AROUND HEAT KERNEL

Bruno Іосним

Collaborators:
T. Masson, V. Zagrebnov

Why computation of spectral action is difficult?

Given $(A, \mathcal{H}, \mathcal{D})$, Chamseddine & Connes proposed in 1996:

$$S(\mathcal{D},f) \coloneqq \operatorname{Tr} f(|\mathcal{D}|)$$

 $f: \mathbb{R}^{\scriptscriptstyle{+}}
ightarrow \mathbb{R}^{\scriptscriptstyle{+}}$ positive function

Possible answers

Only a few general results available Computation involves meromorphic extension and ζ -function Exact computation impossible since spectrum is unknown Only asymptotics computations

Consequently appearance of a general scheme:

Laplace transform and heat kernel

If
$$f(x) = \int_0^\infty e^{-tx} d\phi(t)$$
, then

$$\operatorname{Tr} f(|\mathcal{D}|) = \int_0^\infty \operatorname{Tr} e^{-t|\mathcal{D}|} d\phi(t)$$

Why computation of spectral action is difficult?

The heat trace

$$t o \operatorname{Tr} e^{-t\,|\mathcal{D}|}$$

expected

 ϕ -integrable at $t \to \infty$ since $|\mathcal{D}| \ge 0$

divergencies at t=0 like Tr $e^{-t\,|\mathcal{D}|}=\mathcal{O}(t^{-p})$ when $t\to 0$ for some p>0

You can expect

Tr
$$e^{-t|\mathcal{D}|} \underset{t \to 0}{\sim} t^{-p} \sum_{r=0}^{\infty} c_r(\mathcal{D}) (t^{\alpha})^r$$
 with $\alpha \ge 0$

Control of spectral action needs knowledge of : $t \ge 0 \to e^{-t|\mathcal{D}|}$

World of semigroup

Semigroups with generators

If
$$A \in \mathcal{B}(\mathcal{H})$$
, then $U_t = e^{-tA} := \sum_{n=0}^{\infty} \frac{(-t)^n}{n!} A^n$ gives
$$U_0 = \mathbb{1}$$

$$U_{t+t'} = U_t U_{t'} = U_{t'} U_t \qquad t \ge 0, \ t' \ge 0$$

If A is unbounded the series is ill-defined

Problem: When a semigroup $\{U_t\}_{t\geq 0}$ has a generator ?

Answer: (Hille-Yosida)

On a Banach space, if $\{U_t\}_{t\geq 0}$ is a contraction semigroup ($\|U_t\|\leq 1$, $\forall t\geq 0$), then there exists a unique, closed, densely defined operator A s. t.

$$U_t = e^{-tA}$$

$$i.e: \partial_t (U_t \psi) = -AU_t \psi = -U_t A \psi, \quad \forall \psi \in \text{Dom}(A)$$

$$U_t = \lim_{n \to \infty} (1 + \frac{t}{n} A)^{-n} \quad \text{Euler formula}$$

$$(-\infty, 0) \subset \rho(A)$$

$$\|(A + \lambda \mathbf{1})^{-1}\| \le \lambda^{-1} \quad \forall \lambda > 0$$

Idea: $A = s - \lim_{t \to 0} \frac{1}{t} (1 - U_t)$

A strongly continuous semigroup $\{(U_t\}_{t\geq 0} \text{ of bounded operators on a Banach space has a generator: } U_t = e^{-tA}$

If A is the generator on a strongly continuous semigroup $\{U_t\}_{t\geq 0}$, then $t\geq 0 \to e^{-tA}\psi \in \mathcal{H}$ is differentiable $\forall \psi \in \mathsf{Dom}(A)$

Traps:

If differentiable for all $\psi \in \mathcal{H}$ then A is bounded Even with A unbounded, $t>0 \to e^{-tA}\psi$ is differentiable $\forall \psi \in \mathcal{H}$

Gibbs semigroup:

strongly continuous semigroup $\{U_t\}_{t\geq 0}$ with $U_t\in\mathcal{L}^1$ for t>0

Schatten class: \mathcal{L}^p endowed with $\|\cdot\|_p$, $p \geq 1$

Let A be a densely defined closed operator on a separable Hilbert space \mathcal{H} A^*A is a positive selfadjoint operator such that $\mathsf{Dom}(A^*A)$ is a core for A and $0 \le (\mathbb{1} + A^*A)^{-1} \le 1$

Lemma

Let $p \ge 1$

(i) If
$$(1 + A^*A)^{-1} \in \mathcal{L}^p$$
, then $\{e^{-tA^*A}\}_{t \geq 0}$ is a Gibbs semigroup and $\|e^{-tA^*A}\|_1 = \text{Tr } e^{-tA^*A} = \mathcal{O}(t^{-p})$

(ii) Conversely, suppose $\{e^{-t\,A^*A}\}_{t\geq 0}$ is a Gibbs semigroup and $\|e^{-t\,A^*A}\|_{1} = \mathcal{O}(t^{-p})$. Then, $(\mathbb{1} + A^*A)^{-1} \in \mathcal{L}^q$ for any q > p

Remark:
$$\|e^{-tA^*A}\|_1 \underset{t \to 0}{\sim} t^{-p} \not \Rightarrow (\mathbb{1} + A^*A)^{-1} \in \mathcal{L}^p$$

Remarks:

- Possible generalization of previous result when *A* is not closed via Krein-von Neumann and Friedrich extensions
- When $(\mathbb{1} + A^*A)^{-1} \in \mathcal{L}^p$ and $(\mathbb{1} + A^*A)^{-1} \notin \mathcal{L}^{p-\epsilon}$ for any $\epsilon > 0$, the zeta function

$$\zeta(s) := \text{Tr} (\mathbb{1} + A^*A)^{-s}$$

is defined for $s \in \mathbb{C}$ with $\Re s > p$

One can expect a pole of the meromorphic extension (if existing) of ζ located at s=p

Semigroup in NCG

$$(\mathcal{A},\mathcal{H},\mathcal{D})$$
 is
p-summable when $(1+\mathcal{D}^2)^{-1/2}\in\mathcal{L}^p$ (so $\mathcal{D}^{-1}\in\mathcal{L}^p$) θ -summable when $\operatorname{Tr} e^{-t\mathcal{D}^2}<\infty$ for $t>0$ (i.e. $\{e^{-t\mathcal{D}^2}\}_{t\geq 0}$ is Gibbs)

Corollary

Let $(A, \mathcal{H}, \mathcal{D})$ be a θ -summable spectral triple. Then it is p-summable if and only if $\|e^{-t\mathcal{D}^2}\|_1 = \mathcal{O}(t^{-p/2})$

θ -summability is quite restricting:

$$(\mathcal{A}$$
 = $l^{\infty}(\mathbb{N}), \mathcal{H}$ = $l^{2}(\mathbb{N}), \mathcal{D})$ with \mathcal{D} be a diagonal

If
$$\sigma(\mathcal{D}) = \{ [\log(n+1)]^{1/2} \mid n \in \mathbb{N} \}$$
, then Tr $e^{-t\mathcal{D}^2} = \sum_{n=0}^{\infty} (n+1)^{-t} < \infty$ only for $t > 1$ even if $e^{-t\mathcal{D}^2}$ is a compact $\forall t > 0$

If $\sigma(\mathcal{D}) = \{ [\log \log(n+3)]^{1/2} \mid n \in \mathbb{N} \}$, then Tr $e^{-t\mathcal{D}^2} = \sum_{n=0}^{\infty} [\log(n+3)]^{-t}$ is never finite $\forall t > 0$.

Generalization to arbitrary semigroup

Problem: Characterize generators with a given asymptotics:

$$||e^{-tA}||_{1} = \mathcal{O}(t^{-p}), \quad \text{for some } p$$

Even if A not selfadjoint

Idea:

Cover the case of a differential operator acting on a fiber bundle over a manifold

Also in a pre-spectral triple (Connes-Levitina-McDonald-Sukochev-Zanin) ($\mathcal{A},\mathcal{H},\mathcal{D}$), D is not selfadjoint

Important for manifolds with boundaries

Generalization to arbitrary semigroup

Theorem (I.-Zagrebnov)

Let $\{e^{-tA}\}_{t\geq 0}$ be a strongly continuous semigroup on \mathcal{H} and $p\geq 1$ Then the following are equivalent

- (a) $\{e^{-tA}\}_{t\geq 0}$ is Gibbs semigroup with asymptotic $\|e^{-tA}\|_1 = \mathcal{O}(t^{-p})$
- (b) For any q > p,
 - (i) the map: $t > 0 \rightarrow e^{-tA}$ is $\|\cdot\|_q$ -continuous
 - (ii) $(A z\mathbb{1})^{-1} \in \mathcal{L}^q(\mathcal{H})$ for $z \in \rho(A)$
- $(A-z1\!\!1)^{-1}$: Laplace's transform of $\{e^{-tA}\}_{t\geq 0}$ via a $\|\cdot\|_q$ -Bochner integral
- N.B. Assumtion (i) does not imply that $e^{-tA} \in \mathcal{L}^q(\mathcal{H})$ but only $\|e^{-tA} e^{-sA}\|_q \to 0$ when $t \to s$ neither that this semigroup is holomorphic

Revisiting computation for a differential operator

(M, g): compact boundaryless d-dimensional smooth oriented Riemannian manifold

V: smooth hermitean vector bundle over M of fiber \mathbb{C}^N

P: strongly elliptic linear differential operator of degree *p* with smooth coefficients

Problem: compute the coefficient of the asymptotics

$$\operatorname{Tr}(b e^{-tP}) \underset{t\downarrow 0}{\sim} t^{-d/p} \sum_{r=0}^{\infty} a_r(b, P) (t^{1/p})^r$$

 $b \in C^{\infty}(M, \operatorname{End}(V))$

Strong ellipticity: if P_p be the principal symbol of P, there exists c > 0

$$\Re(\langle P_p(\mathbf{x}, \xi) \, v, \, v \rangle_{V_{\mathbf{x}}}) \ge c \, \|\xi\|^p \, \|v\|^2,$$
$$\forall \, (\mathbf{x}, \xi) \in \mathcal{M} \times T_{\mathbf{x}}^* \mathcal{M}, \, \xi \ne 0, \, v \in \mathbb{C}^N$$

Revisiting computation for a differential operator

Warning:

Strong ellipticty implies that p is even

The principal symbol $P_p(\mathbf{x}, \xi)$ is not a scalar or a strictly positive definite matrix, P not symmetric a priori

Several results:

Avramidi, Branson, Gilkey, Pierzchalski, Fulling, Gusynin, Gorbar, Kornyak, Ananthanarayan, Moss, Toms

In NCG:

Connes, Tretkoff, Fathizadeh, Khalkhali, Lesch, Sukochev, Zanin, Dabrowski, Sitarz, Ponge, Ha, Lee, McDonald, Liu, Wang & Wang, ...

Computation for a differential operator

$$\mathcal{H} = L^2(M, V)$$
 for

$$\langle \mathcal{I}, \mathcal{I}' \rangle := \int_{\mathcal{M}} d\text{vol}_{g}(\mathbf{x}) \langle \mathcal{I}(\mathbf{x}), \mathcal{I}'(\mathbf{x}) \rangle_{V_{\mathbf{x}}}$$

Sobolev spaces:

$$\mathcal{H}_s(M, V), s \in \mathbb{R} \text{ with } \|\cdot\|_s$$

Results:

 $P:\mathcal{H}_{s+p}\to\mathcal{H}_s$ is continuous so bounded and extension still denoted P P has a discrete spectrum in an angular sector symmetric around \mathbb{R} $\{e^{-t\,P}\}_{t\geq 0}$ is a Gibbs semigroup (with an holomorphic extension $\{e^{-z\,P}\}$)

Since $e^{-tP} = e^{-\frac{t}{2}P} e^{-\frac{t}{2}P}$ is Hilbert-Schmidt, the heat trace has an integral kernel:

$$\operatorname{Tr}_{\mathcal{H}}(b e^{-t P}) = \int_{\mathcal{M}} \operatorname{dvol}_{g}(\mathbf{x}) \operatorname{tr}_{N}[b(\mathbf{x}) \mathcal{K}(t, \mathbf{x}, \mathbf{x})]$$

Exponential as a series

Idea of Hille (1948)

Theorem

Given $n \in \mathbb{N}$ and $s \ge 0$, let $\psi \in \mathcal{H}_{(n+2)p+s}(M, V)$, if $(n+2)p+s > 1 + \frac{d}{2}$

$$\|e^{-tP}\psi - \sum_{k=0}^{n} \frac{(-t)^k}{k!} P^k \psi\|_{\infty} \underset{t\downarrow 0}{\sim} 0$$

Localization process

Given an open set U from trivialization of V, take the restriction P_U of P Need closure of P_U :

Natural choice for avoiding the boundary of U is the Dirichlet realization $\overline{P_U}$ of P_U

Corollary

For any $s \in C_c^{\infty}(U, V_U)$ (with extension \widetilde{s} by zero on $M \setminus U$

$$\|[e^{-tP}\tilde{\beta}](x) - [e^{-t\overline{P_U}}\delta](x)\|_{\mathbb{C}^N} \underset{t\downarrow 0}{\sim} 0 \qquad x \in U$$

No need of Pseudodifferential Theory!

A bit of Fourier transform

For
$$\xi = (\xi_{\mu}) \in \mathbb{R}^d$$

$$\partial_{\mu}(e^{ix\cdot\xi}\mathcal{I})=e^{ix\cdot\xi}(\partial_{\mu}+i\xi_{\mu})\mathcal{I}$$

so we use the operator

$$\mathcal{P}_{U,\xi}(x,\partial) := P_U(x,\partial + i\xi)$$

is a differential operator on $C_c^{\infty}(U, V_U)$ modulo some adventures

$$\mathcal{K}_{U}(t, x, x) = (2\pi)^{-d} |g|^{-1/2}(x) \int_{\mathbb{R}^{d}} d\xi \ e^{-t \mathcal{P}_{U}(x, \partial, \xi)}$$

$$(\text{change of variable } \xi \to t^{-1/p} \xi)$$

$$= t^{-d/p} (2\pi)^{-d} |g|^{-1/2}(x) \int_{\mathbb{R}^{d}} d\xi \ e^{-\widehat{\mathcal{P}}(x, \partial, \xi; t)}$$

where

$$\widehat{\mathcal{P}}(\mathbf{x}, \partial, \xi; t) := \sum_{\ell=0}^{p} t^{1-\ell/p} \, \mathcal{P}_{\ell}(\mathbf{x}, \partial, \xi)$$

 \mathcal{P}_{ℓ} : homogeneous polynomials of degree ℓ in ξ of $\mathcal{P}_{U,\xi}$

Duhamel formula and Volterra series

A, B: operators such that A and A + B are generators of semigroups Duhamel equality (strong sense)

$$e^{-t(A+B)} = e^{-tA} - \int_0^t ds_1 e^{(s_1-t)A} B e^{-s_1(A+B)}$$

by iteration

$$e^{-t(A+B)} = \sum_{k=0}^{L} (-1)^k \int_{\Delta_k(t)} ds \, e^{(s_1-t)A} B \, e^{(s_2-s_1)A} B \cdots B \, e^{(s_k-s_{k-1})A} B \, e^{-s_k A}$$
+ Remainder(L)

$$\Delta_k(t) := \{ s = (s_1, \dots, s_k) \in \mathbb{R}_+^k \mid 0 \le s_k \le s_{k-1} \le \dots \le s_2 \le s_1 \le t \}$$

Algebraic expansion

Idea: Remainder may disapears by asymptotics

$$e^{-t(A+B)} \underset{t\to 0}{\sim} \sum_{k=0}^{\infty} (-1)^k \int_{\Delta_k(t)} ds \, e^{(s_1-t)A} B \, e^{(s_2-s_1)A} B \cdots B \, e^{(s_k-s_{k-1})A} B \, e^{-s_k A}$$

$$= \sum_{k=0}^{\infty} (-1)^k \qquad f_k(A)[B^{\otimes^k}]$$

where more generally

$$f_k(A)[B_1 \otimes \cdots \otimes B_k] := \int_{\Delta_k(t)} ds \, e^{(s_1-s_0)A} \, B_1 \, e^{(s_2-s_1)A} \, B_2 \cdots B_k \, e^{(s_{k+1}-s_k)A}$$

Algebraic expansion

To do:

$$\int_{\mathbb{R}^d} \mathrm{d}\xi \; e^{-\widehat{\mathcal{P}}(x,\partial,\xi;t)}$$

Decompose

$$\widehat{\mathcal{P}} = A + B$$
 with $A = \mathcal{P}_p$ and $B = \sum_{\ell=0}^{p-1} t^{1-\ell/p} \mathcal{P}_\ell$
So

 $A \in M_N[x, \xi]$ and $B \in M_N[x, \xi; \partial, t]$

Algebraic expansion compatible with derivation

Proposition

Let s be a local trivialization $s: U \to \mathbb{C}^N$ of a section in $\Gamma(V)$ and $B_1, \ldots, B_k \in M_N[x, \xi, \partial]$ Then

$$f_{k}(\xi)[B_{1} \otimes \cdots \otimes B_{i}\partial_{\nu} \otimes \cdots \otimes B_{k}] \circ =$$

$$\sum_{j=i+1}^{k} f_{k}(\xi)[B_{1} \otimes \cdots \otimes (\partial_{\nu}B_{j}) \otimes \cdots \otimes B_{k}] \circ$$

$$-\sum_{j=i}^{k} f_{k+1}(\xi)[B_{1} \otimes \cdots \otimes B_{j} \otimes (\partial_{\nu}\mathcal{P}_{d}) \otimes B_{j+1} \otimes \cdots \otimes B_{k}] \circ$$

$$+ f_{k}(\xi)[B_{1} \otimes \cdots \otimes B_{i} \otimes \cdots \otimes B_{k}](\partial_{\nu} \circ)$$

Important: this is compatible with a covariant derivation ∇

En résumé

$$\operatorname{Tr}(b e^{-tP}) \underset{t \downarrow 0}{\sim} t^{-d/p} \sum_{r=0}^{\infty} a_r(b, P) (t^{1/p})^r, \qquad b \in C^{\infty}(M, \operatorname{End}(V))$$

$$a_r(b, P) = \int_M \operatorname{dvol}_g(\mathbf{x}) a_r(b, P)(\mathbf{x}), \qquad a_r(b, P)(\mathbf{x}) := \operatorname{tr}[b(\mathbf{x}) \mathcal{R}_r(\mathbf{x})]$$

Theorem (I.-Masson)

For the diagonal kernel integral of $Tr \ b e^{-tP}$

$$\mathcal{R}_r = (2\pi)^{-d} |g|^{-1/2} \sum_{k=0}^r \int_{\mathbb{R}^d} \mathrm{d}\xi f_k[\mathbb{B}_r^k]$$

where $\mathbb{B}_r \in \bigoplus_{k \geq 0} M_N[\xi, \partial]^{\otimes^k}$ is defined by the formal series

$$\sum_{r\geq 0} t^{r/p} \, \mathbb{B}_r := \sum_{k>0} (-1)^k \big(\sum_{\ell=0}^{p-1} t^{1-\ell/p} \, \mathcal{P}_\ell \big)^{\otimes^k}$$

Example: Laplace-Beltrami type operator

Covariant derivative ∇ on V

$$P = -(|g|^{-1/2}\nabla_{\mu}|g|^{1/2}H^{\mu\nu}\nabla_{\nu} + p^{\mu}\nabla_{\mu} + q)$$

where $|g| \coloneqq \det(g_{\mu\nu})$ and $H^{\mu\nu}$, p^{μ} , q are sections of End (V)

$$P = -(H^{\mu\nu}\nabla_{\mu}\nabla_{\nu} + L^{\mu}\nabla_{\mu} + q)$$

with

$$L^{\mu} := p^{\mu} + (\nabla_{\nu}H^{\nu\mu}) + \frac{1}{2}\partial_{\nu}\ln(|g|)H^{\nu\mu}$$

Strong ellipticity of *P*:

$$H(\xi; x) := H^{\mu\nu}(x) \xi_{\mu} \xi_{\nu} > 0$$
 for any $0 \neq \xi \in \mathbb{R}^d$ and any $x \in M$

Laplace-Beltrami Algebraic part

 \mathcal{A} : algebra of matrix-valued functions on (the chart of) M, depending on ξ Define for $a,b_i\in\mathcal{A}$

$$\mathbf{m}(b_1 \otimes \cdots \otimes b_k) := b_1 \cdots b_k$$

$$R_{\ell}(a)[b_0 \otimes \cdots \otimes b_k] := b_0 \otimes \cdots \otimes b_{\ell} a \otimes \cdots \otimes b_k$$

$$C_k(s, a) := \sum_{\ell=0}^k (s_{\ell} - s_{\ell+1}) R_{\ell}(a) \quad \text{for } s \in \Delta_k$$

$$b_1 \otimes \cdots \otimes b_k := \xi_{\mu_1} \cdots \xi_{\mu_p} \{b_1 \otimes \cdots \otimes b_k\}^{\mu_1 \cdots \mu_p}$$

Define the family of operators for any $k \in \mathbb{N}$, $p \in \mathbb{N}$ and $\mu_\ell \in \{1, \dots, d\}$ by

$$\mathbf{X}_{k,\mu_1,\ldots,\mu_p} \coloneqq \frac{1}{(2\pi)^d} \,\mathbf{m} \circ \int_{\Delta_k} \mathrm{d}s \, \int_{\mathbb{R}^d} \mathrm{d}\xi \, \xi_{\mu_1} \cdots \xi_{\mu_p} \, e^{-C_k(s,\,H(\xi))}$$

Fully mimick previous $\int_{\mathbb{R}^d} \mathrm{d}\xi \ e^{-\widehat{\mathcal{P}}(x,\partial,\xi;t)}$ with Duhamel expansion Computation is now purely algebraic

Laplace-Beltrami Algebraic part

$$K$$
 = ξ_{μ} K^{μ} with

$$\mathbf{K}^{\mu} \coloneqq -i(L^{\mu} + 2H^{\mu\nu}\nabla_{\nu})$$

By previous theorem

$$\mathcal{R}_{r} = |g|^{-1/2} \sum_{r/2 \le k \le r} (-1)^{k} \sum_{\substack{S \subset \{1, ..., k\} \\ |S| = 2k - r}} \mathbf{X}_{k, \mu_{1} ... \mu_{2k - r}} [\{B_{1} \otimes \cdots \otimes B_{k}\}^{\mu_{1} ... \mu_{2k - r}}]$$
with
$$\begin{cases} B_{i} = P & \text{if } i \notin S \\ B_{i} = K & \text{if } i \in S \end{cases}$$

Laplace-Beltrami Algebraic part

$$\begin{split} \mathcal{R}_{2}(x) &= |g|^{-1/2} (\mathbf{X}_{2,\mu_{1}\mu_{2}}[\{K \otimes K\}^{\mu_{1}\mu_{2}}] - \mathbf{X}_{1}[P]) \\ \mathcal{R}_{4}(x) &= \\ |g|^{-1/2} (\mathbf{X}_{2}[P \otimes P] - \mathbf{X}_{3,\mu_{1}\mu_{2}}[\{K \otimes K \otimes P\}^{\mu_{1}\mu_{2}}] - \mathbf{X}_{3,\mu_{1}\mu_{2}}[\{K \otimes P \otimes K\}^{\mu_{1}\mu_{2}}] \\ &- \mathbf{X}_{3,\mu_{1}\mu_{2}}[\{P \otimes K \otimes K\}^{\mu_{1}\mu_{2}}] + \mathbf{X}_{4,\mu_{1}\mu_{2}\mu_{3}\mu_{4}}[\{K \otimes K \otimes K \otimes K\}^{\mu_{1}\mu_{2}\mu_{3}\mu_{4}}]) \end{split}$$

As before, this **X**-calculus is compatible

- with ∇
- with contraction over the index μ_i

 $\mathcal{R}_0(x) = |g|^{-1/2} \mathbf{X}_0[1]$

Laplace-Beltrami Geometric part

Total covariant derivative $\stackrel{\frown}{\nabla}$: combines the (gauge) connection ∇ on V with the Levi-Civita covariant derivative ${}^g\nabla$ induced by the metric g

$$\begin{split} \widehat{\nabla}_{\mu} u &= \nabla_{\mu} u = \partial_{\mu} u + [A_{\mu}, u] \\ \widehat{\nabla}_{\mu} a^{\nu} &= \nabla_{\mu} a^{\nu} + \Gamma^{\nu}_{\mu\rho} a^{\rho} \qquad \widehat{\nabla}_{\mu} b_{\nu} = \nabla_{\mu} b_{\nu} - \Gamma^{\rho}_{\mu\nu} b_{\rho} \end{split}$$

u: (0,0)-tensor (End (V)-valued)

 $a = a^{\nu} \partial_{\nu}$: (1, 0)-tensor

 $b = b_{\nu} \, dx^{\nu}$: (0, 1)-tensor

 A_{μ} is the (local) gauge potential associated to ∇

Proposition

There exist a connection $\widehat{\nabla}'$ and a section q' of End(V) such that

$$P = -(H^{\mu\nu} \, \widehat{\nabla}'_{\mu} \widehat{\nabla}'_{\nu} + q')$$

given by $\widehat{\nabla}'_{\mu} \coloneqq \widehat{\nabla}_{\mu} + \frac{1}{2}H_{\mu\rho} N^{\rho}$ and $q' \coloneqq q - \frac{1}{2}H^{\mu\nu} \widehat{\nabla}_{\mu}(H_{\nu\rho} N^{\rho}) - \frac{1}{4}N^{\nu} H_{\nu\sigma} N^{\sigma}$

$$N^{\nu} := L^{\nu} + \Gamma^{\nu}_{\rho\sigma} H^{\rho\sigma}$$

Laplace-Beltrami The results

Theorem (I.-Masson)

Section \mathcal{R}_2 of End(V) is

$$|g|^{1/2}\mathcal{R}_2 =$$

$$+\mathbf{X}_{1}[q]-2\mathbf{X}_{2,\mu_{1}\mu_{2}}[H^{\mu_{1}\nu_{1}}\otimes H^{\mu_{2}\nu_{2}}]F_{\nu_{1}\nu_{2}}+2\mathbf{X}_{3,\mu_{1}\mu_{2}\mu_{3}\mu_{4}}[H^{\mu_{1}\nu_{1}}\otimes H^{\mu_{2}\nu_{2}}\otimes [F_{\nu_{1}\nu_{2}},H^{\mu_{3}\mu_{4}}]]$$

$$+\frac{2}{3}R_{\nu_1\nu_2\nu_3}^{\mu_1}\mathbf{X}_{2,\mu_1\mu_2}[H^{\nu_1\nu_3}\otimes H^{\mu_2\nu_2}]+\frac{4}{3}R_{\nu_1\nu_2\nu_3}^{\mu_1}\mathbf{X}_{2,\mu_1\mu_2}[H^{\mu_2\nu_1}\otimes H^{\nu_2\nu_3}]$$

$$+\frac{4}{3}\textit{R}_{\nu_{1}\nu_{2}\,\nu_{3}}^{\mu_{1}}\textbf{X}_{3,\mu_{1}\mu_{2}\mu_{3}\mu_{4}}[\textit{H}^{\mu_{2}\nu_{1}}\otimes \textit{H}^{\mu_{3}\nu_{2}}\otimes \textit{H}^{\mu_{4}\nu_{3}}]-\frac{8}{3}\textit{R}_{\nu_{1}\nu_{2}\,\nu_{3}}^{\mu_{1}}\textbf{X}_{3,\mu_{1}\mu_{2}\mu_{3}\mu_{4}}[\textit{H}^{\mu_{2}\nu_{1}}\otimes \textit{H}^{\mu_{3}\nu_{3}}\otimes \textit{H}^{\mu_{4}\nu_{2}}]$$

$$-2\boldsymbol{X}_{3,\mu_1\mu_2\mu_3\mu_4}[H^{\mu_1\nu_1}\otimes(\widehat{\nabla}^2_{\nu_1\nu_2}H^{\mu_2\mu_3})\otimes H^{\mu_4\nu_2}]+\boldsymbol{X}_{2,\mu_1\mu_2}[(\widehat{\nabla}_{\nu_1}H^{\nu_1\mu_1})\otimes(\widehat{\nabla}_{\nu_2}H^{\nu_2\mu_2})]$$

$$-2\boldsymbol{X}_{3,\mu_{1}\mu_{2}\mu_{3}\mu_{4}}[H^{\mu_{1}\nu_{1}}\otimes(\widehat{\nabla}_{\nu_{1}}H^{\mu_{2}\mu_{3}})\otimes(\widehat{\nabla}_{\nu_{2}}H^{\nu_{2}\mu_{4}})]-2\boldsymbol{X}_{3,\mu_{1}\mu_{2}\mu_{3}\mu_{4}}[(\widehat{\nabla}_{\nu_{1}}H^{\nu_{1}\mu_{1}})\otimes(\widehat{\nabla}_{\nu_{2}}H^{\mu_{2}\mu_{3}})\otimes H^{\mu_{4}\nu_{2}}]$$

$$+4\boldsymbol{X}_{4,\mu_1\mu_2\mu_3\mu_4\mu_5\mu_6}[H^{\mu_1\nu_1}\otimes(\widehat{\nabla}_{\nu_1}H^{\mu_2\mu_3})\otimes(\widehat{\nabla}_{\nu_2}H^{\mu_4\mu_5})\otimes H^{\mu_6\nu_2}]$$

$$+ \mathbf{X}_{2,\mu_1\mu_2}[p^{\mu_1} \otimes (\widehat{\nabla}_{\nu_1}H^{\nu_1\mu_2})] - 2\mathbf{X}_{3,\mu_1\mu_2\mu_3\mu_4}[p^{\mu_1} \otimes (\widehat{\nabla}_{\nu_1}H^{\mu_2\mu_3}) \otimes H^{\mu_4\nu_1}]$$

$$-\mathbf{X}_{2,\mu_1\mu_2}[(\widehat{\nabla}_{\nu_1}H^{\nu_1\mu_1})\otimes p^{\mu_2}] + 2\mathbf{X}_{3,\mu_1\mu_2\mu_3\mu_4}[H^{\mu_4\nu_1}\otimes (\widehat{\nabla}_{\nu_1}H^{\mu_1\mu_2})\otimes p^{\mu_3}]$$

$$-\mathbf{X}_{2,\mu_1\mu_2}[p^{\mu_1}\otimes p^{\mu_2}]-2\mathbf{X}_{2,\mu_1\mu_2}[H^{\mu_1\nu_1}\otimes (\widehat{\nabla}_{\nu_1}p^{\mu_2})]$$

Laplace-Beltrami The results

Corollary

For
$$H^{\mu\nu} = g^{\mu\nu}u$$
 with $u > 0$

$$(4\pi)^{d/2}\mathcal{R}_{2} =$$

$$+ \frac{1}{6}\Re X_{d/2,1}[u] + X_{d/2,1}[q] - \frac{1}{2}(d+2)g^{\nu_{1}\nu_{2}}X_{d/2+2,3}[u \otimes (\widehat{\nabla}_{\nu_{1}\nu_{2}}^{2}u) \otimes u]$$

$$+ \frac{1}{2}g^{\nu_{1}\nu_{2}}X_{d/2+1,2}[(\widehat{\nabla}_{\nu_{1}}u) \otimes (\widehat{\nabla}_{\nu_{2}}u)]$$

$$- \frac{1}{2}(d+2)g^{\nu_{1}\nu_{2}}X_{d/2+2,3}[u \otimes (\widehat{\nabla}_{\nu_{1}}u) \otimes (\widehat{\nabla}_{\nu_{2}}u)]$$

$$- \frac{1}{2}(d+2)g^{\nu_{1}\nu_{2}}X_{d/2+2,3}[(\widehat{\nabla}_{\nu_{1}}u) \otimes (\widehat{\nabla}_{\nu_{2}}u) \otimes u]$$

$$+ \frac{1}{2}(d+4)(d+2)g^{\nu_{1}\nu_{2}}X_{d/2+3,4}[u \otimes (\widehat{\nabla}_{\nu_{1}}u) \otimes (\widehat{\nabla}_{\nu_{2}}u) \otimes u]$$

$$- X_{d/2+1,2}[u \otimes (\widehat{\nabla}_{\nu_{1}}p^{\nu_{1}})] + \frac{1}{2}X_{d/2+1,2}[p^{\nu_{1}} \otimes (\widehat{\nabla}_{\nu_{1}}u)] - \frac{1}{2}X_{d/2+1,2}[(\widehat{\nabla}_{\nu_{1}}u) \otimes p^{\nu_{1}}]$$

$$- \frac{1}{2}(d+2)X_{d/2+2,3}[p^{\nu_{1}} \otimes (\widehat{\nabla}_{\nu_{1}}u) \otimes u] + \frac{1}{2}(d+2)X_{d/2+2,3}[u \otimes (\widehat{\nabla}_{\nu_{1}}u) \otimes p^{\nu_{1}}]$$

$$- \frac{1}{2}g_{\nu_{1}\nu_{2}}X_{d/2+1,2}[p^{\nu_{1}} \otimes p^{\nu_{2}}]$$

Laplace-Beltrami The results

Corollary

For $H^{\mu\nu} = h^{\mu\nu} \mathbb{1}$ (i.e. $u = \mathbb{1}$), the section \mathcal{R}_2 of End(V) is

$$\begin{split} &(4\pi)^{d/2}|g|^{1/2}|h|^{-1/2}\mathcal{R}_2 = \\ &+ \tfrac{1}{6}h^{\nu_1\nu_2}Ric_{\nu_1\nu_2} - \tfrac{1}{6}(\widehat{\nabla}^2_{\nu_1\nu_2}h^{\nu_1\nu_2}) - \tfrac{1}{12}h^{\nu_1\nu_2}h_{\nu_3\nu_4}(\widehat{\nabla}^2_{\nu_1\nu_2}h^{\nu_3\nu_4}) \\ &- \tfrac{1}{12}h_{\nu_1\nu_2}(\widehat{\nabla}_{\nu_3}h^{\nu_1\nu_2})(\widehat{\nabla}_{\nu_4}h^{\nu_4\nu_3}) + \tfrac{1}{12}h_{\nu_1\nu_2}(\widehat{\nabla}_{\nu_3}h^{\nu_4\nu_1})(\widehat{\nabla}_{\nu_4}h^{\nu_3\nu_2}) \\ &+ \tfrac{1}{48}h_{\nu_1\nu_2}h_{\nu_3\nu_4}h^{\nu_5\nu_6}(\widehat{\nabla}_{\nu_5}h^{\nu_1\nu_2})(\widehat{\nabla}_{\nu_6}h^{\nu_3\nu_4}) + \tfrac{1}{24}h_{\nu_1\nu_2}h_{\nu_3\nu_4}h^{\nu_5\nu_6}(\widehat{\nabla}_{\nu_5}h^{\nu_1\nu_3})(\widehat{\nabla}_{\nu_6}h^{\nu_2\nu_4}) \\ &+ q - \tfrac{1}{2}(\widehat{\nabla}_{\nu_1}p^{\nu_1}) - \tfrac{1}{4}h_{\nu_1\nu_2}p^{\nu_1}p^{\nu_2} \end{split}$$

A lot of other cases: (Yang-Mills theory)

$$H^{\mu\nu} := h^{\mu\nu} u + \zeta Q^{\mu\nu}$$

metric h on M

 $\zeta \in \mathbb{R}$ and a tensorial section $Q^{\mu
u}$ of End (V) such that:

for any $\sigma \in \mathbb{S}_h^{d-1}$, $Q(\sigma) := Q^{\mu\nu}\sigma_{\mu}\sigma_{\nu}$ is a projection and $[Q(\sigma), u] = 0$

Interest

No needs of pseudodifferential theory

Purely algebraic method:

Thierry Masson wrote a program from scratch Lot of relations between the $\mathbf{X}_{n,\mu_1\cdots\mu_k}$, the derivation and contraction with μ_i

This cover the case of the noncommutative torus

When d = 2 and $\theta = p/q$, then

$$C(T_{\theta}^2) \simeq \Gamma(A_{\theta})$$

algebra of continuous sections of a fiber bundle A_{θ} in $M_q(\mathbb{C})$ algebras over a 2-torus

Better way to track the origin of a term (within hundred ones)

The noncommutative torus

In dimension d, with $u = k^2$

Theorem (I.-Masson)

$$\mathcal{R}_{2} = g^{\nu_{1}\nu_{2}} \Big(- (d+2) \mathbf{X}_{3} [u \otimes (\delta_{\nu_{1}}k)(\delta_{\nu_{2}}k) \otimes u] + \frac{1}{2} (d^{2} + 2d + 8) \mathbf{X}_{4} [u \otimes k(\delta_{\nu_{1}}k) \otimes (\delta_{\nu_{2}}k)k \otimes u]$$

$$- (d-2) \mathbf{X}_{4} [k(\delta_{\nu_{1}}k) \otimes u \otimes (\delta_{\nu_{2}}k)k \otimes u] - 2d \mathbf{X}_{4} [k(\delta_{\nu_{1}}k) \otimes (\delta_{\nu_{2}}k)k \otimes u \otimes u]$$

$$- (d-2) \mathbf{X}_{4} [u \otimes k(\delta_{\nu_{1}}k) \otimes u \otimes (\delta_{\nu_{2}}k)k] + 4 \mathbf{X}_{4} [k(\delta_{\nu_{1}}k) \otimes u \otimes u \otimes (\delta_{\nu_{2}}k)k]$$

$$- 2d \mathbf{X}_{4} [u \otimes u \otimes k(\delta_{\nu_{1}}k) \otimes (\delta_{\nu_{2}}k)k] + \frac{1}{2} (d+2)^{2} \mathbf{X}_{4} [u \otimes k(\delta_{\nu_{1}}k) \otimes k(\delta_{\nu_{2}}k) \otimes u]$$

$$- (d+2) \mathbf{X}_{4} [k(\delta_{\nu_{1}}k) \otimes u \otimes k(\delta_{\nu_{2}}k) \otimes u] - 2(d+2) \mathbf{X}_{4} [k(\delta_{\nu_{1}}k) \otimes k(\delta_{\nu_{2}}k) \otimes u \otimes u]$$

$$- 2(d+2) \mathbf{X}_{4} [u \otimes u \otimes (\delta_{\nu_{1}}k)k \otimes (\delta_{\nu_{2}}k)k] - (d+2) \mathbf{X}_{4} [u \otimes (\delta_{\nu_{1}}k)k \otimes u \otimes (\delta_{\nu_{2}}k)k]$$

$$+ \frac{1}{2} (d+2) (d+4) \mathbf{X}_{4} [u \otimes (\delta_{\nu_{1}}k)k \otimes k(\delta_{\nu_{2}}k) \otimes u]$$

$$+ \frac{1}{2} d \mathbf{X}_{3} [u \otimes k(\Delta k) \otimes u] - 2 \mathbf{X}_{3} [k(\Delta k) \otimes u \otimes u]$$

$$- 2 \mathbf{X}_{3} [u \otimes u \otimes (\Delta k)k] + \frac{1}{2} d \mathbf{X}_{3} [u \otimes (\Delta k)k \otimes u]$$

The noncommutative torus

 \mathcal{R}_4 has a presentation with 3527 terms before simplification o 197 terms