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A CORNER OF THE NON-COMMUTATIVE LANDSCAPE

NC Topology

A ⊂ B(H)

NC Geometry

(A,H, D)

Quantum metric
spaces

(X, L)

‖[D, x]‖

Quantum groups

SUq(2)

NC Algebraic
topology

KK(A, B)

QUESTION (RIEFFEL, 1990’S)

What is the non-commutative analogue of a compact metric space?
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COMPACT QUANTUM METRIC SPACES

DEFINITION (RIEFFEL)

Let A be a unital C∗-algebra (or complete operator system) equipped
with a seminorm L : A! [0, ∞] satisfying that L(x∗) = L(x) for all
x ∈ A. Then (A, L) is called a compact quantum metric space if
(i) L(1) = 0.

(ii) The set Dom(L) := {a ∈ A | L(a) < ∞} is dense in A.
(iii) dL(µ, ν) := sup{|µ(a)− ν(a)| : L(a) 6 1} metrises the

weak∗-topology on S(A).
In this case L is called a Lip-norm.

If (X, d) is a compact metric space then C(X) becomes a
CQMS by setting Ld(f ) := sup

{
|f (x)−f (y)|

d(x,y) : x 6= y
}

.

 NCG examples
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EXAMPLES FROM NCG

A spectral triple (A,H, D) defines a seminorm

LD(a) := ‖[D, a]‖ (a ∈ A)

This sometimes – but not always – gives rise to a CQMS.
Many examples were given in Frédéric’s talk yesterday.
Note that the domain of LD matters: the most difficult one
is Lmax

D defined on

Lip(A) := {x ∈ A | [D, x] well-defined and bounded}

Here A := A ⊂ B(H).

 next: classical GH-dist

4 / 21



CLASSICAL GROMOV-HAUSDORFF DISTANCE

Consider compact subsets A and B in a metric space.
Then their Hausdorff distance is defined by

distd
H(A, B) := inf{r > 0 | A ⊂ Br(B) and B ⊂ Br(A)}

A B r

Br(B)

And for two compact metric spaces (X1, d1) and (X2, d2)
their Gromov-Hausdorff distance is defined as

distGH(X1, X2) := inf
d

{
distd

H(X1, X2)
}

where the infimum runs over all metrics on X1 tX2
restricting to d1 and d2 respectively.

 quantum-GH-distance
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QUANTUM GROMOV-HAUSDORFF DISTANCE

If (A1, L1) and (A2, L2) are CQMS then a Lip-norm
L : A1 ⊕A2 ! [0, ∞] is called admissible if the induced
quotient semi-norms on A1 and A2 agree with L1 and L2.
The coordinate projections dualise to isometries

(S(A1), dL1) ↪−! (S(A1 ⊕A2), dL) −↩ (S(A2), dL2)

And Rieffel then defines

distQ
GH(A1, A2) := inf

{
distdL

H (S(A1), S(A2)) : L admissible
}

This is symmetric and satisfies the triangle inequality.
But distance zero does not mean Lip-norm preserving
∗-isomorphism. This defect will be fixed in Frédéric’s talks!
C : (X, d) 7! (C(X), Ld) is a contraction, but not an isometry.
However, it is a homeomorphism onto its image.

 continuity results

6 / 21



CONVERGENCE AND CONTINUITY RESULTS

Fuzzy spheres (i.e. matrix algebras) converge to the
classical 2-sphere S2 [Rieffel, 2004].
– Non-commutative tori [Rieffel, 2004]
– Spectral truncations [D’Andrea-Lizzi-Martinetti, 2014],

[van Suijlekom, 2021]
– Crossed products [Kaad-K, 2020]
– Non-commutative solenoids [Latrémolière-Packer, 2017]
– AF-algebras [Aguilar-Latrémolière, 2015]

...
But q-deformations are conspicuous by their absence.

 q-deformations
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QUANTUM SU(2)

The central object is Woronowicz’ quantum SU(2).
This is the universal C∗-algebra C(SUq(2)) generated by a
and b subject to the relations arising by demanding that

u :=
(

a∗ −qb
b∗ a

)
be unitary.

This is a compact quantum group and the coordinate
algebra

O(SUq(2)) := Alg{a, b, a∗, b∗}
is a Hopf ∗-algebra: (O(SUq(2)), ∆, S, ε)
Dually, one has the deformed enveloping Lie algebra
Uq(su(2)) with generators e, f , k, k−1 subject to the relations

kk−1 = 1 = k−1k ek = qke kf = qfk

fe− ef = k2−k−2

q−q−1 (q 6= 1)

 the pairing
8 / 21



There exists a non-degenerate pairing

〈−,−〉 : Uq(su(2))×O(SUq(2)) −! C

And thus a left- and right Uq(su(2))-action on O(SUq(2))

∂η(a) := (1⊗ 〈η,−〉)∆(a) (left)
δη(a) := (〈η,−〉 ⊗ 1)∆(a) (right)

for η ∈ Uq(su(2)), a ∈ O(SUq(2)).
The last ingredient needed is the circle action
S1 σy C(SUq(2)) defined by rescaling a and b with z ∈ S1.
And its spectral subspaces

Am
q := {x ∈ C(SUq(2)) | ∀z ∈ S1 : σz(x) = zm · x}

Am
q := {x ∈ O(SUq(2)) | ∀z ∈ S1 : σz(x) = zm · x}

 next: Podleś sphere
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THE PODLEŚ SPHERE

C(S2) is the fixed point algebra C(SU(2))S1
(Hopf fibration)

The Podleś sphere is defined as C(S2
q) := C(SUq(2))S1

= A0
q

It fits into a spectral triple (O(S2
q),H, Dq) where

O(S2
q) = O(SUq(2))S1

and Dq is the closure of

Dq =
(

0 ∂f
∂e 0

)
: A1

q ⊕A−1
q −! A1

q ⊕A−1
q

[Dąbrowski-Sitarz, 2003]
Moreover, the commutator seminorm

Lq(x) := ‖[Dq, x]‖, x ∈ O(S2
q).

turns it into a QCMS [Aguilar-Kaad, 2018].
They even proved it for Lmax

q .

So the question in 2018 was: does S2
q converge to S2 as q

tends to 1?
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THEOREM (AGUILAR-KAAD-K, 2021)

The family (C(S2
q), Lmax

q )q∈]0,1] varies continuously in the quantum
Gromov-Hausdorff distance. In particular, (C(S2

q), Lmax
q ) converges

to (C(S2), LdS2 ) as q tends to 1.

The next natural step is to consider SUq(2) itself.
Numerous Dirac operators have been proposed:
[Masuda-Watanabe, 1994], [Bibikov-Kulish, 1997],
[Chakraborty-Pal, 2002], [Dąbrowski-Landi-Sitarz-
Suijlekom-Várilly, 2005], [Krähmer-Wagner, 2005],
[Krähmer-Rennie-Senior, 2011], [Kaad-Senior, 2011],
[Bhowmick-Voigt-Zacharias, 2015]. . . . . .
Most do not give spectral triples, but perhaps some of
them could still provide a quantum “Riemannian metric”?
Both the one suggested by Kaad-Senior and the one by
Krähmer-Rennie-Senior seemed suitable.
So we ended up considering a two parameter family Dt,q
where the t “interpolates” between these two candidates.

 Dirac definition
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THE DIRAC OPERATORS

Our substitute for the spinor bundle is L2(SUq(2))⊕2.

We then define a horizontal Dirac DH
q :=

(
0 −q−1/2∂fk−1

−q1/2∂ek−1 0

)
with Dom(DH

q ) = O(SUq(2))⊕2.
And a vertical Dirac (with the same domain) by an
additional parameter t ∈ (0, 1] and is given by

DV
t =

(
t
−n+1

2
[ n−1

2
]

t 0

0 −t
−m−1

2
[ m+1

2
]

t

)
on An

q ⊕Am
q .

Here [a]t := at−a−t

t−t−1 when t 6= 1 and [a]1 := a.

When t = q ∈ (0, 1), one has DV
q = 1

q−q−1

(
1− q∂k−2 0

0 q−1∂k−2 − 1

)
and DH

q +DV
q is the Dirac studied by Kaad-Senior.

And DH
q +DV

1 is (almost) the Krähmer-Rennie-Senior
Dirac.

 properties
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PROPERTIES OF THE DIRAC OPERATORS

Both DH
q and DV

t are essentially selfadjoint and we denote
their closures by DH

q and DV
t .

THEOREM (KAAD-K, 2022)

There exists a 1-parameter family of algebra automorphisms
(σr)r∈R+ of O(SUq(2)) such that the twisted commutators

DV
t σt(x)− σ−1

t (x)DV
t and DH

q σq(x)− σ−1
q (x)DH

q ,

extend to bounded operators ∂V
t (x) and ∂H

q (x).

DV
t and DH

q are SUq(2)-equivariant.

There exists an anti-unitary I with I2 = −1 such that

[∂V
t (x), IyI] = 0 = [∂H

q (x), IyI], x, y ∈ O(SUq(2))

When t = q = 1, one has DS3 = 2(DH
1 + DV

1 ) + 1.
 seminorm
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THE SEMINORM

We may now define a seminorm

Lt,q(x) :=

{
‖∂H

q (x) + ∂V
t (x)‖ x ∈ O(SUq(2))

∞ x ∈ C(SUq(2)) \O(SUq(2))

When t = q, one has ∂H
q + ∂V

q =

( ∂k−∂
k−1

q−q−1 −q−1/2∂f

−q1/2∂e −
∂k−∂

k−1
q−q−1

)
It too has a maximal version Lmax

t,q .

The question now is: does Lmax
t,q provide SUq(2) with a

CQMS structure?
If so, the same is automatically true for Lt,q.

 next: CQMS
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THE QUANTUM METRIC STRUCTURE

The first clue is that Lmax
t,q restricts to the commutator

seminorm arising from the Dąbrowski-Sitarz spectral triple
on C(S2

q).

So by Aguilar-Kaad we know that (C(S2
q), Lmax

t,q ) is a CQMS.

The spectral bands BM
q := ∑M

m=−M Am
q are operator systems

and finitely generated projective (free) modules over
A0

q = C(S2
q), and can therefore also be shown to be CQMS

for the restriction of Lmax
t,q .

With some additional care (and Schur multipliers) we were
then able to bootstrap all the way up to SUq(2):

THEOREM (KAAD-K, 2022)

The pair (C(SUq(2), Lmax
t,q ) is a CQMS.

 continuity?
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QUESTION

Is the map (t, q) 7! (C(SUq(2)), Lmax
t,q ) continuous with respect to

the quantum Gromov-Hausdorff distance?

For this one needs good fuzzy approximations.
When studying S2

q we built quantum fuzzy spheres.
Using these, we now build fuzzy spectral M-bands.
That is, for each N ∈N we construct a finite dimensional
sub-operator system

FuzzN(BM
q ) ⊆ BM

q .

The hope then is that these vary continuously and
approximate SUq(2) well enough when N and M tend to
infinity.

 continuity results
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To ease the arguments, we restrict to t = q in the following.
Firstly, the family (FuzzN(BM

q ), Lmax
q,q ) varies continuously

for all N and M.
This follows quite easily from finite-dimensionality and
the fact that C(SUq(2)) is a continuous field of C∗-algebras
[Blanchard, 1996].
To get that FuzzN(BM

q ) approximates C(SUq(2)) we need:

PROPOSITION (KAAD-K, 2022)

Let (X, L) be a CQMS and Y ⊆ X a sub-CQMS. If there exists a
unital contraction β : X! Y and ε > 0 s.t.

L(β(x)) 6 L(x) and ‖β(x)− x‖ 6 εL(x),

then distQ(X, Y) 6 ε.

We thus need such βM
N : C(SUq(2))! FuzzN(BM

q ).
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THE BEREZIN TRANSFORM

We construct a suitable family of states χM
N and define

βM
N (x) := (1⊗ χM

N )∆(x).

They are chosen so that χM
N −!N,M

ε (weak∗) from which it

follows that βM
N ≈ id uniformly on the Lip unit ball.

But why should these be Lip-contractions?

Recall, ∂H
q + ∂V

q =

( ∂k−∂
k−1

q−q−1 −q−1/2∂f

−q1/2∂e −
∂k−∂

k−1
q−q−1

)
=: ∂q on O(SUq(2)).

Here is where the situation t = q is quite special.

LEMMA (KAAD-K, 2022)

It holds that u∂qu∗ =
( δk−δ

k−1
q−q−1 −q−1/2δf

−q1/2δe −
δk−δ

k−1
q−q−1

)
=: δq where u is the

fundamental unitary corepresentation.

Clearly Lq,q(x) = ‖δq(x)‖ and βM
N commutes with δq and is

thus contractive for Lq,q (more complicated for Lmax
q,q )  max/min
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The first consequence of this is that for each q we have(
FuzzN(BM

q ), Lmax
q,q

)
−!

N,M!∞

(
C(SUq(2), Lmax

q,q

)
Secondly, since FuzzN(BM

q ) ⊆ O(SUq(2)) the two
seminorms Lmax

q,q and Lq,q give the same CQMS structure:

COROLLARY (KAAD-K, 2022)

The seminorms Lmax
q,q and Lq,q define the same metric on the state

space and

distQ
GH

(
(C(SUq(2), Lmax

q,q ); (C(SUq(2), Lq,q)
)
= 0

The last hard analysis-problem to tackle is to show that the
fuzzy approximation can be obtained uniformly around a
given q0 ∈ (0, 1].
We were able to deal with that as well, to obtain:
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THEOREM (KAAD-K, 2022)

The family (C(SUq(2)), Lmax
q,q )q∈(0,1] varies continuously in the

quantum Gromov-Hausdorff distance

The main results hold true for general (t, q):

0 1q

t

1
(SU(2), 2dS3 )

(C(SUq(2)), Lmax
t,q )

Krähmer-Rennie-Senior

Kaa
d-Se

nior
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THANK YOU!
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