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Background and definitions

Definition (Real spectral triple)

A real spectral triple (., 7, D, J) is given by an action of the
*-algebra .&/ on the Hilbert space 5, with D = D* an unbounded
operator with (D—A)~"' € # () and [D, a] € %B () for all

a € ./, equipped with an antiunitary operator J such that

Jef J* C o’ and

P =¢1% and DI = €'ID

fore, &’ € {—1,+1}.

We also typically require the satisfaction of the first-order condition
[D,alibs* = JbJ*[D,a] (1)

foralla, b € & .
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Definition (Spectral triple with twisted real structure)

A spectral triple with twisted real structure is a real spectral triple
(.o, 7, D, J) equipped with a (bounded) operator v such that

W) =vdv '~ .o, viv=Jand now
DJv =¢'vID

fore’ € {—1, +1}.
The first-order condition is here replaced by the twisted first-order

condition

[D, al)v?(b)J* = JbJ*[D,a] (2)
foralla, b € o .




Conformal transformation [Brzezinski, Ciccoli, Dabrowski &
Sitarz]

For a real spectral triple (.«/, 5, D, J), one can define a conformally
transformed Dirac operator

Dy := JkJ* DJkJ*
for k, k="' € .o/, , such that Dy = D} and
[D,a] € B(#) —> [Dy a] € B(H#)

for alla € ./, so that now (&7, 5, Dy, J, v) is a spectral triple with
twisted real structure for the twist operator v = k="JkJ*.



Nibbling around the edges

Conformal transformtions

A twist operator v which is involutory v = 1 we refer to as being
mild.

Conformal transformation (small generalisation)
For a spectral triple with mildly-twisted real structure (.o, 52, D, J, x)
with
x>=1andx € &/,
one can define a conformally transformed Dirac operator as before so

that now (.«/, 5, Dy, J, v) is a spectral triple with twisted real
structure for the twist operator v = xk~"JkJ*.



Nibbling around the edges

The even case

If a real spectral triple (.o, 52, D, J) admits a Z, grading on ¢
implemented by the grading operator v, it is called even. One
requires that yD = —Dvy and

yl=¢"ly (3)

for ¢’/ € {—1, +1}. It is not immediately obvious how v should
interact with v in the case of a twisted real structure. It was identifed
in [1] that we should require yv? = v2y, but it was previously
assumed that we should take (3) as-is (cf. [1, 2]). However, the fact
that vJDJ* v = £D suggests we should instead require

v =¢€"viy. (4)



Bigger bites

Gauge transformations

It is clear that if fluctuations of Dirac operators are generated by
1-forms, then D = £’vJDJ* v demands that fluctuations must be of
the form

Dy =D+ w+ &' viw*v

for Q! (./)  w = ¥_; qj[D, bj] a 1-form. Note that
VE B(H) = viwl*v € B (). Interestingly,

&'via[ D, b]J*v = v(JaJ*)[D, v '(Ubs*)] ;..

This suggests it should be possible to define Morita equivalence
following the standard construction (right) and the construction for
twisted spectral triples by [3] (left).



This is the case, with some minor modifications.
For reference...

For a unitary element u € % (.«/ ), the gauge transformation of a
gauge potential 1-form w — w" and Dirac operator D — D" are given
by their standard definitions, i.e.,

w' =uwu* +u[D,u*],
(Dw)u = Dy
=D+ w'+ & vwis*v.

In the standard case, gauge transformations are implemented by the
operator U := uJuJ* such that DY = UDU*.



It is more natural to define the right ./ -action on S by
Yra=v"Ua*I*)y
fora € .o, ¢ € . This means that we have

Ad(u)(¢) =: V¢ = uv Ju* vy and
Ad(u)(9) = Vg = uvus*v"y.

These operators implement the gauge transformations by
DY = VDV~

Rmk: Gauge transformations commute with conformal
transformations.



Note that the operators V and V are not unitary! However, the
self-adjointness of Dirac operators

(oY* = (vpv"Y* =p = Vpv!
requires that V* = vV~"and V* = V. This suggests that we

demand that v = v* (up to sign), which in turn implies that gauge
potentials are self-adjoint, w = w™, as in the standard case.

Rmk: Self-adjointness of the twist operator is also consistent with the
typical requirement of twisted spectral triples that the algebra
automorphism p satisfies p(a*) = (0~ "(a))* foralla € .« .



Bigger bites

Spectral action

Ongoing work

In this context, the bilinear form (¢, ¢) = (Jy, D¢) is not gauge
covariant or antisymmetric any more and must be modified, similar
to [4]. It appears that the correct modification is given by

A7 (Y, 9) := (), v_'Dg),
where v = v* is required but v = v is not. However, requiring that

THE

does appear to require that v = v

(D)?

f A2




Bigger bites

Second-order condition

Following [5] and subsequent papers, and [6], we define the
second-order condition for ordinary spectral triples to be

[[D,al,J[D,bl/*] =0

for alla, b € & . Just as spectral triples with mildly-twisted real
structures follow the first-order condition like untwisted spectral
triples, it may be possible to construct examples which follow the
second-order condition.



Hodge spectral triple on the torus [D’Andrea, M. & Dabrowski]

Consider the spectral triple for the torus T2 with coordinates (x, y)
given by

(o =c=(12), 5 =M, (12(12)), D = inay + o2, ).

Under the vector space isomorphism £: Q¢ (T2) — M, (€® (T2))
given by

2 fo + fidx + fody + fadx A dy — fol + ifi01 + if202 — ifz03
we have that
D=Xo(d+d*)oX="and Z(df) = [D, f].

This spectral triple can be equipped with a number of real structures,
e.g.,PoC.C., 050 C.C. but none satisfy the second-order condition.



Hodge spectral triple on the torus (cont.)

However, the same spectral triple equipped with a mildly-twisted real
structure can satisfy the second-order condition. The twisted real
structures which do this are

Ji: = = _ios | » Vit = / —i6 '
Y 6 B e"vs Y & gy e ®a

P A 5 €8 (o B, ga ety

2y s ey a |t V2 |y s e?g s |-

Indeed, for Jq the main anti-involution composed with complex
conjugation on Qc (T2), we find that

Z(Jqw) = —hlo=rnZ(w)

for any w € Q¢ (72).



Conclusions and outlook

The work conducted on this topic so far is still rather preliminary and
there are many unanswered questions, big and small.

For example: Can the formalism be generalised to “semi-twisted”
spectral triples, bridging the gap between twisted and untwisted
spectral triples? Is there a twisted version of the second-order
condition? What is its correct interpretation?

Next on the agenda: investigate whether the NCG Pati-Salam model
admits a twisted real structure.
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