	Talk based on:
	S F. D'Andrea, G.Landi, F. Lizzi,
	Tolerance Relations and Quantization,
	Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA].
Tolerance Relations and Quantization	Further references:
	S F. D'Andrea, F. Lizzi, P. Martinetti,
	Spectral geometry with a cut-off: topological and metric aspects,
Francesco D'Andrea	J. Geom. Phys. 82 (2014) 18–45; arXiv:1305.2605 [math-ph].
	📎 A. Connes, W.D. van Suijlekom,
29/09/2022	Spectral Truncations in Noncommutative Geometry and Operator Systems,
	Commun. Math. Phys. 383 (2020), 2021–2067; arXiv:2004.14115 [math.QA].
	📎 A. Connes, W.D. van Suijlekom,
	Tolerance relations and operator systems,
Noncommutative Geometry: Metric and Spectral Aspects	arXiv:2111.02903 [math.OA].
Krakow, 28-30 September 2022	📎 M. Gielen, W.D. van Suijlekom,
	Operator systems for tolerance relations on finite sets,
	arXiv:2207.07735 [math.OA].
Talk based on:	Talk based on:
Talk based on:	Talk based on:
Talk based on: Second Example 1 Second Seco	Talk based on: Solution: F. D'Andrea, G.Landi, F. Lizzi, <i>Tolerance Relations and Quantization</i> ,
 Talk based on: F. D'Andrea, G.Landi, F. Lizzi, <i>Tolerance Relations and Quantization</i>, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA]. 	 Talk based on: F. D'Andrea, G.Landi, F. Lizzi, <i>Tolerance Relations and Quantization</i>, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA].
 Talk based on: F. D'Andrea, G.Landi, F. Lizzi, <i>Tolerance Relations and Quantization</i>, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA]. Further references: 	 Talk based on: Solution Solution Solution F. D'Andrea, G.Landi, F. Lizzi, Tolerance Relations and Quantization, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA]. Further references:
 Talk based on: F. D'Andrea, G.Landi, F. Lizzi, <i>Tolerance Relations and Quantization</i>, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA]. Further references: F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605. 	 Talk based on: S F. D'Andrea, G.Landi, F. Lizzi, <i>Tolerance Relations and Quantization</i>, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA]. Further references: S F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605.
Talk based on: \bigcirc F. D'Andrea, G.Landi, F. Lizzi, Tolerance Relations and Quantization, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA].Further references: \bigcirc F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605.• Tail of $\sigma(\vec{D}) \rightsquigarrow$ short distances ($\vec{D} \sim ds^{-1}$)	Talk based on: \bigcirc F. D'Andrea, G.Landi, F. Lizzi, Tolerance Relations and Quantization, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA].Further references: \bigcirc F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605. • Tail of $\sigma(D) \rightsquigarrow$ short distances ($D \sim ds^{-1}$)
Talk based on: \bigcirc F. D'Andrea, G.Landi, F. Lizzi, Tolerance Relations and Quantization, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA].Further references: \bigcirc F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605.• Tail of $\sigma(D) \rightsquigarrow$ short distances ($D \sim ds^{-1}$) • Cut-off $\Lambda \rightsquigarrow$ minimal length	Talk based on: \bigcirc F. D'Andrea, G.Landi, F. Lizzi, Tolerance Relations and Quantization, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA].Further references: \bigcirc F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605. • Tail of $\sigma(D) \rightsquigarrow$ short distances ($D \sim ds^{-1}$) • Cut-off $\Lambda \rightsquigarrow$ minimal length
Talk based on: \bigcirc F. D'Andrea, G.Landi, F. Lizzi, Tolerance Relations and Quantization, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA].Further references: \bigcirc F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605.• Tail of $\sigma(D) \rightsquigarrow$ short distances $(D \sim ds^{-1})$ • Cut-off $\Lambda \rightsquigarrow$ minimal length \bigcirc A. Connes, W.D. van Suijlekom,	Talk based on: \bigcirc F. D'Andrea, G.Landi, F. Lizzi, Tolerance Relations and Quantization, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA].Further references: \bigcirc F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605. • Tail of $\sigma(D) \rightsquigarrow$ short distances $(D \sim ds^{-1})$ • Cut-off $\Lambda \rightsquigarrow$ minimal length \bigcirc A. Connes, W.D. van Suijlekom; arXiv:2004.14115.
Talk based on: \bigcirc F. D'Andrea, G.Landi, F. Lizzi, Tolerance Relations and Quantization, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA].Further references: \bigcirc F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605.• Tail of $\sigma(D) \rightsquigarrow$ short distances $(D \sim ds^{-1})$ • Cut-off $\Lambda \rightsquigarrow$ minimal length \bigcirc A. Connes, W.D. van Suijlekom, Spectral Truncations in Noncommutative Geometry and Operator Systems,	Talk based on: \bigcirc F. D'Andrea, G.Landi, F. Lizzi, Tolerance Relations and Quantization, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA].Further references: \bigcirc F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605. • Tail of $\sigma(D) \rightsquigarrow$ short distances ($D \sim ds^{-1}$) • Cut-off $\Lambda \rightsquigarrow$ minimal length \bigcirc A. Connes, W.D. van Suijlekom; arXiv:2004.14115. • Coarse grain approximation of geometric spaces at a finite resolution
Talk based on: \bigcirc F. D'Andrea, G.Landi, F. Lizzi, Tolerance Relations and Quantization, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA].Further references: \bigcirc F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605.• Tail of $\sigma(D) \rightsquigarrow$ short distances ($D \sim ds^{-1}$) • Cut-off $\Lambda \rightsquigarrow$ minimal length \bigcirc A. Connes, W.D. van Suijlekom, Spectral Truncations in Noncommutative Geometry and Operator Systems, Commun. Math. Phys. 383 (2020), 2021–2067; arXiv:2004.14115 [math.QA].	 Talk based on: F. D'Andrea, G.Landi, F. Lizzi, <i>Tolerance Relations and Quantization</i>, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA]. Further references: F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605. Tail of σ(D) ↔ short distances (D ~ ds⁻¹) Cut-off Λ ↔ minimal length A. Connes, W.D. van Suijlekom; arXiv:2004.14115. Coarse grain approximation of geometric spaces at a finite resolution A new framework: (tolerance relations &) operator systems
Talk based on: \bigcirc F. D'Andrea, G.Landi, F. Lizzi, Tolerance Relations and Quantization, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA].Further references: \bigcirc F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605.• Tail of $\sigma(D) \rightsquigarrow$ short distances ($D \sim ds^{-1}$) • Cut-off $\Lambda \rightsquigarrow$ minimal length \bigcirc A. Connes, W.D. van Suijlekom, Spectral Truncations in Noncommutative Geometry and Operator Systems, Commun. Math. Phys. 383 (2020), 2021–2067; arXiv:2004.14115 [math.QA]. \bigcirc A. Connes, W.D. van Suijlekom, \bigcirc A. Connes, W.D. van Suijlekom,	 Talk based on: F. D'Andrea, G.Landi, F. Lizzi, <i>Tolerance Relations and Quantization</i>, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA]. Further references: F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605. Tail of σ(D) → short distances (D ~ ds⁻¹) Cut-off Λ → minimal length A. Connes, W.D. van Suijlekom; arXiv:2004.14115. Coarse grain approximation of geometric spaces at a finite resolution A new framework: (tolerance relations &) operator systems A. Connes, W.D. van Suijlekom,
Talk based on: \bigcirc F. D'Andrea, G.Landi, F. Lizzi, Tolerance Relations and Quantization, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA].Further references: \bigcirc \bigcirc F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605. \bullet Tail of $\sigma(D) \rightsquigarrow$ short distances ($D \sim ds^{-1}$) \bullet Cut-off $\Lambda \rightsquigarrow$ minimal length \bigcirc A. Connes, W.D. van Suijlekom, Spectral Truncations in Noncommutative Geometry and Operator Systems, Commun. Math. Phys. 383 (2020), 2021–2067; arXiv:2004.14115 [math.QA]. \bigcirc A. Connes, W.D. van Suijlekom, Tolerance relations and operator systems, 	 Talk based on: F. D'Andrea, G.Landi, F. Lizzi, <i>Tolerance Relations and Quantization</i>, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA]. Further references: F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605. Tail of σ(D) → short distances (D ~ ds⁻¹) Cut-off Λ → minimal length A. Connes, W.D. van Suijlekom; arXiv:2004.14115. Coarse grain approximation of geometric spaces at a finite resolution A new framework: (tolerance relations &) operator systems A. Connes, W.D. van Suijlekom, <i>Tolerance relations and operator systems</i>,
Talk based on: \bigcirc F. D'Andrea, G.Landi, F. Lizzi, Tolerance Relations and Quantization, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA].Further references: \bigcirc F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605.•Tail of $\sigma(D) \rightsquigarrow$ short distances ($D \sim ds^{-1}$) • Cut-off $\Lambda \rightsquigarrow$ minimal length \bigcirc A. Connes, W.D. van Suijlekom, Spectral Truncations in Noncommutative Geometry and Operator Systems, Commun. Math. Phys. 383 (2020), 2021–2067; arXiv:2004.14115 [math.QA]. \bigcirc A. Connes, W.D. van Suijlekom, Tolerance relations and operator systems, arXiv:2111.02903 [math.OA].	 Talk based on: F. D'Andrea, G.Landi, F. Lizzi, <i>Tolerance Relations and Quantization</i>, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA]. Further references: F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605. Tail of σ(Ø) ↔ short distances (Ø ~ ds⁻¹) Cut-off Λ ↔ minimal length A. Connes, W.D. van Suijlekom; arXiv:2004.14115. Coarse grain approximation of geometric spaces at a finite resolution A new framework: (tolerance relations &) operator systems A. Connes, W.D. van Suijlekom, <i>Tolerance relations and operator systems</i>, arXiv:2111.02903 [math.OA].
Talk based on: \bigcirc F. D'Andrea, G.Landi, F. Lizzi, Tolerance Relations and Quantization, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA].Further references: \bigcirc F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605.•Tail of $\sigma(D) \rightsquigarrow$ short distances $(D \sim ds^{-1})$ •Cut-off $\Lambda \rightsquigarrow$ minimal length \bigcirc A. Connes, W.D. van Suijlekom, Spectral Truncations in Noncommutative Geometry and Operator Systems, Commun. Math. Phys. 383 (2020), 2021–2067; arXiv:2004.14115 [math.QA]. \bigcirc A. Connes, W.D. van Suijlekom, Tolerance relations and operator systems, arXiv:2111.02903 [math.OA]. \bigcirc M. Gielen, W.D. van Suijlekom,	Talk based on: S F. D'Andrea, G.Landi, F. Lizzi, <i>Tolerance Relations and Quantization</i> , Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA]. Further references: S F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605. • Tail of σ(D) → short distances (D ~ ds ⁻¹) • Cut-off Λ → minimal length A. Connes, W.D. van Suijlekom; arXiv:2004.14115. • Coarse grain approximation of geometric spaces at a finite resolution • A new framework: (tolerance relations &) operator systems A. Connes, W.D. van Suijlekom, <i>Tolerance relations and operator systems</i> , arXiv:2111.02903 [math.OA]. M. Gielen, W.D. van Suijlekom,
 Talk based on: F. D'Andrea, G.Landi, F. Lizzi, <i>Tolerance Relations and Quantization</i>, Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA]. Further references: F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605. Tail of σ(Ø) → short distances (Ø ~ ds⁻¹) Cut-off Λ → minimal length A. Connes, W.D. van Suijlekom, <i>Spectral Truncations in Noncommutative Geometry and Operator Systems</i>, Commun. Math. Phys. 383 (2020), 2021–2067; arXiv:2004.14115 [math.QA]. A. Connes, W.D. van Suijlekom, <i>Tolerance relations and operator systems</i>, arXiv:2111.02903 [math.OA]. M. Gielen, W.D. van Suijlekom, <i>Operator systems for tolerance relations on finite sets</i>, 	Talk based on: S F. D'Andrea, G.Landi, F. Lizzi, <i>Tolerance Relations and Quantization</i> , Lett. Math. Phys. 112 (2022) 65; arXiv:2112.09698 [math.OA]. Further references: S F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605. • Tail of σ(Ø) → short distances (Ø ~ ds ⁻¹) • Cut-off Λ → minimal length A. Connes, W.D. van Suijlekom; arXiv:2004.14115. • Coarse grain approximation of geometric spaces at a finite resolution • A new framework: (tolerance relations &) operator systems A. Connes, W.D. van Suijlekom, <i>Tolerance relations and operator systems</i> , arXiv:2111.02903 [math.OA]. M. Gielen, W.D. van Suijlekom, <i>Operator systems for tolerance relations on finite sets</i> ,

Talk based on:

- S. F. D'Andrea, G.Landi, F. Lizzi; arXiv:2112.09698.
 - Convolution algebra associated to a tolerance relation
 - Finite-dim. case (tolerance relation on a finite set = finite simple graph)

Further references:

- S. F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605.
 - Tail of $\sigma({\ensuremath{D}}) \iff$ short distances (${\ensuremath{D}} \sim ds^{-1}$)
 - Cut-off $\Lambda \rightsquigarrow$ minimal length

S A. Connes, W.D. van Suijlekom; arXiv:2004.14115.

- Coarse grain approximation of geometric spaces at a finite resolution
- A new framework: (tolerance relations &) operator systems
- \bigcirc A. Connes, W.D. van Suijlekom; arXiv:2111.02903.
 - Operator systems associated to tolerance relations
 - $\bullet \ \ \text{Proximity relation:} \ x \sim y \ \Longleftrightarrow \ d(x,y) < \varepsilon$

📎 M. Gielen, W.D. van Suijlekom,

Operator systems for tolerance relations on finite sets, arXiv:2207.07735 [math.OA].

Tolerance relations

Definition. Let S be a set. Then, $R \subset S \times S$ is a tolerance relation on S if it is • reflexive: $(a, a) \in R \forall a \in S$ • symmetric: $(a, b) \in R \Rightarrow (b, a) \in R$ (Tolerance relation + transitivity = equivalence relation.) Observation. R is a tolerance relation on S $\iff (S, R \setminus \Delta)$ is a simple graph.[†] $\uparrow \quad \uparrow$ vertices edges [†] Unweighted, undirected graph with no loops or multiple edges. Here $\Delta := \{(a, a) : a \in S\}$. Example. A tolerance relation that is not an equivalence relation: x y y $R := \Delta \cup \{(x, y), (y, x), (y, z), (z, y)\}$

Talk based on:

- S. F. D'Andrea, G.Landi, F. Lizzi; arXiv:2112.09698.
 - Convolution algebra associated to a tolerance relation
 - Finite-dim. case (tolerance relation on a finite set = finite simple graph)

Further references:

- S. F. D'Andrea, F. Lizzi, P. Martinetti; arXiv:1305.2605.
 - Tail of $\sigma({\ensuremath{D}}) \; \rightsquigarrow \;$ short distances (${\ensuremath{D}} \sim ds^{-1}$)
 - Cut-off $\Lambda \rightsquigarrow$ minimal length
- S A. Connes, W.D. van Suijlekom; arXiv:2004.14115.
 - Coarse grain approximation of geometric spaces at a finite resolution
 - A new framework: (tolerance relations &) operator systems

S A. Connes, W.D. van Suijlekom; arXiv:2111.02903.

- Operator systems associated to tolerance relations
- Proximity relation: $x \sim y \iff d(x,y) < \varepsilon$

M. Gielen, W.D. van Suijlekom; arXiv:2207.07735.

Operator systems associated to tolerance relations on finite sets

Real-life examples

1/14

1 Causality in Special Relativity.

Here
$$S:=\mathbb{R}^{1,3} \text{ and } \ a\sim b \ \stackrel{\text{def}}{\iff} \ \|a-b\| \geqslant 0 \, . \ \text{Example:}$$

In the picture: $x \sim y$ and $y \sim z$ but $x \neq z$

Real-life examples

- 1 Causality in Special Relativity.
- 2 Equality in Wolfram Mathematica.

```
2 Equality in Wolfram Mathematica.
     eps = 50*$MachineEpsilon;
                                                                                                               8 Proximity relations.
     x = 1;
     y = x + eps;
                                                                                                                  Let (S, d) be a metric space and \varepsilon > 0. Define R \subset S \times S by:
     z = y + eps;
     \{x == x, y == y, z == z, x == y, y == x, y == z, z == y, x == z, z == x\}
                                                                                                                                             (a, b) \in \mathbb{R} \iff d(a, b) < \varepsilon.
     (* Out: {True, True, True, True, True, True, True, False, False} *)
                                                                                                                  In some cases, proximity relations are transitive. E.g. if d is an ultrametric, i.e.
    That is, y := x + \varepsilon, z := y + \varepsilon.
   Since \varepsilon \ll 1 (finite storage capacity for numbers = instrument with finite resolution):
                                                                                                                                         d(a, c) \leq \max \{ d(a, b), d(b, c) \} \quad \forall a, b, c \in S.
                               x \sim y
                                          and y \sim z but x \neq z
                                                                                                       3/14
Real-life examples
                                                                                                              Real-life examples
1 Causality in Special Relativity.
                                                                                                               1 Causality in Special Relativity.
2 Equality in Wolfram Mathematica.
                                                                                                               2 Equality in Wolfram Mathematica.
3 Proximity relations.
                                                                                                               3 Proximity relations.
4 Covers.
                                                                                                               4 Covers.
   Let S be a set and \mathcal{U} a covering of S. A tolerance relation R on S is given by:
                                                                                                               5 Tolerance relations associated to actions (later).
                          (\mathbf{x},\mathbf{y}) \in \mathbf{R} \quad \stackrel{\mathsf{def}}{\Longleftrightarrow} \quad \{\exists A \in \mathcal{U} : \mathbf{x}, \mathbf{y} \in A\}.
   On a metric space with midpoint property (e.g. spectral distance):
                     \epsilon-proximity relation \leftrightarrow \epsilon cover with open balls of radius \epsilon/2.
   Compare with Sorkin and its approximations of topological spaces with posets.
```

Real-life examples

1 Causality in Special Relativity.

The convolution product

In the following, X := topological space and R := tolerance relation on X.

We say that R is étale of \exists topology on R such that the projection

 $R \to X, \qquad (x,y) \mapsto x,$

is a local homeomorphism.

(If R is transitive, this means that the associated groupoid is étale.)

Lemma

If R is Hausdorff and étale, the space $C_c(R)$ of compactly-supported continuous complex functions on R is a *-algebra, with product and involution:

$$(f \star g)(x, z) := \sum_{y \in X: x \sim y, y \sim z} f(x, y)g(y, z)$$

 $f^*(x,z) := \overline{f(z,x)}$

Finite-dimensional case

Notations. Here:

- $X := \{1, ..., n\},\$
- R is a tolerance relation on X,
- Γ is the simple graph associated to R,
 A(Γ) := (C_c(R) ⊂ M_n(𝔅), ⋆),
- the topology on X and R is discrete,
- $\Gamma = \bigcup_{i=1}^{r} \prod_{j=1}^{r} dec.$ into connected components.

Then:

- R is transitive \iff each Γ_i is a complete graph.
- $A(\Gamma) = \bigoplus_i A(\Gamma_i)$, hence WLOG assume that Γ is connected.

Call
$$\mathfrak{A}_3 := A \left(\swarrow^2 \searrow_3 \right)$$
 . Then

•
$$\mathfrak{A}_3$$
 is not power associative. $a := \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \implies (a \star a) \star a \neq a \star (a \star a).$

• TFAE: (i) $A(\Gamma)$ is associative; (ii) $A(\Gamma)$ is power associative; (iii) $A(\Gamma)$ has no subalgebra isomorphic to \mathfrak{A}_3 ; (iv) R is an equivalence relation. • $A(\Gamma)$ division algebra $\iff A(\Gamma) = \mathbb{F}$. • Sedenions $\notin \{A(\Gamma)\}$.

Example

Let both X and R discrete (hence étale).

For $(i,j)\in R,$ E_{ij} is the function on R that is 1 at the site (i,j) and zero everywhere else.

In such a basis of $C_c(R)$:

$$E_{ij} \star E_{kl} = \begin{cases} \delta_{jk} E_{il} & \text{if } (i,l) \in R \\ 0 & \text{otherwise} \end{cases}$$

The algebra is unital if and only if X is a finite set (i.e. the diagonal Δ is compact), with unit:

$$1 = \sum_{\mathfrak{i} \in X} \mathsf{E}_{\mathfrak{i}\mathfrak{i}} \; .$$

- ► R equivalence relation \implies (C_c(R), *) associative \implies universal C*-algebra.
- R not transitive $\implies \star$ is not nec. associative \implies no good notion of representation.
- \blacktriangleright The definition of convolution product makes sense over an arbitrary field $\mathbb F.$
- If X = {1,..., n}, we can identify C_c(R) with a subset of M_n(𝔅) (as a vector space, but
 ★ is the matrix product iff R is transitive).

Relations from actions

Act 1: group actions

4/14

6/14

• Given a group action $\alpha : G \times X \to X$, the relation "being on the same orbit":

$$R := \big\{ (x, \alpha_g x) : g \in G, x \in X \big\}$$

is an equivalence relation.

- If G is discrete, X locally compact and Hausdorff and α continuous \implies R is étale.
- If X compact, the completion of $(C_c(G), \star)$ is $C(X) \rtimes G$.
- If α is free and proper, $C(X) \rtimes G$ is Morita equivalent to C(X/G).
- Examples: foliations, orbifolds, tilings of the plane, dynamical systems arising in number theory (Bost-Connes), ...
- Transitivity (and associativity) follows from the property:

$$\alpha_g\circ\alpha_h=\alpha_{gh}\quad\forall\;g,h\in\mathsf{G}\text{,}$$

and from associativity of the product in G.

Generalizations: (1) α not a group action; (2) G not a group.

7/14

Relations from actions

Act 2: group quasi-actions

Let A be a unital C*-algebra, G a group and

 $\mathsf{G} \to \mathsf{Out}(\mathsf{A}) := \mathsf{Aut}(\mathsf{A}) / \mathsf{Inn}(\mathsf{A})$

a group homomorphism. (E.g. A almost commutative \implies Out(A) = Diff(M).)

• Lift (*) to a map $\alpha : G \to Aut(A)$ satisfying:

 $\alpha_g \circ \alpha_h = \mathsf{Ad}_{f(g,h)} \circ \alpha_{gh}$

for a suitable $f: G \times G \rightarrow U(A)$. This was the motivation in [Bouwknegt, Hannabuss, Mathai, CMP 2006] for a theory of non-associative crossed products.

► A group quasi-action on a metric space (X, d) is a map $\alpha : G \times X \to X$ satisfying

$$d(\alpha_{g}\alpha_{h}(x), \alpha_{gh}(x)) \leq \varepsilon$$

for some fixed $\epsilon > 0$.

Relations from actions

Act 3: magmas

- An action is called $free \Leftrightarrow$ the canonical map is injective . transitive surjective .
- The action of $G \curvearrowleft G$ by right mult. is free $\iff *$ is left-cancellative.
 - $\text{If }g^{-1}*(g*h)=h \;\forall\; g,h\in G \quad \Longrightarrow \quad G\curvearrowleft G \text{ is both free and transitive.}$
- Example. $G := \mathbb{R} \setminus \{0\}, x * y := x/y$. The action $G \curvearrowleft G$ is both free and transitive.
- Example. G := Moufang loop (e.g. unit octonions). $G \curvearrowleft G$ is free and transitive.

```
• Let G, X as before + topology; \alpha, *, (-)<sup>-1</sup> not nec. continuous.
```

 $\label{eq:constraint} \begin{array}{ll} \mbox{Then:} & R(G,X) \mbox{ is \'etale } \iff G \mbox{ is discrete.} \end{array}$

Relations from actions

Act 3: magmas

(*)

8/14

10/14

- Here G is a set equipped with:
 - a binary operation $*: G \times G \rightarrow G$ (the "multiplication"),
 - a unary operation $(-)^{-1}: G \to G$ (the "right inversion"),
 - an element $1 \in G$ (the "right unit"),

such that:

$$(g * h) * h^{-1} = g * 1 = g \qquad \forall g, h \in G.$$

(Tentative name: magma with right inversion and unit.)

• A right action on a set X is a map $X \times G \rightarrow X$, $(x, g) \mapsto x \triangleleft g$, such that:

 $(x \triangleleft g) \triangleleft g^{-1} = x \triangleleft 1 = x \qquad \forall g \in G, x \in X.$

Given such an action, the image R(G, X) of the canonical map:

 $X \times G \rightarrow X \times X$, $(x, g) \mapsto (x, x \triangleleft g)$,

is a tolerance relation.

Truncations

Let $B := C^*$ -algebra, $T : B \to B$ a linear map, A := Im(T), and \star the product on A:

$$a \star b := T(ab)$$
 $a, b \in A$.

T is called idempotent if $T \circ T = T$ (which implies $B = A \oplus \text{ker } T$ as vector spaces).

If T is idempotent and a completely positive contraction (CPC), then * is associative.

T is called a conditional expectation if one of the following equivalent conditions is satisfied:

- (i) T is idempotent with ||T|| = 1,
- (ii) T is positive, idempotent, and an A-bimodule map.

A conditional expectation is a CPC.

<u>Example</u>: $P \in B$ projection $\implies T(x) := PxP \ \forall x \in B$ is a conditional expectation.

$$\label{eq:Example:B} \begin{split} \underline{\text{Example:}} \ B = C(\mathbb{S}^1), \, N \geqslant 1, \ \ T_1(f) := \sum_{|k| \leqslant N-1} e^{2\pi i k \theta} \widehat{f}(k) \ \text{(Fourier partial sum)} \\ T_2 := \text{Cesàro sum} \end{split}$$

 T_1 is idempotent but not positive; T_2 is positive but not idempotent.

States

• Every finite-dim. $A(\Gamma)$ is a truncation of a matrix algebra! If $X := \{1, ..., n\}$, then $B := M_n(\mathbb{C})$ and $T : M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is given by

$$\mathsf{T}(x):=\sum_{(\mathfrak{i},\mathfrak{j})\in R}\mathsf{E}_{\mathfrak{i}\mathfrak{i}}x\mathsf{E}_{\mathfrak{j}\mathfrak{j}}$$

- S(A) := states in the sense of operator systems, i.e. restriction of states of $B = M_n(\mathbb{C})$.
- TFAE: (i) the map $S(B) \to S(A)$, $\phi \mapsto \phi|_A$, is injective (it is always surjective);
 - (ii) the restriction of this map to pure states is injective;

(iii)
$$A = B (= M_n(\mathbb{C})).$$

• A unit vector $v = (v_1, \dots, v_n) \in \mathbb{C}^n$ is called R-tolerant if the graph of the relation

$$R_{\nu} := \left\{ (i, j) \in R : \nu_i \nu_j \neq 0 \right\}$$

is connected.

(Analogous to "states with ϵ -connected support" in the case of a proximity relations, cf. [CvS21].)

• R-tolerant vector states of $M_n(\mathbb{C}) \xleftarrow{1:1}{\longrightarrow}$ pure states of A.

Positivity

Let $A = A(\Gamma) \subset M_n(\mathbb{C})$ and T as before. For $a \in A$, we write:

 $a \geqslant 0 \iff a$ is a positive semidefinite matrix

$$a \succeq 0 \iff a = T(b)$$
 with $b \in M_n(\mathbb{C})$ positive semidefinite

 $a \ge 0 \implies a \succ 0.$

Since T is idempotent

Moreover, if
$$\exists b_k \in A$$
 s.t.

$$a = \sum_{k} b_{k} \star b_{k}^{*} \tag{\ddagger}$$

then $\mathfrak{a} = T(\sum_{k} \mathfrak{b}_{k} \mathfrak{b}_{k}^{*}) \succeq 0.$

Proposition

12/14

- Each Γ_i has a dominant vertex \iff every $a \succeq 0$ is of the form $(\frac{1}{4})$.
- For $x,a\in M_n(\mathbb{C})$ let $\phi_x(a):=\text{Tr}(x^*a).$ Then, the map

$$(\mathsf{A},\succeq) \to (\mathsf{A}^*,\geqslant), \qquad x\mapsto \phi_x|_{\mathsf{A}}$$

is an isomorphism of ordered vector spaces.

• States of $A \xleftarrow{1:1}$ elements $\rho \in A$ s.t. $\rho \succeq 0$ & Tr $(\rho) = 1$.

