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Besides a description of the Standard Model with (Euclidean) Einstein-Hilbert
action, noncommutative geometry offers possibilities to go beyond SM:

I adding new-fermions (Stephan);

I get rid of the first-order condition (Chamseddine, Connes, Suijlekom),
modifying the real structure (Brzezinski, Dabrowski, Sitarz), Clifford bundle
(Dabrowski, D’Andrea, Sitarz.);

I non-associativity (Boyle, Farnsworth), Lorentzian structure (Besnard);

I using a twisted version of the original noncommutative geometry (Devastato,

Lizzi, PM).

All but the first possibilities are minimal extension of the Standard Model: they
produce an extra scalar field σ which stabilizes the electroweak-vacuum and
permits to fit the Higgs mass, without adding new fermions.

By using twisted noncommutative geometry, one gets in addition to σ another
additional piece, which suprisingly turns out to be related to the transition from
an Euclidean to a Lorentzian signature.

I Different from encoding the causal structure into some “Lorentzian NCG”
(Barrett, Besnard, Eckstein , Franco, Dungen, Bochniak, Sitarz etc).
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1. Standard model in noncommutative geometry

Spectral triple: algebra A acting on a Hilbert H together with selfadjoint D s.t.

[D, a] is bounded ∀a ∈ A.
Graded spectral triple: there exists Γ = Γ∗, Γ2 = I, such that

{Γ,D} = 0, [Γ, a] = 0 ∀a ∈ A.
Real spectral triple: there exists antilinear operator J such that

J2 = εI, JD = ε′DJ, JΓ = ε′′ΓJ

where ε, ε′, ε′′ = ±1 define the KO-dimension k ∈ [0, 7].

J implements a map a→ a◦ := Ja∗J−1 from A to the opposite algebra A◦. This
yields a right action of A on H,

ψa := a◦ψ,

which is asked to commute with the left action (order zero condition)

[a, Jb∗J−1] = 0 ∀a, b ∈ A.
As well, holds the first order condition

[[D, a], Jb∗J−1] = 0 ∀a, b ∈ A.
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Fluctuation of the metric: substitution of D with the covariant Dirac operator

DA = D + A + J A J−1

where A is an element of the set of generalized 1-forms

Ω1
D(A) :=

{
ai [D, b◦i ]

}
.

Gauge transformation : conjugate action of the group U(A) of unitaries of A,

Ad(u) : ψ → uψu∗ = u(u∗)◦ψ = uJuJ−1ψ,

namely
Ad(u)DA Ad(u)−1 = DAu

where
Au := u[D, u∗] + uAu∗.

I Gauge transformations preserve the selfadjointness of DA.
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The spectral triple of the Standard Model:

A = C∞ (M)⊗AF , H = L2(M,S)⊗HF , D = ∂/⊗ I32 + γ5 ⊗ DF

where

AF = C⊕H⊕M3(C), HF = C32=2×2×8 = HR ⊕HL ⊕Hc
R ⊕HC

L ,

DF =


08 M 08 08

M† 08 08 08

08 08 08 M̄
08 08 MT 08


︸ ︷︷ ︸

D0

+


08 08 MR 08

08 08 08 08

M†R 08 08 08

08 08 08 08


︸ ︷︷ ︸

DR

.

I M contains the Yukawa couplings of the electron, the quarks up and down,
and the (Dirac) mass of the electronic neutrino. MR contains only one
non-zero entry kR (Majorana mass of the electronic neutrino).

One also needs Γ = γ5 ⊗ γF and J = J ⊗ JF with J the charge conjugation and

γF =


I8
−I8

−I8
I8

 , JF =

(
016 I16
I16 016

)
.
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Spectral action:

DA = D + A + JAJ−1

A = C∞(M)⊗AF

H = L2(M,S)⊗HF

D = ∂/⊗ I32 + γ5 ⊗ DF

 =⇒ A = γ5 ⊗ H − i
∑
µ

γµ ⊗ Aµ.

I H: scalar field on M with value in AF → Higgs.

I Aµ: 1-form field with value in Lie(U(AF )) → gauge field.

The asymptotic expansion Λ→∞ of the spectral action

Tr f (
D2

A

Λ2
)

yields the bosonic SM Lagrangian coupled with Euclidean Einstein-Hilbert action.



The extra scalar field σ:

Because mH ≤ 130 Gev, the quartic coupling of the Higgs field becomes negative
at high energy, meaning the electroweak vacuum is meta-stable rather than
stable. This instability can be cured by a new scalar field σ:

V (H, σ) =
1

4
(λH4 + λσσ

4 + 2λHσH
2σ2).

In the SM spectral triple,
kR → kRσ,

yields the required field, and alters the running of the parameters under the
equations of the group of renormalization, so that to make the computation of
mH compatible with 125 Gev. Chamseddine, Connes 2012
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Problem: σ cannot be obtained as a fluctuation of the metric, for

[γ5 ⊗ DR , a] = 0 ∀a, b ∈ A = C∞ (M)⊗AF .

But it can be obtained from the twisted fluctuation

[γ5 ⊗ DR , a]ρ 6= 0,

associated with the twisted spectral triple

(C∞ (M)⊗AF)⊗ C2, H = L2(M,S)⊗HF, D = ∂/⊗ I32 + γ5 ⊗ DF

where the automorphism ρ is the flip

ρ((f , g)⊗m) = (g , f )⊗m f , g ∈ C∞ (M) ,m ∈ AF.

Devastato, Lizzi, P.M. 2014

I Twisting the SM spectral triple is the correct mathematical way to
implement the Grand Symmetry Fedele talked about.

I Many other ways to obtain σ. But as soon as one twists, one gets in
addition a 1-form field coming from

[∂/⊗ I32, a]ρ.
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2. Twisted spectral triples and Lorentz signature

Given a triple (A,H,D), instead of asking the commutators [D, a] to be
bounded, one asks the boundedness of the twisted commutators Connes, Moscovici 2008

[D, a]ρ := Da− ρ(a)D for some fixed ρ ∈ Aut(A).

I Makes sense mathematically. Relevant to deal with type III algebras.

I Twisted spectral triples are compatible with the real structure.
Devastato, Landi, PM 2016/17
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Twisted covariant Dirac operator:

DAρ := D + Aρ + J Aρ J
−1

where Aρ is an element of the set of twisted 1-forms

Ω1
D(A, ρ) := {ai [D, bi ]ρ, ai , bi ∈ A}.

Twisted gauge transformation: twisted adjoint action of U = Ad(u) = uJuJ−1:

ρ(U)DAρ U
−1 = DAu

ρ
,

where ρ(U) = ρ(u)Jρ(u)J−1 with u a unitary of A and

Au
ρ := ρ(u)[D, u∗]ρ+ ρ(u)Au∗.

Landi, PM 2017

I A gauge fluctuation DA → UDAU
−1 preserved selfadjointness.

I A twisted fluctuation DAρ
→ ρ(U)DAρ

U−1 has no reason to preserve it.
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Twisted inner product: H an Hilbert space with inner product 〈·, ·〉, and ρ an
automorphism of B(H).

Definition

A ρ-twisted inner product 〈·, ·〉ρ is an inner product on H such that

〈Ψ,OΦ〉ρ = 〈ρ(O)†Ψ,Φ〉ρ ∀O ∈ B(H), Ψ, Φ ∈ H,

where † is the adjoint with respect to the initial inner product. We denote

O+ := ρ(O)†.

the ρ-adjoint of O.

I The ρ-twisted inner product is non-necessarily positive definite.

If ρ an inner automorphism of B(H),

ρ(O) = ROR† ∀O ∈ B(H)

for a unitary operator R on H, then a natural ρ-product is

〈Ψ,Φ〉ρ = 〈Ψ,RΦ〉.
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Lorentzian inner product from twist: in the twisted spectral triple of the
Standard Model, the flip ρ is an inner automorphism of B(L2(M,S)), with

R = γ0

the first Dirac matrix and M a Riemannian manifold.

I The ρ-twisted inner product is the Krein product for the space of spinors on
a Lorentzian manifold.

I Furthermore, extending ρ to the whole of B(L2(M,S)), one finds

ρ(γ0) = γ0, ρ(γj) = −γj for j = 1, 2, 3.

The flip ρ is the square of the Wick rotation

W (γ0) = γ0, W (γj) = iγj .

that is ρ = W 2.

I Krein-selfadjointness is preserved by twisted fluctuations. Twisted spectral
triples may be a relevant tool to deal with Lorentzian spectral triple.

Devastato, Lizzi, Farnsworth, PM 2017
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3. Twisted fermionic action

Given a spectral triple (A,H,D) with real structure J, the fermionic action for
the covariant operator DA is

S f (DA) = ADA
(ξ̃, ξ̃)

with ξ̃ the Grassman variables associated to ξ ∈ H+ = {ξ ∈ H, Γξ = ξ} and

ADA
(ξ, ξ′) = 〈Jξ,DAξ

′〉.

I The presence of J is here to make the bilinear form ADA
antisymmetric.

I Restricting to H+ is required to solve the fermion doubling problem.
I Makes sense, for H+ are the elements of H with well defined chirality.

In the twisted case, with automorphism ρ implemented by a unitary R, one defines

S f (DAρ
) = TDAρ

(ξ̃, ξ̃)

for ξ ∈ Hr := {ξ ∈ H,Rξ = ξ} and

TDAρ
(ξ, ξ′) = 〈Jξ,RDAρ

ξ′〉.
I The matrix R guarantees the invariance under twisted gauge transformation.
I Restricting to Hr is to make the bilinear form TDAρ

antisymmetric.
I Does it make sense physically ?
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Minimal twist of a manifold M:

A = C∞ (M)⊗C2, H = L2(M,S), D = ∂/; ρ

where (with dimM = 2m)

π(f , g) =

(
f I2m−1 0

0 gI2m−1

)
, ρ(f , g) = (g , f ) ∀(f , g) ∈ A.

I This is the only possibility to twist a manifold keeping H and ∂/ untouched.

I The automorphism ρ is induced by R = γ0.

I In dimension 0, 4, there exist non-zero twisted selfadjoint fluctuations of ∂/:

∂/ρ = ∂/− i fµγ
µγ5 with fµ ∈ C∞(M,R).
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The twisted fermionic action, in dimension 4 is

S f (∂ρ) = 2

∫
M

dµ ¯̃ζ†σ2 (if0I2 −
3∑

j=1

σj∂j) ζ̃ where ξ =

(
ζ
ζ

)
∈ Hr .

I The ∂0 derivative is substituted with the component f0 of the fluctuation.

It reminds the Weyl lagrangian

iψ†l σ̃
µ
M ∂µψl where σ̃µ

M :=
{
I2,−Σ3

j=1σj
}
.

It is tempting to identify ζ̃ with ψl , then to assume

∂0ψl = if0ζ̃,

that is
ζ̃(x0, xj) = ψl(x0, xj) = e itf0ψl(xj).

But then ¯̃ζ†σ2 6= iψ†l .
Singh, PM, 2019

I Not enough degrees of freedom (already observed by v. Dungen and v.
Suijlekom in their building of a spectral triple for electrodynamics).
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Minimal twist of a doubled manifold:

A =
(
C∞(M)⊗ C2

)
⊗C2, H = L2(M,S)⊗ C2, D = ð⊗ I2

π(a = (f , g), a′ = (f ′, g ′)) =


f I2 0 0 0
0 f ′I2 0 0
0 0 g ′I2 0
0 0 0 gI2

 , ρ(a, a′) = (a′, a).

I Twisted fluctuation: ∂ρ ⊗ I2 + gµγ
µ ⊗ γF with gµ a real field and γF the

chirality of the two point space.

I Twist implemented by R = γ0 ⊗ I2.

I HR spanned by {ξ ⊗ e, φ⊗ ē} with ξ=

(
ζ
ζ

)
, φ=

(
ϕ
ϕ

)
, {e, ē} basis of C2.
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I Twisted fluctuation: ∂ρ ⊗ I2 + gµγ
µ ⊗ γF with gµ a real field and γF the

chirality of the two point space.

I Twist implemented by R = γ0 ⊗ I2.

I HR spanned by {ξ ⊗ e, φ⊗ ē} with ξ=

(
ζ
ζ

)
, φ=

(
ϕ
ϕ

)
, {e, ē} basis of C2.



The fermionic action (with gµ = 0) is the integral of

Lf
ρ := ¯̃ϕ†σ2

(
if0 −

∑3
j=1 σj∂j

)
ζ̃, f0 ∈ C∞(M,R).

Yields the Weyl lagrangian identifying

Ψl := ζ̃, Ψ†l := −i ¯̃ϕ†σ2

and assuming
∂0Ψl = if0Ψl ,

that is
Ψl(x0, xj) = Ψl(xj)e

if0x0 .

I The twisted fermionic action for a twisted doubled Euclidean manifold
describes a plane wave solution of Weyl equation (in Lorentz signature), with
x0 as time coordinate.

I The zeroth-component of the real field fµ parametrising the
twisted-fluctuation gets interpreted as an energy.
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Minimal twist of electrodynamics:

AED =
(
C∞(M)⊗ C2

)
⊗C2, H = L2(M,S)⊗ C4, D = ð⊗ I4 + γ5 ⊗ DF

DF =


0 d 0 0
d̄ 0 0 0
0 0 0 d̄
0 0 d 0

 , π(a, a′) =


f I2 0 0 0 0 0 0 0
0 f ′I2 0 0 0 0 0 0
0 0 f ′I2 0 0 0 0 0
0 0 0 f I2 0 0 0 0
0 0 0 0 g ′I2 0 0 0
0 0 0 0 0 gI2 0 0
0 0 0 0 0 0 gI2 0
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v. Dungen, V. Suijlekom + PM, Singh

with d ∈ C, a = (f , g), a′ = (f ′, g ′).

I Twisted fluctuation: D − ifµγ
µγ5 ⊗ I′ + gµγ

µ ⊗ I′′ with
I′ := diag(1,−1, 1,−1), I′′ := diag(1, 1,−1,−1).

I Twist implemented by R = γ0 ⊗ I4.

I HR spanned by {Φ1 ⊗ el ,Φ2 ⊗ er ,Φ3 ⊗ el ,Φ4 ⊗ er} where Φk :=

(
ϕk

ϕk

)
are

Dirac spinors with Weyl components ϕk , and {el , er , el , er} the basis of C4.
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The lagrangian density corresponding to the fermionic action,

Lf
ρ := ¯̃ϕ

†
1σ2

(
if0 −

∑
j σjDj

)
ϕ̃3 − ¯̃ϕ

†
2σ2

(
if0 +

∑
j σjDj

)
ϕ̃4 +

(
d̄ ¯̃ϕ†1σ2ϕ̃4 + d ¯̃ϕ†2σ2ϕ̃3

)
where Dµ := ∂µ − igµ, coincides with the Dirac lagrangian,

LM = iΨ†l (D0 − σjDj) Ψl + iΨ†r (D0 + σj∂j) Ψr −m
(

Ψ†l Ψr + Ψ†r Ψl

)
,

up to the identification d = −im,

Ψ =

(
Ψl

Ψr

)
:=

(
ϕ̃3

ϕ̃4

)
, Ψ† =

(
Ψ†l , Ψ†r

)
:=
(
−i ¯̃ϕ†1σ2, i ¯̃ϕ†2σ2

)
,

and assuming ∂0Ψ = if0Ψ, that is Ψ(x0, xj) = Ψ(xj)e
if0x0 .

I The fermionic action for the twisted spectral triple of electrodynamics on a
riemannian manifold describes a plane wave solution of the Dirac equation in
lorentzian signature, and in the temporal (Weyl) gauge D0 = ∂0.



Conclusion

I The same process that turns the Dirac mass kR of the neutrino into a scalar
field generates a 1-form field, that - in the fermionic action - can be
interpreted as the zero-th component of the energy-momentum in Lorentzian
signature. Other components can be found by Lorentz transform ?

I Yet the manifold is still riemannian: not so important for the volume form,
but what about the domain of integration ? (usually Wick rotation is
considered locally).

I In the standard model (with all masses but kR to zero), ignoring the
lorentzian interpretation, the spectral action for the supplementary fields is
minimum when theses fields are zero, i.e. when there is no twist.
Lorentzian (twisted) geometry as vacuum excitations around the
(non-twisted) riemannian ?

I Maybe not so meaningful to look for a spectral characterization of lorentzian
manifolds.
Thermal time hypothesis: the flow of time is induced by the twist. Coherent
with modular twist of Connes-Moscovici: ρ = σt=i . What σ for the flip ?

I i f µγµγ5 a torsion term. Could help for spectral action (see Hanisch, Pfaffle,
Stephan).
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