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QUESTION (RIEFFEL, 1990’s)

What is the non-commutative analogue of a compact metric space?



COMPACT QUANTUM METRIC SPACES

DEFINITION (RIEFFEL)
Let A be a unital C*-algebra (or complete operator system) equipped
with a seminorm L: A — |0, oo| satisfying that L(x*) = L(x) for all
x € A. Then (A, L) is called a compact quantum metric space if

(i) L(1) = 0.

(ii) The set Dom(L) := {a € A | L(a) < oo} is dense in A.
(iii) dp(p,v) :=sup{|u(a) —v(a)| : L(a) < 1} metrises the

weak*-topology on 8(A).

In this case L is called a Lip-norm.

e If (X,d) is a compact metric space then C(X) becomes a
CQMS by setting L;(f) := sup {deiwv sIEL 1/}

~+ NCG examples




EXAMPLES FROM NCG

@ A spectral triple (A, I, D) defines a seminorm
Lp(a) :=||[D,d]| (a€A)

@ This sometimes — but not always — gives rise to a CQMS.
Many examples were given in Frédéric’s talk yesterday.

@ Note that the domain of Lp matters: the most difficult one
is L3 defined on

Lip(A) := {x € A | [D, x] well-defined and bounded }

Here A := A C B(X).

~= next: classical GH-dist



CLASSICAL GROMOV-HAUSDORFF DISTANCE

@ Consider compact subsets A and B in a metric space.
@ Then their Hausdorff distance is defined by

dist{;(A,B) := inf{r >0 | A C B,(B) and B C B,(A)}

B, (B)

e And for two compact metric spaces (X, d; ) and (X5, d5)
their Gromov-Hausdorf{f distance is defined as

distcr (X1, Xz) := inf {distg(xl,xz)}

where the infimum runs over all metrics on X; Ll X,
restricting to d; and d, respectively.

~ quantum-GH-distance



QUANTUM GROMOV-HAUSDORFF DISTANCE

@ If (A1, L) and (A, L,) are CQMS then a Lip-norm
L: Ay & Ay — [0,00] is called admissible if the induced
quotient semi-norms on A; and A, agree with L; and L,.
@ The coordinate projections dualise to isometries

(8(A1),dr,) — (8(A1 @ Az),dL) «— (8(A2),dL,)

@ And Rieffel then defines
distQ(A1,Az) = inf { distft (S(A1), $(A2)) : L admissible |

This is symmetric and satisfies the triangle inequality.

But distance zero does not mean Lip-norm preserving
x-isomorphism. This defect will be fixed in Frédéric’s talks!

C: (X, d) — (C(X),Ly) is a contraction, but not an isometry.

However, it is a homeomorphism onto its image.

~ continuity results



CONVERGENCE AND CONTINUITY RESULTS

@ Fuzzy spheres (i.e. matrix algebras) converge to the
classical 2-sphere S?

@ — Non-commutative tori
— Spectral truncations p

— Crossed products
— Non-commutative solenoids
— AF-algebras

@ But g-deformations are conspicuous by their absence.

~+ g-deformations



QUANTUM SU(2)

@ The central object is Woronowicz” quantum SU(2).
@ This is the universal C*-algebra C(SU,(2)) generated by a
and b subject to the relations arising by demanding that

a* —qb y
u:= (b* ;] > be unitary.

@ This is a compact quantum group and the coordinate
algebra p
O(Sut7(2)) e Alg{g/b,[l*,b*}

is a Hopf *-algebra: (O(SU,(2)),A, S, €)
@ Dually, one has the deformed enveloping Lie algebra
U, (su(2)) with generators e, f, k, N subject to the relations

kl=1=k"% ek = gke kf = qfk
oo = k”“ (9 #1)

~> the pairing



@ There exists a non-degenerate pairing

(= =) Up(su(2)) x O(SU(2)) — C

@ And thus a left- and right U, (su(2))-action on O(SU,(2))
9y(a) == (1@ (n,—))A(a)  (left)
oy(a) = ({5, =) ®1)A(a)  (right)
forn € Uy(su(2)),a € O(SU4(2)).
@ The last ingredient needed is the circle action
st A C(s U,(2)) defined by rescaling 2 and b with z € S'.
@ And its spectral subspaces
Bl C(SU,(2)) | vz S| o foa)
Ag ={x € 0(SUy(2)) | Vz € Stz

Zm B x}

Zm : x}

~ next: Podles$ sphere
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THE PODLES SPHERE

@ C(S?) is the fixed point algebra C(SU(2))* ' (Hopf fibration)
@ The Podles sphere is defined as C(S%) = C(SLLI(2))Sl = Ag
e It fits into a spectral triple (O(Sﬁ), 3, D,;) where

(‘)(53) = O(SUQ(Z))Sl and Dy is the closure of

am . — (OGNl =l 1 o~ g-1
Dy = (a, 0) P A @A — A8 A

Moreover, the commutator seminorm
Ly(x) = [[Dpll,  x€ O(S2).

turns it into a QCMS
They even proved it for L;"**.

So the question in 2018 was: does 55 converge to 5% as g
tends to 1?



THEOREM (AGUILAR-KAAD-K, 2021)

The family (C(S2), L™ax) varies continuously in the quantum
Y q q g€]0,1] Y q

Gromov-Hausdorff distance. In particular, (C(Sﬁ), L7?) converges
to (C(5%), Ly, ) as q tends to 1.

@ The next natural step is to consider SU, (2) itself.
@ Numerous Dirac operators have been proposed:

7 y

@ Most do not give spectral triples, but perhaps some of
them could still provide a quantum “Riemannian metric”?

@ Both the one suggested by Kaad-Senior and the one by
Krahmer-Rennie-Senior seemed suitable.

@ So we ended up considering a two parameter family D; ,
where the t “interpolates” between these two candidates.



THE DIRAC OPERATORS

@ Our substitute for the spinor bundle is L*(SU,(2))“?.

@ We then define a horizontal Dirac ’fo b= < P ;o_, ‘ ﬂr"f’*”)
with Dom(’DlIf) SO ()

@ And a vertical Dirac (with the same domain) by an
additional parameter ¢ € (0,1] and is given by

on AH QA”I
g W
@ Here [a]; := ” e . whent # 1and [a]; :=a.
@ Whent =g ¢ (0 1), one has ‘DV = ’1] <1 e [7719/:,1>

and D + D, is the Dirac studied by Kaad-Senior.

e And fD([f + fDY is (almost) the Krahmer-Rennie-Senior
Dirac.

~ properties



PROPERTIES OF THE DIRAC OPERATORS

@ Both DH and D/ are essentially selfadjoint and we denote
their closures by D} and DY'.

THEOREM (KAAD-K, 2022)

@ There exists a 1-parameter family of algebra automorphisms
(07)rer, of O(SUy(2)) such that the twisted commutators

D/ oi(x) — o, ' (x)D/ and foaq(x) — Uf(}()DH

extend to bounded operators 9} (x) and 8H (x).
o Dy and D} are SU,(2)-equivariant.

o There exists an anti-unitary [ with > = —1 such that
[0 (x), Iyl) = 0 = [ (x), IyI], x5 € O(SU,(2))

@ Whent=q=1,0nehas Dy = 2(D! + DY) + 1.

~~ seminorm



THE SEMINORM

@ We may now define a seminorm
L) o {195+ @) x € 0(SUy(2)
Kl o0 x € C(SU,(2))\ O(Su

%91 1/2

K —q~ /%0
@ When t = g, one has 8[’7 + Bt‘l/ = < ‘ﬁ”v: G )
W q u‘“‘

@ It too has a maximal version L}

o The question now is: does L}, provide SU,(2) with a
COMS structure?

@ If so, the same is automatically true for ;.

~» next: CQMS



THE QUANTUM METRIC STRUCTURE

o The first clue is that L™ restricts to the commutator
seminorm arising from the Dabrowski-Sitarz spectral triple
on C(57).

@ So by Aguilar-Kaad we know that (C (53), L5>) is a CQMS.

and finitely generated project;\fe (free) modules over
Ay = C(S7), and can therefore also be shown to be CQMS

for the restriction of L™

@ With some additional care (and Schur multipliers) we were
then able to bootstrap all the way up to SU,(2):

@ The spectral bands Bf]w e Aj' are operator systems

THEOREM (KAAD-K, 2022)
The pair (C(SU,(2), L) is a COMS.

t,q

~ continuity?



QUESTION

Is the map (t,q) — (C(SUy(2)), L) continuous with respect to
the quantum Gromov-Hausdorff distance?

@ For this one needs good fuzzy approximations.
@ When studying Sé we built quantum fuzzy spheres.
@ Using these, we now build fuzzy spectral M-bands.

@ That is, for each N € IN we construct a finite dimensional
sub-operator system
FuzzN(Bf;/I) € Bf;/[.
@ The hope then is that these vary continuously and
approximate SU,(2) well enough when N and M tend to
infinity.

~ continuity results



@ To ease the arguments, we restrict to f = g in the following.

e Firstly, the family (Fuzzy (BM ), L§sx) varies continuously
for all N and M.

@ This follows quite easily from finite-dimensionality and
the fact that C(SU,(2)) is a continuous field of C*-algebras

e To get that Fuzzy (B, M) approximates C(SU,(2)) we need:

PrROPOSITION (KAAD-K, 2022)

Let (X,L) bea COMS and Y C X a sub-CQMS. If there exists a
unital contraction p: X — Y and e > 0s.t.

L(B(x)) < L(x) and [ B(x)— x| <eL(x),
then disto(X,Y) < e

@ We thus need such Y : C(SU,(2)) — FuzzN(Bf;A).



THE BEREZIN TRANSFORM

@ We construct a suitable family of states x\! and define
BN (%) = (1® xN)A(x).
@ They are chosen so that )( o e (weak*) from which it
N,

follows that N ~ id uniformly on the Lip unit ball.
@ But why should these be Lip-contractions?
® Recall, 9}’ + 9} = ( o . ], i > —: d, on'O(S L2

z/l Gl -
—q

o Here is where the situation f — q is quite special.

LEMMA (KAAD-K, 2022)

5,0,
1 1/25

It holds that ud,u* = ( o ) =: 0, where u is the

—ql/25, — Tk

fundamental unitary corepresentation.

e Clearly L,,(x) = ||6,(x)| and BY commutes with &, and is
thus contractive for L; ; (more complicated for Lmax) ~ max/min




@ The first consequence of this is that for each g4 we have

(Fazzn (B L57") ., (CSUn@)157)

@ Secondly, since Fuzz,,\r(Bf;A) C 0(SU,4(2)) the two
seminorms Lfﬁ;‘x and L, give the same CQMS structure:

COROLLARY (KAAD-K, 2022)

The seminorms Ly and Lgq define the same metric on the state
space and

. .0 max
dist,, ((C(SLL,(Z),LW ); (C(suq(Z),Lq,q)> —0

@ The last hard analysis-problem to tackle is to show that the
fuzzy approximation can be obtained uniformly around a
given g € (0,1].

@ We were able to deal with that as well, to obtain:



THEOREM (KAAD-K, 2022)

The family (C(SUy(2)), Lge™) e (0,1 varies continuously in the

quantum Gromov-Hausdorff distance

@ The main results hold true for general (t,¢):

Krédhmer-Rennie-Senior (SU(2),2d3)

(C(SUy(2)), LEZ™)
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