (ho)−2 is also a positive bounded operator so the entire expression is
compact for λ = ±i, for instance (which is sufficient).

It is more complicated to check specific spectral properties of the con-
formally rescaled Dirac operator, in particular the dimension spectrum. One
may only state the following:

Lemma 4.2. Let (H, A,D, J) be a real spectral triple of metric dimension n,
that is |D|−(n+ε) is trace class for any ε > 0. Then the conformally rescaled
spectra triple (A, Dh,H) has the same metric dimension.

The proof follows from a simple inequality between positive operators
(we assumed that ho is bounded positive and has a bounded inverse):

||(ho)−1||−2|D| ≤ |hoDho| ≤ ||ho||2|D|.

Extending it to respective powers and taking trace we see that trace of
(|hoDho|)α will be estimated by a multiple of trace of |D|α from both sides.
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4.1. The Fredholm module and K-homology class

A spectral triple is an object, which has a significant topological importance
when considered as an unbounded Fredholm module. Let us recall the defi-
nition of a Fredholm module ofer an algebra A:

Definition 4.3. A triple (A,H, F ) is a Fredholm module iff F = F ∗, F 2 = 1
on H and for every a ∈ A the commutator [F, π(a)] is compact on H. If there
exists a grading γ = γ∗ such that γ2 = 1 and Fγ = −γF on H then we have
an even Fredholm module, otherwise we have an odd Fredholm module.

A properly defined relation based on homotopy between Fredholm mod-
ules allows to introduce equivalence classes and show that these classes form
an abelian group with respect to natural operations. These groups are, in
a sense, corresponding dual objects to K-theory groups of the algebra A:
K0(A) and K1(A). The Chern character (expressed easily for finitely summa-
ble Fredholm modules) provides the standard pairing between the K-theory
and K-homology groups and factorizes through the classes in cyclic cohomol-
ogy of the algebra A.

An unbounded Fredholm module (a spectral triple) immediately gives
a Fredholm module by an assignment F = sign(D). Having constructed a
family of conformally rescaled triples we might want to check how it affects
the topological properties of the triple. Certainly the Fredholm module might
not be the same, however what matters is its class in K-homology. We have:

Lemma 4.4. The K-homology class of the Fredholm module obtained from the
spectral triple of a conformally rescaled Dirac operator Dh does not depend
on h.

As h > 0 we define s = log h by continuous functional calculus. Then
h(t) = ets is a continuous path in B(H) and Ft = sign(h(t)oDh(t)o) will
be a continuous path of operators giving us the homotopy between the
(A,H, sign(D)) and (A,H, sign(Dh)).

4.2. The differential calculus

Assume that we have a real spectral triple and a conformally rescaled one.
Sind D establishes the first order differential calculus we may ask a question
whether the calculus defined by Dh is isomorphic to the original one.

Lemma 4.5. Let (A, D,H, J) be a real spectral triple and Dh = hoDho be a
conformally rescaled Dirac operator. Then Ω1

D(A) ∼= Ω1
Dh

(A).

We define for any one-form ω in Ω1
D(A) the map φh:

φh(ω) = hoωho.

Since h is invertible it is a bijective, and since ho is in the commutant of A
it clearly is a bimodule isomorphism. It remains to verify that:

φh(da) = dha, ∀a ∈ A,
where dh(a) = [Dh, π(a)]. But:

φh(da) = ho[D,π(a)]ho = [hoDho, π(a)] = [Dh, π(a)] = dha.
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4.3. Partial conformal rescaling

In special cases, where the Dirac operator can be presented as a sum of two
(or more) operators, which alone satisfy most of the spectral triple conditions
we can repeat the conformal rescaling but only partially. A typical example
will be the case of the product of two spectral triples.

Let us assume that (A, D,H, J) is a real spectral triple and D = D1 +
D2 and D1, D2 are Dirac operators for real spectral triples for the largest
subalgebras of A, which is not annihilated (respectively) by them.

Then we can have for h, k ∈ A positive and such that inverses are
bounded, Dh,k = hoD1h

o + k0D2k
o. This is an operator, which has again

bounded commutators and compact resolvent. Similar arguments as in the
conformal case show that again the metric dimension does not change.

An example of partial conformal rescaling with h arbitrary positive and
k = 1 was studied for the noncommutative torus in [11].

Remark 4.6. Note that to obtain the isomorphisms between the respective
bimodules of one-forms one needs some additional requirement that the bi-
module of one-forms split as a direct sum of two bimodules.

4.4. Fluctuations of conformally rescaled geometries

As a next problem we look into the fluctuations - of the type describe earlier
but this time with the operator Dh. We have:

Lemma 4.7. Fluctuations of the conformally rescaled Dirac operator are con-
formally rescaled fluctuation of the original Dirac operator.

To prove it, let us take D +A, where A =
∑
i π(ai)[D,π(bi)]. Then:

ho(D+A)ho = Dh+ho

(∑
i

π(ai)[D,π(bi)]

)
h0 = Dh+

∑
i

π(ai)[Dh, π(bi)].

So, conformal rescaling does not change the family of possible fluctu-
actions.

5. The curvature and Einstein-Hilbert functional

One of the most interesting problems in all these examples appers to be
the computation of some ”local” geometric objects like scalar curvature. So
far, the only approach that allowed to have an insight into such objects
depends on the specific form of spectral triple for the noncommutative torus
and explicit heat-trace computations using the generalized version of the
pseudodifferential calculus for th noncommutative torus.

We shall review here some alternative approach, which is adapted to
the case of dimension 4 (most interesting from the point of view of physical
applications) and based on Wodzicki residue. We sketch the basic definitions
and results below.
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5.1. Wodzicki Residue on noncommutative tori.

In a series of papers first [6, 7] and [15, 16] studied a conformally rescaled
metric for the noncommutative two and four-tori. This led to the expressions
of Gauss-Bonnet theorem and formulae for the noncommutative counterpart
of ”dressed” scalar curvature.

The computations used explicitly the possibility to write the Laplace-
type operators as pseudodifferential operators on the noncommutative torus
with their symbol expansion and the possibility to construct a parametrix
for a given elliptic operator.

As it has been shown [17] and more generally in [21] Wodzicki residue
exists also in the case of the pseudodifferential calculus over noncommuta-
tive tori. This has been shown in full generality (in an explicit way, which
follows directly from the classical situation) to the d-dimensional case [28].
The symbol calculus defined in [6] and developed further in [7] (see also [21])
is easily generalised to the d-dimensional case and to the operators defined
above. Let us recall that a differential operator of order at most n is of the
form

P =
∑

0≤k≤n

∑
|βk|=k

aβk
δβk ,

where aβk
are assumed to be in the algebra A(Tdθ), βk ∈ Zd and:

|βk| = β1 + · · ·+ βd, δβk = δ
βk,1

1 · · · δβk,d

d .

Its symbol is:

ρ(P ) =
∑

0≤k≤n

∑
|βk|=k

aβk
ξβk ,

where
ξβ = ξβ1

1 · · · ξ
βd

d .

On the other hand, let ρ be a symbol of order n, which is assumed to be a C∞

function from Rd to A(Tdθ), which is homogeneous of order n, satisfying cer-
tain bounds (see [6] for details). With every such symbol ρ there is associated
an operator Pρ on a dense subset of H spanned by elements a ∈ A(Tdθ):

Pρ(a) =
1

(2π)d

∫
Rd×Rd

e−iσ·ξρ(ξ)ασ(a) dσdξ,

where
ασ(Uα) = eiσ·αUα, σ ∈ Rd, α ∈ Zd.

For two operators P,Q with symbols:

ρ(P ) =
∑

pαξ
α, ρ(Q) =

∑
qβξ

β ,

we use the formula, which follows directly from the same computations as in
the case of classical calculus of pseudodifferential operators:

ρ(PQ) =
∑
γ∈Nd

1

γ!
∂γξ (ρ(P ))δγ(ρ(Q)), (1)

where γ! = γ1! · · · γd!. In [28] we have shown that
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Proposition 5.1. Let ρ =
∑
j≤k ρj(ξ) be a symbol over the noncommutative

torus A(Tdθ). Then the functional:

ρ 7→Wres(ρ) =

∫
Sd−1

t (ρ−d(ξ)) dξ,

is a trace over the algebra of symbols.

Then for family of conformally rescaled Laplace-type operators we have
computed the following functional:

S(h) = Λ Wres(D−4
h ) + Wres(D−2

h ).

and demonstrated that it is not a minimal operator. That signifies that there
is no single operator, which minimizes for a fixed h the second term (Einstein-
Hilbert functional). Classically the minimal point corresponds to the Laplace
operator obtained from the Levi-Civita (torsion free) connection.

5.2. Einstein-Hilbert functional for conformally rescaled Dirac in 4D.

Let h ∈ JA(T4
θ)J , h > 0 from the commutatnt of the algebra. We know

that for the standard Dirac operator D the conformally rescaled Dirac Dh =
h−1Dh−1 defines a spectral triple with the same metric dimension. For sim-
plicity we denote by h already the element from the commutant. Fixing the
dimension of the NC torus to be d = 4 and using the above defined calculus
of symbols of pseudodifferential operators on the NC Torus we obtain:

Lemma 5.2. The action functional for the conformally rescaled Dirac over
4-dimensional noncommutative torus is

S(h) = Λ t(h8) + t (hδi(h)δi(h)h+ hδi(h)hδi(h)) .

The proof is a straightforward but tedious computation, which is a part
of computation made in [28]. It is interesting to compare it with the classical
result. Since the Dirac operator is rescaled by h−1 from both sides in the
commutative case this means that its principal symbol is rescaled by h−2

and the metric rescaled by h4. The curvature scalar of such metric is:

R(h) = −12h−6 ((∂ih)(∂ih) + h(∆h)) ,

whereas the volume form is h8. It is easy to see that if h and its derivations
commute with each other the result is the classical one, as:

h3(∆h) = ∂a(h3∂ah)− 3h2(∂ah)(∂ah),

and since on the torus the integral is a closed trace with respect to derivations,
we have: ∫

T4

√
gR = 24h2(∂ih)(∂ih).

Hence we might consider the operator Dh as truly the correct Dirac for
a conformally rescaled noncommutative geometry.
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5.3. Derivations and moving frame formalism

Apart from the classical limit there is also another possibility to check whether
the above result makes sense. In [24] Rosenberg observed that conformal
rescaling of the metric could be translated into the rescaling of derivations,
since on can write the conformally rescaled metric tensor in the basis of dual
space to derivations (forms) as:

gh = ηab(ke
a)⊗ (keb).

In his paper he studies the geometry and curvature tensors following
standard recipe, which can be naturally adapted to this case. Reformulating
slightly his approach and using the spin connection rather than Levi-Civita
connection one can repeat the computations in arbitrary dimensions.

We introducing, similarly as in the classical case, the spin connection:

ωab = ωabc(ke
c).

Assuming metric compatibility and vanishing of the torsion:

0 = d(kea) + ωab (keb) = (δik)eiea + ωabck
2eceb.

we obtain the solution,

ωabc = δac δb(k)k−2.

As the difference from the classical situation is only in the order of terms (as
they do not commute with each other) one can easily compute the two-form
of the curvature tensor:

Rab = δac δbr(k)k−1erec + δac δb(k)δr(k
−1)erec + δac δp(k)k−1δb(k)k−1ecep,

and its contraction to the Ricci tensor:

Ricbc = −δbc(k)h−1 − δb(k)δc(k
−1) + δc(k)k−1δb(k)k−1.

Finally, one obtains a ”naive” expression for the scalar curvature:

r = k−2
(
−δaa(k)k−1 + 2δa(k)k−1δa(k)k−1

)
.

We call the expression ”naive generalization” of the classical scalar curvature
as we multiply the Ricci tensor by the conformal factor from the left when
contracting it with the metric. We could have done it symmetrically or we
could have multiplied from the right. Since later we compute the functional,
which involves the trace, this does not play any significant role. On the other
hand we always need to remember that this is not a curvature in the classical
sense.

To compare with the result for the Dirac operator we need to set k =
h−2, then,

δa(k) = −h−1δa(h)h−2 − h−2δa(h)h−1
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and

δaa(k) =− h−1δaa(h)h−2 − h−2δaa(h)h−1

+ h−1δa(h)h−1δa(h)h−2 + h−2δa(h)h−1δa(h)h−1

+ h−1δa(h)
(
h−1δa(h)h−2 + h−2δa(h)h−1

)
+
(
h−1δa(h)h−2 + h−2δa(h)h−1

)
δa(h)h−1

=− h−1δaa(h)h−2 − h−2δaa(h)h−1 + 2
(
h−1δa(h)h−1δa(h)h−2

+h−1δa(h)h−2δa(h)h−1 + h−2δa(h)h−1δa(h)h−1
)
.

Therefore, in the end we have:

r(h) = 2h−6δa(h)δa(h) + h−6δaa(h)h+ h−5δaa(h).

Finally, we can compute the Einstein-Hilbert functional,

t(h8r) = −2t
(
h2δa(h)δa(h) + hδa(h)hδa(h)

)
.

where we have used the cyclicity and closedeness of the trace:

t
(
h3δaa(h)

)
= t
(
δa
(
h3δa(h)

)
− 2h2δa(h)δa(h)− hδa(h)hδa(h)

)
.

It is surprising that (up to trivial rescaling) we obtain the same formula
as this arising from the Wodzicki residue of the Dirac operator.

6. Conclusions

Noncommutative geometry is a sound and well-motivated theory, which can
provide excellent tools to study and describe the geometry of the world. At
its current stage, it still is focusing on some simple examples. The presented
class of conformally rescaled spectral triples is one of the first steps to go
beyond single Dirac operator or fluctuations of Dirac operator and study
geometries in a similar manner as we study classical manifold.

As we have mentioned there are different approaches, which should
merge to provide a comprehensive picture of the geometries we study. First,
we have purely algebraic approach, when we could work with algebraic ob-
jects (at least in some cases) like symmetries (also in the Hopf algebra sense),
derivations or twisted derivations, differential calculi etc. The Second ap-
proach is based purely on spectral properties of the Dirac and computation
of some geometric quantities using heat-trace expansion or natural traces like
Wodzicki residue on an appropriate algebra of (generalized) pseudodifferen-
tial operators.

Surprisingly, as shown in the above paper, there might be a link, even
in the noncommutative case between these two approaches. It is worth men-
tioning that a spectacular link between the notion of connection for noncom-
mutative U(1) principal bundles and a new families of Dirac operators was
established by the author and L.Dabrowski in [10]. All these examples and
further might be a sound basis for a better understanding of geometry of
quantum spaces.
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