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Abstract
Try to work out a gauge algebroid for a noncommutative principal bundle

Try to get a suitable class of ( infinitesimal ) gauge transformations

some natural structures

braiding Lie algebras to get bigger classes

a sequenze of braided Lie algebras; its splitting as a connection
Weil algebra

Chern—Weil homomorphism and braided Lie algebra cohomology

upgrade it to Hopf algebra cyclic cohomology



The classical gauge groupoid C. Ehresmann, J. Pradines
7w . P — M a G-principal bundle over M
the diagonal action of G on P x P given by (u,v)g := (ug,vg)

[u,v] the orbit of (u,v) and Q2 = P xg P the collection of orbits

€2 is a groupoid over M, — the gauge or Ehresmann groupoid

e source and target projections:

s([u,v]) := 7(v), t([u,v]) ;= w(u).

e object inclusion: M — P xg P, m — id,, := [u,u], v any element in 7= 1(m).
e partial multiplication: [u,v] - [v,w], defined when = (v") = 7 (v),

[u7 U] ) [Ulaw] — [u7 wg]7

for the unique g € G such that v = /g.

e the inverse:

[u,v] ! = [v,u].



A bisection of the groupoid €2 isa map o : M — <2,
which is right-inverse to the source soo = idyy,

and such that too : M — M is a diffeomorphism.

The collection B(£2) of bisections, form a group:

e multiplication: o1 * o2(m) 1= o1((t 0 62)(m))o2(m)
e identity id: the object inclusion m — id,,.
e inverse: o 1(m) = (o((too)~L(m))) ™

here (too)~! as a diffeo of M, while the second inversion is the one in Q.



The subset BP/G(Q) of ‘vertical’ bisections, those that are right-inverse to
the target projection as well, t o o = id);, form a subgroup of B(£2).

A classical result:

e a group isomorphism between B(£2) and the group of principal (G-equivariant)
bundle automorphisms of the principal bundle,

Autg(P) :={¢: P — P; ¢o(pg) = ¢(p)g},

e while BP/G(Q) is isomorphic to the subgroup of gauge transformations,
bundle vertical automorphisms (project to the identity on the base space):

Autp,o(P) :={p: P — P; ¢o(pg) = p(p)g, m(e(p)) = n(p)}.



at level of groups

1 — Autp/g(P) — Autg(P) — DIiff(M) — 1

at level of derivations

0—-X(P)F = X(P)g—>X(M)—0

a splitting of this sequence is a way to give a connection

( horizontal lift or a vertical projection )



Noncommutative principal bundles
e H a Hopf algebra
e A aright H-comodule algebra with coaction 64 : A - AQH; §(a) = ay,®a.

= the subalgebra of coinvariant elements
B:=A"={bec A|s'(b) =bx 1y}

The extension B C A is H-Hopf—Galois if the canonical Galois map
X AQpA—AQH, dQ®pa— da,® agy

IS an isomorphism
x Is left A-linear, its inverse is determined by the restriction 7 := X|_11®H

T=x,. H>A®pA, h—1(h)=h"@ph™.

the translation map; thus by definition:

h<1>h<2>(o) ® h<2>(1) — 1A ® h



Everything algebraic

G be a semisimple affine algebraic group

w . P — P/G be a principal G-bundle with P and P/G affine varieties
H = O(G) the dual coordinate Hopf algebra

A= 0O(P), B=0O(P/G) the dual coordinate algebras

B C A be the subalgebra of functions constant on the fibers.
Then B = A“" and O(P xp/c P) ~ A®p A

Bijectivity of P x G — P Xp/;g P, (p,g9) — (p,pg), characterizing principal
bundles, corresponds to the bijectivity of the canonical map x : AQpA - AQH

thus B = A C A is a Hopf—Galois extension

An important notion is that of the classical translation map

t:PxpgP—G, (pq)—t(p,q) where g =pt(p,q)

the dual to T before



Gauge transformations

T. Brzezinski: gauge transformations as invertible and unital comodule maps,
with no additional requirement, i.e. not asked to be algebra maps;

The resulting gauge group might be very big; for example the gauge group
of a G-bundle over a point would be much bigger than the structure group G

P. Aschieri, GL, CPagani: gauge transformations are taken to be algebra
homomorphisms; this property implies in particular that they are invertible;

The resulting gauge group might be in general very small;

It works in a quasi-commutative context for the algebra A, with H a co-
quasitriangular Hopf algebra; the base space algebra B in the centre of A

Gauge symmetry as (infinite dimensional) braided Hopf algebra of symmetry



The classical (commutative) case

The group Gp of gauge transformations of a principal G-bundle = : P — P/G
is the group ( for point-wise product ) of G-equivariant maps

Gp:={0:P — G, o(pg) =g 'o(p)g}

Equivalently, is the subgroup ( for map composition ) of principal bundle
automorphisms which are vertical (project to the identity on the base space):

Autp,a(P) :={¢ : P — P; o(pg) = ¢(p)g, m(p(p)) = n(p)},



These definitions can be dualised for algebras rather than spaces.

For A= O(P), B=0O(P/G), H= O(G), the gauge group Gp of G-equivariant
maps corresponds to H-equivariant maps that are also algebra maps

Ga ={f: H— A; 6"of =(f®id) o Ad, f algebra map} .
The group structure is the convolution product.

Similarly, the vertical automorphisms description leads to H-equivariant maps

Autp A={F: A— A; 6'oF=(F®id)odé*, Flg=id: B — B, F algebra map} .



The noncommutative case

Let B = A" C A be a faithfully flat Hopf—Galois extension

The collection Autyg(A) of unital algebra maps of A into itself, which are
H-equivariant,

Ao F = (F®id) o o4 F(a)o® F(a)a = F(aw) ® ag,

and restrict to the identity on the subalgebra B, is a group by map composition

with inverse operation

F_l(a) - a(O)F(a(1)<l>) auy™”

H.P. Schneider: vertical H-equivariant algebra maps are invertible



Bialgebroids

B an algebra
B-ring : a triple (A, u,n) M. Takeuchi, G. Bohm ....
A a B-bimodule with B-bimodule maps u: AQpA—Aandn: B — A

associativity and unit conditions:

po(n®pida) =po(ida®ppu), po(n®pida) =ida = po (ida®pn).

Dually, B-coring : a triple (C,A,¢)
C is a B-bimodule with B-bimodule maps A :C —-C®pC and e:C — B

coassociativity and counit conditions:

(AQ®pidc)o A= (ildc®pA)oA, (e®pidc)oA =idc=(ildc®pe)oA



A left B-bialgebroid C :

a (B ® B°P)-ring and a B-coring structure on C with compatibility conditions

There are source and target maps (with commuting ranges)
s:=n(-®plg): B—-C and t:=n(lp®p -):B? —>_C

The compatibility conditions for a left B-bialgebroid C

(i) The bimodule structures in the B-coring (C, A, <) and those of the BR B°P-
ring (C,s,t) are related as

b>a<b:= s(b)t(b)a for b,b € B, a € C.
(ii) The coproduct A corestricts to an algebra map from C to

CxpC :={ Zjaj ®pd; | Zjajt(b) ®p d; = Zjaj ®p ajs(b), Vbe B }

(iii) The counit ¢ : C — B satisfies the properties,
(1) e(1c) = 13,

(2) e(s(b)a) = be(a),
(3) e(as(e(a))) = e(aa) = e(at(e(a))), for all b€ B and a,a € C.



A Hopf algebroid with invertible antipode G. Bohm

For a left bialgebroid (C, A,e,s,t) over the algebra B, an invertible antipode
S :C — C in an algebra anti-homomorphism with inverse S—1:C — C s.t.

Sot=s

and compatibility conditions with the coproduct:

(Sh(n)(l’)h(z) XB S(hm)(z’) = 1lc ®pB Sh

(S_lh@))(l’) XB (S_lh(2))(2’)h<1) — S_lh XB 1C

These then imply S(hy) hy, =toeo Sh.

The above similar to a Hopf algebra with an algebra B as the ground field.

source of difficulties/interest : there is no unique antipode in general



A weaker condition P. Schauenburg
A bialgebroid C is a Hopf algebroid if the map

AN CQprC—>C®pC, >\(p Q) Bor Q) = pPu OB P=4q
iS invertible

Qp» pt(b) ®pr ¢ = p ®pa t(b)q ®p tb)p®pq=p®ps(b)q

For B = k, this reduces to the map

ACRC—-CRC, PR qG— Puy & Px»nq
which for a usual Hopf algebra with an antipode has inverse

PR q— poy ®S(Pe)g

Also here, if there is an invertible antipode S as before one constructs an
inverse for the map A ; for X, Y €C,

AN X ®pY) =51(S(X)w) ®» S(X)wY

No claim that S here is unique



The noncommutative gauge bialgebroid aka Ehresmann—Schauenburg
B = A“H C A be a Hopf—Galois extension
right coaction : §(a) = an ® a,

translation map : 7(h) = h*> Qg h*

The B-bimodule C(A, H) of coinvariant elements for the diagonal coaction,

(AQA)H ={a®RaCAQRA; ap®dpaniy, =aQaQ 1y}
is a B-coring with coproduct and counit:
A(a ® Zi) = ap ® T(au)) ®a=aynQay" Qpay Qa,

e(a®a) = aa.

One see C(A, H) is a subalgebra of AQ A°? and it is indeed a (left) B-bialgebroid
Product (r®RZ)ociam (Y®TF) = 2y Q yz
Target and source maps t(b))=14®b and s(b)=b6® 14



Han-Majid - 2022

The Ehresmann—Schauenburg bialgebroid C = C(A, H) of a Hopf—Galois ex-
tension is a Hopf algebroid : there is an explicit map

p:CR5C— C®RpnC

which is the inverse of the map )\ before going in opposite direction

Furthermore, if the Hopf algebra H is coquasitriangular with R matrix (a
convolution invertible map) R : H® H — k ( 4+ conditions),

there is an antipod: the inverse of the braiding induced by R:

\U(a ® a) = Qe Q A @ R(CL(U X 5,(1))
this is an invertible H-comodule map with inverse
W_l(a ® Ei) = Qe Q A @ R_l(au) 02 a(l))

both map restrict to the invariant subspace C(A, H).
Then S = W1 obeys all properties of an antipode for C(A, H).



The bialgebroid C(A, H) of a Hopf—Galois extension as a quantization (of the
dualization) of the classical gauge groupoid principal bundle

Its bisections correspond to gauge transformations

C(A, H) the gauge bialgebroid of a Hopf—Galois extension B = A®“H C A

A bisection is a B-bilinear unital left character on the B-ring (C(A,H),s).
A map o :C(A,H) — B such that:

0'(1A®1A): 1p, unitality,
o(s(b)t(b)(z ® %)) = bo(z ® Z)D, B-bilinearity,
c((z®2)s(c(y®y)) =c((z®2)(y®7)), associativity.

The collection B(C(A, H)) of bisections of the bialgebroid C(A, H) is a group
with convolution product :

o1 * 02(37 029 ZE) L= 01((5’7 29 55)(1)) 02((x ® 5)(2)) - ‘71(3%) 02 5U<1><1>> 02(5’7<1><2> X 57)

using the B-coring coproduct A(z ® %) = (x ® T)y, B (. ® ),



A group isomorphism

a: Auty(A) — B(C(A,H))

between gauge transformations and bisections:

B(C(A,H))>0 w— Fy(a):=o0(apy®an™)an™, F, € Autg(A)

FeAutg(A)> F +— op(a®a):=F(a)a, oreB(C(A H))

Bisection can be given for any bialgebroid

For the general case one would need additional requirements so to get a
proper composition law for bisections



Explicit examples

the monopole bundles over the quantum S§
a not faithfully flat example from SL(2)
the SU(2) - bundle Sj — S7

the SOy(2n) bundle SOy(2n + 1) — Sz"

some example from g-geometry

change from automorphisms to derivations
( infinitesimal gauge transformations )

Lie algebras of suitable ‘bisections’

braided versions of them

Atiyah sequences of braided Lie algebras of derivations



Braiding then

K a Hopf algebra

K-equivariant H-Hopf—Galois extension B C A7;

A carries a left action >: K ® A —- A of K, compatible with the H-coaction:

(k>a)o®(k>a)y=Fkb> (g ®ay) .

Recall: K is quasitriangular if there exists an invertible element R € K ® K
with respect to which the coproduct A of K is quasi-cocommutative

AP(k) = RA(K)R AP =710 A

and Re K ® K the inverse of R, RR=RR=1® 1.

R is required to satisfy,

(A 29 id)R = R13R>3 and (id (029 A)R = R13R1o.

The Hopf algebra K is triangular when R = Ro1 = 7(R), 7 the flip.



We further assume the Hopf algebra K to be triangular.
This allows for the study of braided Lie algebras.

A braided Lie algebra associated with a triangular Hopf algebra (K,R), is a
K-module g with a bilinear map

[, ] 9®g—9g

that satisfies the following conditions.

(i) K-equivariance: for A(k) =k, ® k., the coproduct of K,

k> [u,v] = [ky > u, ko > v]

(ii) braided antisymmetry:
[u,v] = —[Ra > v, RY > w],
(iii) braided Jacobi identity:
[u7 [an]] — [[’U,,’U],’LU] _l_ [ROé > v, [Ra > ’LL,’U)]]



Any K-module algebra A is a K-braided Lie algebra with braided commutator

[,]: AR A— A, a®br [a,b] =ab— (Ry>b) (R*>a).

Also,the K-module algebra (Hom(A, A), >pom(a,4))

>Hom(4,4)- K @ HOm(A, A) - Hom(A, A)
k@Y —kD>homaa) ¥ A ko >a Y(S(ky) > A)
iSs a braided Lie algebra with braided commutator.

And so is its K-submodule of braided derivations of A

Der(A) := {¢ € Hom(A4, A) |¢(aa’) = ¢(a)a’ + (Ra > a) (R* B>pomca.ay ¥)(a)}

[, ]:Der(A) ® Der(A) — Der(A)

YA [P, A] ;==Y ol — (R, >Der(4) A) o (R* >Der(4) V).



Infinitesimal gauge transformations
B = A“H C A a K-equivariant Hopf—Galois extension, for (K,R) triangular.

Inside the braided Lie algebra Der(A) consider the subspace of braided deriva-
tions that are H-comodule maps (H-equivariant),

Der/R\AH(A) = {U € Hom(A, A) | 6(u(a)) = u(ae) ® au,

u(aa’) = u(a)a’ + (Ry > a)(R* > u)(a’), for all a,a’ € A}

and then those derivations that are vertical,

autR(A) := {u € Der}x(A) | u(b) =0, for all b€ B} .

Elements of aut%(A) are regarded as infinitesimal gauge transformations

of the K-equivariant Hopf—Galois extension B = A«H C A.



Twisting
The constructions survive under a Drinfeld twists

Let K a Hopf algebra. A twist for K is an invertible element F € K ® K which
is unital, (e®id)(F) =1 = (id®¢)(F), and satisfies the twist condition

(FeD[(A®Id)(F)] =1 @F)[(ide A)(F)] .

— —

For F and its inverse F we write F=F*®F, and F=:F ®F,

The algebra (K, m,n) with coproduct

Ar(k) = FAE)F = FooF’ ® FakoFs ke K
is a bialgebra Kk.

If K is a Hopf algebra, then K gets a new antipode Sg(k) := upS(k)ur,

ur := F*S(F,) with tr = S(F)F, its inverse.



(K,R) is quasitriangular such is the twisted bialgebra K¢ with R-matrix
Rr := F2; RF = F,R°F’ ® FOR4F,
and inverse R := FRFa; = FOR'F, ® FaR4F .

If (K,R) is triangular, so is (K, RF).

Any K-module algebra V with left action >y: K®QV — V, is also a Kg-module
with the same linear map >y, how thought as a map by: KV — V.

If A is a K-module algebra, with multiplication ma4 and unit n4, in order for
the action >4, to be an algebra map one endows the Kg-module Ag with a
new algebra structure:

ma, . A Q A — AF, a QF a —» CLoFa/ = (?a > A a) (Fa > A a').

and the unit is unchanged

For any K-module algebra map ¢ : A — A’, the Kg-module map ¢r : AF — AL
iS an algebra map for the deformed products.



Atiyah sequences and their splittings (connections)
A K-equivariant Hopf—Galois extension B = A®H C A

The braided Lie algebra of vertical equivariant derivations
autR(A4) := {u € Der} ,(A) | u(b) =0, b€ B}
is a braided Lie subalgebra of equivariant derivations

Der}.(A) = {u € Der(A) | §ou = (u®id) o0} .

Each derivation in DerR,,(A), being H-equivariant, restricts to a derivation
on the subalgebra of coinvariant elements B = A«H

A sequence of braided Lie algebras aut®(A4) — DerR.(A) — Der?(B)

When exact,
0 — aut®(A) — Der’y,(A) — Der?(B) — 0

is a version of the Atiyah sequence of a (commutative) principal fibre bundle.

An H-equivariant splitting of the sequence is a connection on the bundle



Examples from 6-deformations
F = emg(Hl@HQ_HQ@Hl) [Hl, HQ] =0

Re = F2 — o 2mi0(H@H— Ha®Hy)

Jordanian twist . k-Minkowski

1
F=exp(ua%®a) o=1In (1+—Po)
K

Py = iuz [u, Po] = Py



In particular O(Sy)

with generators b,, u = (u1,pu2) = (0,0),(+1,0),(0,£1)
the weights for the action of Hi, Ho.

Their commutation relations are

bueiby = A2* N beb, A= ™
with sphere relation ), b5 4b, = 1.

Derf (0(S5%)) is generated as an O(S3)-module by operators H,

defined on the algebra generators as
ﬁ’u,(by) = 5u*y - b’u/.gby
and extended to the whole algebra (’)(Sg) as braided derivations:

H, (byebr) = H,(b,)ebr + N2*\Vb,e,H,(b,).

They verify
H, (> " bieb,) =0, ZM b%eH, =0



In the classical limit § = 0, the derivations flﬂ reduce to

H, = 9, —b.A, A=) b,
7!

the Liouville vector field.
The weights p are those of the five dimensional representation of so(5).

The bracket in Der®(O(S3)) is the braided commutator
[ﬁy],.ﬁy]RF = ﬁuoﬁy_A2MAyﬁVOﬁ“
— bu.gﬁy - AQ#Ayby.gﬁ’U,

~

The generators H, can be expressed in terms of their commutators as

H, = bre[Hyu Hr,
7!

Denote HT, = [H,, Hr, = —NMVH]

Their braided commutators close the braided Lie algebra soy(5) :

[H],

T - T 2uUNV 2TN\o T 2uAV T
IR H’T,O’] Re — 5V*THLL,U - A H# 5#*7’ i A (6V*O'H'u,7- — )\ H 60-*,LLHI/,T)



The instanton O(SU(2)) Hopf—Galois extension O(Sg) C O(S)).

A short exact sequence of braided Lie algebras

0 — autep(s(O(S))) = Dery=(0(S§)) = Der(0(S5)) — 0

Der(O(Sy)) generated as before by elements ﬁg}u

Derpx(O(S))) generated by (explicit) derivations ﬁu,y realising a representa-
tion of soyp(5) as derivations on O(S)) and

m(Hyuy) = HT,.

aut@(sg)(O(Sg)) vertical and equivariant ( alternatively via a connection )

The horizontal lift: the O(S7)-module map p : Der(O(Sy)) — Deraw(O(S)))
defined on the generators H, of DerRF(O(Sg)) as

p(Hy)) == breHpuy
v

is a splitting of the sequence above .



The corresponding vertical projection is the O(Sg)-module map
W Derpu(0(S5)))) — autpsn(O(S))
W(Hpy) = Huy — p(HT,) = Hyy — (busip(Hy) — X2 byeip(Hy))
These derivations generated the algebra aut@(gg)(O(Sg)).
The curvature

QUX,Y) = [p(X), p(Y)]r. — p([X, Y]r:) = 20 W[p(X), p(Y)]r

One finds [p(H,), p(H,)]g, = H,.
Then
QH,, H) = Huy — (busp(Hy) — X0 byap(H,)) = 10 W(Hy).

There is also a connection 1-form.



The general construction
(K,R) a triangular Hopf algebra ; an exact sequence of K-braided Lie algebras

0—>g—>P5T—0

For B an algebra; take (B,T) a braided Lie—Rinehart pair:
T is a B-module with a braided Lie algebra morphism T — Der?(B);
B is a T-module and T acts as braided derivations of B,
X (b)) = XY + (Ry > b)(R* > X)) (b)), b e B, X eT,
and
[X,0X'[r = X(B)X 4+ (Ra > b)[(R* > X), X']r, beB, X, X'eT.

A connection on the sequence is a splitting: a B-module map,
p: T — P, mop=Iidr

the ‘vertical projection’, is the B-module map w, : P — g,
w(Y)=Y —p(Y™),  YEP



The extend to which p or w, fail to be braided Lie algebra morphisms is
measured by the (basic) curvature

QX, X)) = p([X, X'|r) — [p(X), p(X)]r), X, X"eT.
€2 is a g-valued braided two-form on T..

The curvature can also be given as a basic g-valued braided two-form on P
(spatial curvature):

QWP(Y, Y’) = QYT Y”T), Y)Y e P.
QOJ,,(Ya Y/) = [Y, Wp(Y/)]R + [Wp(y)> Y/]R — Wp([Ya Y/]R) — [Wp(Y)a wp(Y/)]R-

T his expression can be read as a structure equation:

dw, = 2, + [wp, wplr -
Here

d¢(Y,Y") :=[Y,C(YDIr + [C(Y), Y'Tr — ¢([Y, Y'TR), Y,Y'eP.

(generalised to higher forms)

There is a Bianchi identity:
dep — —[pr,wp]R .



An R-symmetric map of degree ¢
¢:g®R...®Rg—>B

which intertwining the representation adg ®<...®Radg of P on g®R...®@Rg with
the action of P on B  ( adg is the braided commutator ).

o the braided anti-symmetrization.

Then
o, =aof(QaN...e8Q)
is a braided B-valued 2¢-form on T.

One has:
dpp =0



For the cohomology classes:

o] = [pp] p, P two connections on the sequence

Consider:
Inv? = { all such ¢ as before } Inv = @ Inv?
H¢yp, Chevalley cohomology of (T, B)

we get a linear map

cw : Inv — H¢y, v — [¢p]

When pulled back to P:
", = d( Chern Simons )



Galois objects
of a Hopf algebra H ( noncommutative principal bundle over a point )

An H-Hopf—Galois extension A of the ground field C.

Examples:

Group Hopf algebras H = C[G] : equivalence classes of C[G]-Galois objects
are in bijective correspondence with the cohomology group H?(G,C*)

H2(Z",C*) = (C*)r(r=1)/2: infinitely many iso classes of C[Z"]-Galois objects

Taft algebras : g a primitive N-th root of unity,; T, neither commutative nor
cocommutative Hopf algebra; generators x, g with relations:

N =0, gN=1, xg—qgr = 0.
coproduct: Alz) =1z+zRg, A(g) =9g®yg

counit: e(z) := 0,e(g) := 1, and antipode: S(z) := —zg~1,S(g) ;=g !.



Equivalence classes of Ty-Galois objects in bijective correspondence with the
abelian group C A. Masuoka

For s € C, let A; be the algebra generated by elements X, G with relations:
XN=35, GN=1, XG-¢qGX =0.
The algebra As is a right Thy-comodule algebra, with coaction defined by

(X)) =10x+ Xy, (@) =G®ag.

The algebra of corresponding coinvariants is just the ground field C.

Thus A is a Ty-Galois object



The gauge bialgebroid of a Galois object is a Hopf algebra P. Schauenburg
The coproduct : Ac(a®a) =ap ® an™” Q ay,™® R a,
Counit : ec(a®a) =aa € C

Antipode : Se(a® a) := a, Q an " adq>

Corollary:

Bisections are characters of the Hopf algebra C(A, H) with product as before
and inverse o1 = o0 S;, as it is the case for characters

Thus for the gauge group:
Auty(A) ~ B(C(A,H)) = Char(C(A, H))



The Taft algebra :

For any s € C there is a Hopf algebra isomorphism

OB C(AS,TN) ~ Ty.

The elements

= =XG1-1XG1, r=GG1!

are coinvariants for the right diagonal coaction of T on As;® As and generate
C(As, Ty) = (As @ Ay)!v. They satisfy the Taft algebra relations:

=VN=0, ™ =1 ZelMN—g=e =0
Thus
AUtTN(AS) ~ B(C(AS,TN)) = Char(TN) = ZNn.



Summing up:

Worked out a gauge algebroid for a noncommutative principal bundle
A suitable class of ( infinitesimal ) gauge transformations

Infinite dimensional Hopf algebra ( of possibly braided derivations )
A Chern-Weil homomorphisms and characteristic classes

Chern-Simons terms

some natural structures but we are only at the beginning ...
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