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Main goal
From the "usual" notion of Spectral Triple + Connes’s spectral distance formula

— adaptation to:

 Spectral Triple corresponding to Lorentzian signature
* Spectral characterisation of Causality

 Spectral characterisation of distance in Lorentzian signature

— application to:
* Almost-commutative spaces (Kaluza-Klein like)
e "Quantum" deformation spaces

— Moyal spacetime

— Kappa-Minkowski spacetime



Lorentzian Spectral Triple
Which definition are we going to use?
* A Hilbert space H
e A non-unital pre-C*-algebra A with a representation on H as bounded operators
A preferred unitization A of A which is a pre-C*-algebra and such that A is an ideal of A
» An operator [ densely defined on ‘H such that
— a(1 + (D)*)" 2 is compact Va € A, with (D)* =
— [D, a] is bounded Va € A
e A bounded operator 7 with 7> =1, 7*= 7, [J,a] =0,

-D=-9JDJ
-J =—N[D,T|for N € A, N > 0 and some (possibly unbounded) self-adjoint operator
T suchthat (1+77%) 2 € A

(DD* + D*D)

N



The operator 7 is called the fundamental symmetry. Its role is to turn the positive definite inner
product of the Hilbert space (-, -) into an indefinite inner product (-, -) = (-, J-) (Krein space) on
which the Dirac operator D is (skew)-selfadjoint.

For a general [/, the signature can correspond to a pseudo-Riemannian one. We restrict to
Lorentzian signatures by requiring that 7 = —N|D, T| which corresponds in the commutative
case to J = iNc(dT) = iy" with a global time function 7 and lapse function V.

"stably causal"

Globally hyperbolic - € "J = —N|D,T]" € Lorentzian manifolds



From Riemannian distance to causality

"Riemannian" distance formula:

d(p,q) = sup {\f( )= f@)l D, flI < 15

feCM

— based on a specific set of functions, defined using [D, f|

In Lorentzian geometry (at least stably causal spaces), the causality relation (p =< ¢ if and only
if there is a future directed causal curve from p to ¢) can be completely recovered using the set
(cone) of causal functions C, which are the real-valued functions non-decreasing along every future
directed causal curve :

Vp,geM, p=q <<= VfeC, flp) < flqg)

This set can be determined using spectral properties of the Dirac operator and the fundamental
symmetry:

feC <= VoeH, (4D, [fl¢)<0

[Franco & Eckstein, Class. Quantum Grav. 2013]



How to derive a causal structure in NCG

1. Define the following subset among the (unitized) C"*-algebra (causal cone):
C = {a e Ala=a Ve H(pTD,ade) < o}

2. Check the condition (to guarantee that all states can be separated, Stone—Weierstrass):

~

spang(C) = A

~ ~

3. Define a causal relation (partial order) on P(.A) (can be extended on S(.A)) by
V.§€P(A), x3¢ <  VaeC, x(a) <£o)

* get sufficient condition — transform the constraint on C between states (very difficult)

* get necessary condition — find a specific conter-exemple a € C for each forbidden relation
(even more difficult)



From causality to Lorentzian distance

* 1998, Parfionov & Zapatrin: first idea of dual formula (infimum instead of supremum)

» 2002, Moretti: using specific local causal functions (local "steep" functions) constrained by the
gradient V f (+ first noncommutative attempt using Laplace-Beltrami-d’ Alembert operator)

 2010*, Franco: global formulation using global "steep” functions constrained by gradient V f
(using non-smooth functions for the proof, and only for globally hyperbolic spacetimes)

* 2013, Franco & Eckstein: noncommutative formulation of the gradient V f condition (using
smooth functions for the proof) and conjecture of the final formula

» 2014, Rennie & Whale: extension of the result x to non globally hyperbolic spacetimes
e 2017, Minguzzi: "smooth" proof of the result x leading to a complete proof

e 2018, Franco: final formulation for even and odd dimensions



Lorentzian distance formula

If (M, g) is a n-dimensional spin Lorentzian manifold which is either
* globally hyperbolic
e or stably causal such that the Lorentzian distance d is continuous and finite,

then for all p, g € M:
dip,q) = nf {max{0,f(q) = f(p)} : 9(V,Vf)<—-1}.

feCH(M,R)

This formula can be generalized for even Lorentian spectral triples (with the chirality operator x):

dp.q) = i {max{0, () = f(p)} Yo € H (6, T (D, f]+ix)é) 0},

and odd Lorentian spectral triples:

dlp,q) = inf {max{0,f(q) — f(p)} : Vo € H, (¢, T([D, f]£1)¢) <0},

feA f=f*

[Franco, J. Phys.: Conf. Ser. 2018 and references therein]



""Feasible'' applications of causality (and metric): almost-commutative spacetimes

Set of pure states : "Kaluza-Klein" product between usual spacetime and discrete space.

Example 1: C°(M) x M,(C) — spacetime x S? sphere :

Complete causal structure : 2 pure states defines by (p, 0¢) and (g, 6,) on a same "parallel of
latitude" are casually related if and only if:

\% o 95‘
1(7)

< |d; — dy| (difference of internal Dirac eigenvalues)



Example 2: C*°(M) x C @ C — spacetime X two points :

Complete causal structure : Two points p and ¢’ on separated sheets are causally related with
p = ¢ if and only if they are causally related if considered on the same sheet and I(y) > ﬁ
(with ﬁ corresponding to Connes’ distance between the two sheets) [Franco & Eckstein: JGP 2015]

* First physical application: This limit corresponds exactly to the Zitterbewegung phenomera
(fast oscillation of a free electron between two states) [Eckstein, Franco & Miller: PRD 2017]

* Second physical application: The Lorentzian distance formula reproduces the energy-
: : : 2
momentum dispersion relation £* = (pc)* + (mcz) [Watcharangkool & Sakellariadou: PRD 2017]



""Less Feasible'' application of causality (1) : 2-dim Moyal Minkowski spacetime
Moyal Lorentzian spectral triple (\A, AH. D, T ):

« H = L*(R'') ® C* with the usual positive definite inner product

» A is the space of Schwartz functions S(R"') with the "Weyl-Moyal" * product defined as

1
(m0)?

(f*g)(z) = / d*y &z f(z + y)g(x + z)e 20" O,

with O, :=0(%¢§),0>0

» The preferred unitization A = (B, %) is the unital algebra of smooth functions which are
bounded together with all derivatives

* D = —i0, ® " is the flat Dirac operator on RY where v = 10!, 4! = o2 are the flat Dirac
matrices

o J = z"yo is the fundamental symmetry



Causal structure between coherent states:

Functions and states on Moyal can be easily described using as orthonormal basis the Wigner
eigenfunctions of the two-dimensional harmonic oscillator @ = ) @ frnn Where

1 Ty + i!El xp o]

(Om+rmln!)1/2 V2
The pure states are all the normalized vector states on the matrix representation:

wy(a) =210 Ak G, 200 37, [y |? = 1

The coherent states of A are the vector states defined, for any k € C, by:

1 w2 K™
20

e W
276 vmlom

The coherent states correspond to the possible translations under the complex scalar V/2k of the
ground state |0 >, using kK € C = R,

Pm =

They are the states that minimize the uncertainty equally distributed in position and momentum.
The classical limit of the coherent states (¢ — 0) corresponds to the usual pure states on R



Let us suppose that two coherent states wy, w,, correspond to the complex scalars K1,k € C.
Those coherent states are causally related, with we < w,,, iff AK = Ko — Ky is inside the convex
cone of C defined by A = 2 and A = 7 (i.e. the argument of A is within the interval [—7, 7)),
[Franco & Wallet, Contemp.Math. 2016]

("time" direction)

iR

This causal structure is similar to the one in Minkowski, except that we do not consider points but
translations of Gaussian functions, so non-local states! In such a case, we can define a kind of
"time" as translations under positive real scalars k.



Causal structure between generalized coherent states:

Can we have any causal relation between pure states of different energy level (the basic eigenstates
of the harmonic oscillator) [0>, [1>, 2>, etc?

Currently we only have a sufficient condition: An eigenstate can "jump" from one energy state to
another if there 1s at the same time a sufficient translation in the direction of the "time":

™ 16 1
Ak € R such that Ax > NoTr/— = In> = aan+l> and [n+1> < apln>

2+/n + 1

where aa,|n > is the translation of the eigenstate [n > under Ak (using C = R,

In+2>

In+1>

This model represents waves packets under \»//
causal translations with a lower bound on %V ’

time in order to change the energy level.



""Less Feasible'' application of causality (2) : 2-dim ~-Minkowski spacetime

Too lazy to re-explain in detail k-Minkowski (cf. Fedele Lizzi’s talk. . .)

Exploration using a first choice of Dirac operator and states [Franco & Wallet, JPhysA, to appear] but
other choices are possible, leading to similar results [Franco, Hersent, Maris & Wallet, preprint soon].

We don’t currently have a necessary-sufficient condition for this space, only separated necessary
or sufficient conditions.

Hibert space: H=H, D H D H_, H. o = (L*(R),ds) ® C
linked to the unitary irreducible representations 7. and the trivial 1-dimensional one 7.

Dirac operator: obtained from natural one-parameter groups of automorphisms of C*(G)
(cf. Iochum, Masson, Sitarz, BCP 2012) :

0 0

R

) X ]].3 with (9i = (9() + .Tlal, j = Z’)/O X ]].3.



Which pure states ?

An interesting set of pure states can be determined by a family of (cyclic) vector states:

@i(f) = (0, mL(f)®)

for any & € L*(R) with ||®|| = 1 (this is only a subset of pure states but could give enough
information due to Gel fand—Raikov theorem).

Some explicit formulas:

» Representations: (7, (f) ¢)(s) = 5= [ dudv f ( e e’
» States: o7 (f) = 5= [[[ dsdudv f(v, te~) e =) O (5)D(u)
e "Rough" causality relation: goil = 90% <~

Jff dsdudv f(v, e) e ) [By(s) Do) — By(s)Pi(w)] >0, ¥f eC

where f €C <= @,_,_ (WU(%rf) Wu((gf)> > 0



A sufficient causality condition: a ''phase-momentum transport''

We get a sufficient condition for a causal evolution between two states gofl = 90% represented

by the continuous evolution of ®; : $; ~» P, if there exists V¢ a function 1), € C°(R) and
a; € [—1, 1] such that

d

T (@(s)@(u)) = i(u — )Y, (s)(u) + ay (%(3)%(”&) + @t<8)w£(u)>

Particular solution (v; = ®,):

d / '
E(Dt(u) — @y (u) = iudy(u).

For a; = «¢ constant, this equation is a transport equation whose general solution is
Dy (u) = Py(u + at)e™, a e [—1,1].

This evolution represents a ot translation at the level of ®; simultaneously to a ¢ translation at the
level of F®,, hence can be interpreted as a "phase-momentum transport".



A necessary causality condition: a "'quantum causality constraint"’

On the specific solution ®;(u) = Py(u + at)e™, we have that || > 1 is excluded.

On two generic states gof = gpi, we can extract the following necessary constraint:

2 [avolFewl - & [avulFe) | [ dssie)l - [ as o)

We can interpret this as a constraint on the expectation value of some quantum operators
(position/momentum) :

(E1P[E) — (P|P|®) > | (£ X[E) — (2| X[D)
= 0(P) >0 (X)]

~ quantum analogy to the classical speed of light limit 6t > |0x|.



Which works for the future?

 Find "equivalent" sufficient/necessary conditions on Moyal/kappa
 Look at the Lorentzian distance more precisely

e If not feasible analytically, why not trying to compute those relations/metric using numerical
methods (Monte-Carlo-like simulation to explore the compete causal structure) ?

Thank you for your attention!



