Talk based on:

Tolerance Relations and Quantization

Francesco D'Andrea

29/09/2022

Noncommutative Geometry: Metric and Spectral Aspects Kraków, 28-30 September 2022

Talk based on

(1) F. D'Andrea, G.Landi, F. Lizzi,

Tolerance Relations and Quantization,
Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA]

Further references:

(() F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605.

- Tail of $\sigma(\not D) \rightsquigarrow$ short distances ($\left\lfloor\mathrm{D} \sim \mathrm{ds}^{-1}\right.$)
- Cut-off $\Lambda \rightsquigarrow$ minimal length
(1) A. Connes, W.D. van Suijlekom,

Spectral Truncations in Noncommutative Geometry and Operator Systems,
Commun. Math. Phys. 383 (2020), 2021-2067; arXiv:2004.14115 [math.QA].
(1) A. Connes, W.D. van Suijlekom,

Tolerance relations and operator systems,
arXiv:2111.02903 [math.OA].
(1) M. Gielen, W.D. van Suijlekom,

Operator systems for tolerance relations on finite sets,
arXiv:2207.07735 [math.OA].
(1) F. D’Andrea, G.Landi, F. Lizzi,

Tolerance Relations and Quantization,
Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA].
Further references:
(N) F. D’Andrea, F. Lizzi, P. Martinetti,

Spectral geometry with a cut-off: topological and metric aspects,
J. Geom. Phys. 82 (2014) 18-45; arXiv:1305.2605 [math-ph].
(1) A. Connes, W.D. van Suijlekom,

Spectral Truncations in Noncommutative Geometry and Operator Systems,
Commun. Math. Phys. 383 (2020), 2021-2067; arXiv:2004.14115 [math.QA].
(1) A. Connes, W.D. van Suijlekom,

Tolerance relations and operator systems,
arXiv:2111.02903 [math.OA].
M. Gielen, W.D. van Suijlekom,

Operator systems for tolerance relations on finite sets,
arXiv:2207.07735 [math.OA].

Talk based on

(1) F. D'Andrea, G.Landi, F. Lizzi,

Tolerance Relations and Quantization,
Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA].
Further references:
(1) F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605.

- Tail of $\sigma(\not D) \rightsquigarrow$ short distances ($D D \sim \mathrm{ds}^{-1}$)
- Cut-off $\Lambda \rightsquigarrow$ minimal length
(1) A. Connes, W.D. van Suijlekom; arXiv:2004.14115.
- Coarse grain approximation of geometric spaces at a finite resolution
- A new framework: (tolerance relations \&) operator systems
(1) A. Connes, W.D. van Suijlekom,

Tolerance relations and operator systems,
arXiv:2111.02903 [math.OA].M. Gielen, W.D. van Suijlekom,

Operator systems for tolerance relations on finite sets,
arXiv:2207.07735 [math.OA].

Talk based on:
(1) F. D'Andrea, G.Landi, F. Lizzi; arXiv:2112.09698.

- Convolution algebra associated to a tolerance relation
- Finite-dim. case (tolerance relation on a finite set = finite simple graph)

Further references:

(1) F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605.

- Tail of $\sigma(\not D) \rightsquigarrow$ short distances ($D D \sim \mathrm{ds}^{-1}$)
- Cut-off $\Lambda \rightsquigarrow$ minimal length
(1) A. Connes, W.D. van Suijlekom; arXiv:2004.14115.
- Coarse grain approximation of geometric spaces at a finite resolution
- A new framework: (tolerance relations \&) operator systems
(1) A. Connes, W.D. van Suijlekom; arXiv:2111.02903.
- Operator systems associated to tolerance relations
- Proximity relation: $x \sim y \Longleftrightarrow d(x, y)<\epsilon$
(a) M. Gielen, W.D. van Suijlekom,

Operator systems for tolerance relations on finite sets,
arXiv:2207.07735 [math.OA].

Tolerance relations

Definition.

Let S be a set. Then, $R \subset S \times S$ is a tolerance relation on S if it is

- reflexive: $(a, a) \in R \forall a \in S$
- symmetric: $(a, b) \in R \Rightarrow(b, a) \in R$
(Tolerance relation + transitivity $=$ equivalence relation.)

> Observation. R is a tolerance relation on $S \quad \Longleftrightarrow \quad(S, R \backslash \Delta)$ is a simple graph. ${ }^{\dagger}$ $\begin{array}{ll}\uparrow & \uparrow \\ \text { vertices } & \text { edges }\end{array}$
${ }^{\dagger}$ Unweighted, undirected graph with no loops or multiple edges. Here $\Delta:=\{(a, a): a \in S\}$.
Example. A tolerance relation that is not an equivalence relation:

$$
\rangle_{y}^{x} /^{z}
$$

$$
\begin{aligned}
& S:=\{x, y, z\} \\
& R:=\Delta \cup\{(x, y),(y, x),(y, z),(z, y)\}
\end{aligned}
$$

Talk based on:
(1) F. D'Andrea, G.Landi, F. Lizzi; arXiv:2112.09698.

- Convolution algebra associated to a tolerance relation
- Finite-dim. case (tolerance relation on a finite set = finite simple graph)

Further references:
(1) F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605.

- Tail of $\sigma(\not D) \rightsquigarrow$ short distances ($\not D \sim \mathrm{ds}^{-1}$)
- Cut-off $\Lambda \rightsquigarrow$ minimal length
(1) A. Connes, W.D. van Suijlekom; arXiv:2004.14115.
- Coarse grain approximation of geometric spaces at a finite resolution
- A new framework: (tolerance relations \&) operator systems
(1) A. Connes, W.D. van Suijlekom; arXiv:2111.02903.
- Operator systems associated to tolerance relations
- Proximity relation: $x \sim y \Longleftrightarrow d(x, y)<\epsilon$
(v) M. Gielen, W.D. van Suijlekom; arXiv:2207.07735.
- Operator systems associated to tolerance relations on finite sets

Real-life examples

(1) Causality in Special Relativity.

Here $S:=\mathbb{R}^{1,3}$ and $a \sim b \stackrel{\text { def }}{\Longleftrightarrow}\|a-b\| \geqslant 0$. Example:

In the picture:

$$
x \sim y \quad \text { and } \quad y \sim z \quad \text { but } \quad x \nsucc z
$$

Real-life examples

(1) Causality in Special Relativity.
(2) Equality in Wolfram Mathematica.

$$
\begin{array}{|l}
\hline \text { eps }=50 * \$ \text { MachineEpsilon; } \\
\mathrm{x}=1 ; \\
\mathrm{y}=\mathrm{x}+\mathrm{eps} ; \\
\mathrm{z}=\mathrm{y}+\mathrm{eps} ; \\
\{\mathrm{x}==\mathrm{x}, \mathrm{y}==\mathrm{y}, \mathrm{z}==\mathrm{z}, \mathrm{x}==\mathrm{y}, \mathrm{y}==\mathrm{x}, \mathrm{y}==\mathrm{z}, \mathrm{z}==\mathrm{y}, \mathrm{x}==\mathrm{z}, \mathrm{z}==\mathrm{x}\} \\
\\
(* \text { Out: \{True, True, True, True, True, True, True, False, False\} *) } \\
\hline
\end{array}
$$

That is, $y:=x+\varepsilon, z:=y+\varepsilon$.
Since $\varepsilon \ll 1$ (finite storage capacity for numbers $=$ instrument with finite resolution):

$$
x \sim y \quad \text { and } \quad y \sim z \quad \text { but } \quad x \nsucc z
$$

Real-life examples

(1) Causality in Special Relativity.
(2) Equality in Wolfram Mathematica.
(3) Proximity relations.
(4) Covers.

Let S be a set and \mathcal{U} a covering of S. A tolerance relation R on S is given by:

$$
(x, y) \in R \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad\{\exists A \in U: x, y \in A\} .
$$

- On a metric space with midpoint property (e.g. spectral distance):

$$
\epsilon \text {-proximity relation } \leadsto>\text { cover with open balls of radius } \varepsilon / 2 \text {. }
$$

- Compare with Sorkin and its approximations of topological spaces with posets.

Real-life examples

(1) Causality in Special Relativity.
(2) Equality in Wolfram Mathematica.
(3) Proximity relations.

Let (S, d) be a metric space and $\varepsilon>0$. Define $R \subset S \times S$ by:

$$
(a, b) \in R \quad \Longleftrightarrow \quad d(a, b)<\varepsilon
$$

In some cases, proximity relations are transitive. E.g. if d is an ultrametric, i.e.

$$
d(a, c) \leqslant \max \{d(a, b), d(b, c)\} \quad \forall a, b, c \in S
$$

Real-life examples

(1) Causality in Special Relativity.
(2) Equality in Wolfram Mathematica.
(3) Proximity relations.
(4) Covers.
(5) Tolerance relations associated to actions (later).

The convolution product

In the following, $X:=$ topological space and $R:=$ tolerance relation on X.

We say that R is étale of \exists topology on R such that the projection

$$
R \rightarrow X, \quad(x, y) \mapsto x
$$

is a local homeomorphism.
(If R is transitive, this means that the associated groupoid is étale.)

Lemma

If R is Hausdorff and étale, the space $C_{c}(R)$ of compactly-supported continuous complex functions on R is $\mathrm{a} *$-algebra, with product and involution:

$$
\begin{aligned}
(f \star g)(x, z) & :=\sum_{y \in X: x \sim y, y \sim z} f(x, y) g(y, z) \\
f^{*}(x, z) & :=\overline{f(z, x)}
\end{aligned}
$$

Finite-dimensional case

Notations. Here:

- $X:=\{1, \ldots, n\}$,
- R is a tolerance relation on X,
- the topology on X and R is discrete,
- Γ is the simple graph associated to R,
- $A(\Gamma):=\left(C_{c}(R) \subset M_{n}(\mathbb{F}), \star\right)$,
- $\Gamma=\bigcup \Gamma_{\mathrm{i}}$ dec. into connected components.

Then:
■ R is transitive \Longleftrightarrow each Γ_{i} is a complete graph.

- $A(\Gamma)=\bigoplus_{i} A\left(\Gamma_{i}\right)$, hence WLOG assume that Γ is connected.

Call $\mathfrak{A}_{3}:=A\left(l_{1}^{2} \searrow_{3}\right)$. Then:
$\square \mathfrak{A}_{3}$ is not power associative. $a:=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) \Longrightarrow(a \star a) \star a \neq a \star(a \star a)$.

- TFAE: (i) $A(\Gamma)$ is associative;
(ii) $A(\Gamma)$ is power associative;
(iii) $A(\Gamma)$ has no subalgebra isomorphic to \mathfrak{A}_{3};
(iv) R is an equivalence relation.

Corollaries:

- $A(\Gamma)$ division algebra $\Longleftrightarrow A(\Gamma)=\mathbb{F}$.
- Sedenions $\notin\{A(\Gamma)\}$.

Example

Let both X and R discrete (hence étale).
For $(i, j) \in R, E_{i j}$ is the function on R that is 1 at the site (i, j) and zero everywhere else.
In such a basis of $C_{c}(R)$:

$$
E_{i j} \star E_{k l}= \begin{cases}\delta_{j k} E_{i l} & \text { if }(i, l) \in R \\ 0 & \text { otherwise }\end{cases}
$$

The algebra is unital if and only if X is a finite set (i.e. the diagonal Δ is compact), with unit:

$$
1=\sum_{i \in X} E_{i i}
$$

- R equivalence relation $\Longrightarrow\left(C_{c}(R), \star\right)$ associative \Longrightarrow universal C^{*}-algebra.
- R not transitive $\Longrightarrow \star$ is not nec. associative \Longrightarrow no good notion of representation.
- The definition of convolution product makes sense over an arbitrary field \mathbb{F}.
- If $X=\{1, \ldots, n\}$, we can identify $C_{c}(R)$ with a subset of $M_{n}(\mathbb{F})$ (as a vector space, but \star is the matrix product iff R is transitive).

Relations from actions

Act 1: group actions

- Given a group action $\alpha: G \times X \rightarrow X$, the relation "being on the same orbit":

$$
\mathrm{R}:=\left\{\left(x, \alpha_{\mathrm{g}} x\right): \mathrm{g} \in \mathrm{G}, \mathrm{x} \in \mathrm{X}\right\}
$$

is an equivalence relation.

- If G is discrete, X locally compact and Hausdorff and α continuous $\Longrightarrow R$ is étale.
- If X compact, the completion of $\left(C_{c}(G), \star\right)$ is $C(X) \rtimes G$.
- If α is free and proper, $\mathrm{C}(\mathrm{X}) \rtimes \mathrm{G}$ is Morita equivalent to $\mathrm{C}(\mathrm{X} / \mathrm{G})$.
- Examples: foliations, orbifolds, tilings of the plane, dynamical systems arising in number theory (Bost-Connes), ...
- Transitivity (and associativity) follows from the property:

$$
\alpha_{\mathrm{g}} \circ \alpha_{\mathrm{h}}=\alpha_{\mathrm{gh}} \quad \forall \mathrm{~g}, \mathrm{~h} \in \mathrm{G}
$$

and from associativity of the product in G.
Generalizations: (1) α not a group action; (2) G not a group.

Relations from actions

Act 2: group quasi-actions

- Let A be a unital C^{*}-algebra, G a group and

$$
\mathrm{G} \rightarrow \operatorname{Out}(A):=\operatorname{Aut}(A) / \operatorname{Inn}(A)
$$

a group homomorphism. (E.g. A almost commutative $\Longrightarrow \operatorname{Out}(\mathcal{A})=\operatorname{Diff}(M)$.

- Lift (\star) to a map $\alpha: G \rightarrow \operatorname{Aut}(A)$ satisfying:

$$
\alpha_{g} \circ \alpha_{h}=\operatorname{Ad}_{f(g, h)} \circ \alpha_{g h}
$$

for a suitable $f: G \times G \rightarrow U(A)$. This was the motivation in [Bouwknegt, Hannabuss, Mathai, CMP 2006] for a theory of non-associative crossed products.

- A group quasi-action on a metric space (X, d) is a map $\alpha: G \times X \rightarrow X$ satisfying

$$
d\left(\alpha_{g} \alpha_{h}(x), \alpha_{g h}(x)\right) \leqslant \varepsilon
$$

for some fixed $\varepsilon>0$.

Relations from actions

Act 3: magmas

- An action is called $\frac{\text { free }}{\text { transitive }} \Longleftrightarrow$ the canonical map is $\frac{\text { injective }}{\text { surjective }}$.
- The action of $\mathrm{G} \curvearrowleft \mathrm{G}$ by right mult. is free $\Longleftrightarrow *$ is left-cancellative.

If $\mathrm{g}^{-1} *(\mathrm{~g} * \mathrm{~h})=\mathrm{h} \forall \mathrm{g}, \mathrm{h} \in \mathrm{G} \quad \Longrightarrow \quad \mathrm{G} \curvearrowleft \mathrm{G}$ is both free and transitive.

- Example. $G:=\mathbb{R} \backslash\{0\}, x * y:=x / y$. The action $G \curvearrowleft G$ is both free and transitive.
- Example. $\mathrm{G}:=$ Moufang loop (e.g. unit octonions). $\mathrm{G} \curvearrowleft \mathrm{G}$ is free and transitive.
- Let G, X as before + topology; $\alpha, *,(-)^{-1}$ not nec. continuous.

Then: $\quad R(G, X)$ is étale $\Longleftrightarrow G$ is discrete.

Relations from actions

Act 3: magmas

- Here G is a set equipped with:
- a binary operation $*: \mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G}$ (the "multiplication"),
- a unary operation $(-)^{-1}: G \rightarrow G$ (the "right inversion"),
- an element $1 \in G$ (the "right unit"),
such that:

$$
(\mathrm{g} * \mathrm{~h}) * \mathrm{~h}^{-1}=\mathrm{g} * 1=\mathrm{g} \quad \forall \mathrm{~g}, \mathrm{~h} \in \mathrm{G} .
$$

(Tentative name: magma with right inversion and unit.)

- A right action on a set X is a map $X \times G \rightarrow X,(x, g) \mapsto x \triangleleft g$, such that:

$$
(\mathrm{x} \triangleleft \mathrm{~g}) \triangleleft \mathrm{g}^{-1}=\mathrm{x} \triangleleft 1=\mathrm{x} \quad \forall \mathrm{~g} \in \mathrm{G}, \mathrm{x} \in \mathrm{X} .
$$

Given such an action, the image $R(G, X)$ of the canonical map:

$$
X \times G \rightarrow X \times X, \quad(x, g) \mapsto(x, x \triangleleft g)
$$

is a tolerance relation.

Truncations

Let $B:=C^{*}$-algebra, $T: B \rightarrow B$ a linear map, $A:=\operatorname{Im}(T)$, and \star the product on A :

$$
a \star b:=T(a b) \quad a, b \in A .
$$

T is called idempotent if $\mathrm{T} \circ \mathrm{T}=\mathrm{T}$ (which implies $\mathrm{B}=\mathrm{A} \oplus$ ker T as vector spaces).
If T is idempotent and a completely positive contraction (CPC), then \star is associative.
T is called a conditional expectation if one of the following equivalent conditions is satisfied:
(i) T is idempotent with $\|\mathrm{T}\|=1$,
(ii) T is positive, idempotent, and an A-bimodule map.

A conditional expectation is a CPC
Example: $\mathrm{P} \in \mathrm{B}$ projection $\Longrightarrow \mathrm{T}(x):=\mathrm{P} x \mathrm{P} \forall x \in \mathrm{~B}$ is a conditional expectation.
Example: $B=C\left(\mathbb{S}^{1}\right), N \geqslant 1, T_{1}(f):=\sum_{|k| \leqslant N-1} e^{2 \pi i k \theta} \widehat{f}(k)$ (Fourier partial sum)

$$
\mathrm{T}_{2}:=\text { Cesàro sum }
$$

T_{1} is idempotent but not positive; T_{2} is positive but not idempotent.

States

- Every finite-dim. $A(\Gamma)$ is a truncation of a matrix algebra!

If $X:=\{1, \ldots, n\}$, then $B:=M_{n}(\mathbb{C})$ and $T: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ is given by

$$
T(x):=\sum_{(i, j) \in R} E_{i i} x E_{j j}
$$

- $\mathcal{S}(\mathcal{A}):=$ states in the sense of operator systems, i.e. restriction of states of $B=M_{n}(\mathbb{C})$.
- TFAE: (i) the map $\mathcal{S}(\mathrm{B}) \rightarrow \mathcal{S}(\mathrm{A}),\left.\varphi \mapsto \varphi\right|_{\mathrm{A}}$, is injective (it is always surjective);
(ii) the restriction of this map to pure states is injective;
(iii) $A=B\left(=M_{n}(\mathbb{C})\right)$.
- A unit vector $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{C}^{n}$ is called R-tolerant if the graph of the relation

$$
R_{v}:=\left\{(i, j) \in R: v_{i} v_{j} \neq 0\right\}
$$

is connected.
(Analogous to "states with ε-connected support" in the case of a proximity relations, cf. [CvS21].)

- R-tolerant vector states of $M_{n}(\mathbb{C}) \stackrel{1: 1}{\longleftrightarrow}$ pure states of A.

F. D'Andrea, F. Lizzi, P. Martinetti,

Spectral geometry with a cut-off: topological and metric aspects,
J. Geom. Phys. 82 (2014) 18-45; arXiv:1305.2605 [math-ph].
(1) F. D’Andrea, G.Landi, F. Lizzi,

Tolerance Relations and Quantization,
Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA].

Positivity

Let $A=A(\Gamma) \subset M_{n}(\mathbb{C})$ and T as before. For $a \in A$, we write:
$a \geqslant 0 \Longleftrightarrow a$ is a positive semidefinite matrix

$$
a \succeq 0 \Longleftrightarrow a=T(b) \text { with } b \in M_{n}(\mathbb{C}) \text { positive semidefinite }
$$

Since T is idempotent

$$
a \geqslant 0 \Longrightarrow a \succeq 0
$$

Moreover, if $\exists b_{k} \in A$ s.t.

$$
a=\sum_{k} b_{k} \star b_{k}^{*}
$$

then $a=T\left(\sum_{k} b_{k} b_{k}^{*}\right) \succeq 0$.

Proposition

- Each Γ_{i} has a dominant vertex \Longleftrightarrow every $\mathrm{a} \succeq 0$ is of the form (\ddagger).
- For $x, a \in M_{n}(\mathbb{C})$ let $\varphi_{x}(a):=\operatorname{Tr}\left(x^{*} a\right)$. Then, the map

$$
(A, \succeq) \rightarrow\left(A^{*}, \geqslant\right),\left.\quad x \mapsto \varphi_{x}\right|_{A},
$$

is an isomorphism of ordered vector spaces.

- States of $A \stackrel{1: 1}{\longleftrightarrow}$ elements $\rho \in A$ s.t. $\rho \succeq 0 \& \operatorname{Tr}(\rho)=1$.

