Progress in spectral triples with twisted real structure

Adam Magee

Scuola Internazionale Superiore di Studi Avanzati (SISSA)

Noncommutative Geometry and the Standard Model November 9, 2019 Kraków, Poland

Outline

Background and definitions

Nibbling around the edges

Conformal transformations
The even case

Bigger bites

Gauge transformations
Spectral action
Second-order condition

Conclusion and references

Background and definitions

Definition (Real spectral triple)

A real spectral triple $(\mathcal{A}, \mathcal{H}, D, J)$ is given by an action of the *-algebra \mathcal{A} on the Hilbert space \mathcal{H} , with $D = D^*$ an unbounded operator with $(D - \lambda)^{-1} \in \mathcal{K}(\mathcal{H})$ and $[D, a] \in \mathcal{B}(\mathcal{H})$ for all $a \in \mathcal{A}$, equipped with an antiunitary operator J such that $J\mathcal{A}J^* \subset \mathcal{A}'$ and

$$J^2 = \varepsilon 1_{\mathcal{H}}$$
 and $DJ = \varepsilon' JD$

for $\varepsilon, \varepsilon' \in \{-1, +1\}$.

We also typically require the satisfaction of the first-order condition

$$[D, a]JbJ^* = JbJ^*[D, a]$$
 (1)

for all $a, b \in \mathcal{A}$.

Definition (Spectral triple with twisted real structure)

A spectral triple with twisted real structure is a real spectral triple $(\mathcal{A}, \mathcal{H}, D, J)$ equipped with a (bounded) operator ν such that $\bar{\nu}(\mathcal{A}) := \nu \mathcal{A} \nu^{-1} \simeq \mathcal{A}$, $\nu J \nu = J$ and now

$$DJ\nu = \varepsilon'\nu JD$$

for $\varepsilon' \in \{-1, +1\}$.

The first-order condition is here replaced by the twisted first-order condition

$$[D, a]J\bar{\nu}^2(b)J^* = JbJ^*[D, a]$$
 (2)

for all $a, b \in \mathcal{A}$.

Conformal transformation [Brzeziński, Ciccoli, Dąbrowski & Sitarz]

For a real spectral triple $(\mathcal{A}, \mathcal{H}, D, J)$, one can define a conformally transformed Dirac operator

$$D_k := JkJ^*DJkJ^*$$

for $k, k^{-1} \in \mathcal{A}_+$, such that $D_k = D_k^*$ and

$$[D,a] \in \mathcal{B}(\mathcal{H}) \Longrightarrow [D_k,a] \in \mathcal{B}(\mathcal{H})$$

for all $a \in \mathcal{A}$, so that now $(\mathcal{A}, \mathcal{H}, D_k, J, \nu)$ is a spectral triple with twisted real structure for the twist operator $\nu = k^{-1}JkJ^*$.

Nibbling around the edges

Conformal transformtions

A twist operator ν which is involutory $\nu^2 = 1$ we refer to as being mild.

Conformal transformation (small generalisation)

For a spectral triple with mildly-twisted real structure $(\mathcal{A}, \mathcal{H}, D, J, \chi)$ with

$$\chi^2 = 1$$
 and $\chi \in \mathscr{A}'$,

one can define a conformally transformed Dirac operator as before so that now $(\mathcal{A}, \mathcal{H}, D_k, J, \nu)$ is a spectral triple with twisted real structure for the twist operator $\nu = \chi k^{-1} J k J^*$.

Nibbling around the edges

The even case

If a real spectral triple (\mathcal{A} , \mathcal{H} , D, J) admits a \mathbb{Z}_2 grading on \mathcal{H} implemented by the grading operator γ , it is called even. One requires that $\gamma D = -D\gamma$ and

$$\gamma J = \varepsilon'' J \gamma \tag{3}$$

for $\varepsilon'' \in \{-1, +1\}$. It is not immediately obvious how γ should interact with ν in the case of a twisted real structure. It was identifed in [1] that we should require $\gamma \nu^2 = \nu^2 \gamma$, but it was previously assumed that we should take (3) as-is (cf. [1, 2]). However, the fact that $\nu JDJ^*\nu = \pm D$ suggests we should instead require

$$\gamma \nu J = \varepsilon'' \nu J \gamma. \tag{4}$$

Bigger bites

Gauge transformations

It is clear that if fluctuations of Dirac operators are generated by 1-forms, then $D = \varepsilon' \nu J D J^* \nu$ demands that fluctuations must be of the form

$$D_{\omega} = D + \omega + \varepsilon' \nu J \omega J^* \nu$$

for $\Omega_D^1(\mathscr{A}) \ni \omega = \sum_j a_j [D, b_j]$ a 1-form. Note that $v \in \mathscr{B}(\mathscr{H}) \implies v J \omega J^* v \in \mathscr{B}(\mathscr{H})$. Interestingly,

$$\varepsilon' \nu Ja[D, b]J^* \nu = \bar{\nu}(JaJ^*)[D, \bar{\nu}^{-1}(JbJ^*)]_{\bar{\nu}^2}.$$

This suggests it should be possible to define Morita equivalence following the standard construction (right) and the construction for twisted spectral triples by [3] (left).

This is the case, with some minor modifications.

For reference...

For a unitary element $u \in \mathcal{U}(\mathcal{A})$, the gauge transformation of a gauge potential 1-form $\omega \mapsto \omega^u$ and Dirac operator $D \mapsto D^u$ are given by their standard definitions, i.e.,

$$\omega^{u} = u\omega u^{*} + u[D, u^{*}],$$

$$(D_{\omega})^{u} = D_{\omega^{u}}$$

$$= D + \omega^{u} + \varepsilon' \nu J \omega^{u} J^{*} \nu.$$

In the standard case, gauge transformations are implemented by the operator $U := uJuJ^*$ such that $D^u = UDU^*$.

It is more natural to define the right $\mathscr A$ -action on $\mathscr H$ by

$$\psi \cdot a = \bar{\nu}^{-1} (Ja^* J^*) \psi$$

for $a \in \mathcal{A}$, $\psi \in \mathcal{H}$. This means that we have

Ad(u)(
$$\psi$$
) =: $\nabla \psi = u v^{-1} J u J^* v \psi$ and
 $\widetilde{Ad}(u)(\psi) =: \widetilde{\nabla} \psi = u v J u J^* v^{-1} \psi$.

These operators implement the gauge transformations by

$$D^{u} = \tilde{V}DV^{-1}$$
.

Rmk: Gauge transformations commute with conformal transformations.

Note that the operators V and \tilde{V} are not unitary! However, the self-adjointness of Dirac operators

$$(D^{u})^{*} = (\tilde{V}DV^{-1})^{*} \stackrel{!}{=} D^{u} = \tilde{V}DV^{-1}$$

requires that $\tilde{V}^* = V^{-1}$ and $V^* = \tilde{V}^{-1}$. This suggests that we demand that $\nu = \nu^*$ (up to sign), which in turn implies that gauge potentials are self-adjoint, $\omega = \omega^*$, as in the standard case.

Rmk: Self-adjointness of the twist operator is also consistent with the typical requirement of twisted spectral triples that the algebra automorphism ρ satisfies $\rho(a^*) = (\rho^{-1}(a))^*$ for all $a \in \mathcal{A}$.

Ongoing work

In this context, the bilinear form $\mathfrak{A}_D(\psi, \phi) := \langle J\psi, D\phi \rangle$ is *not* gauge covariant or antisymmetric any more and must be modified, similar to [4]. It appears that the correct modification is given by

$$\mathfrak{A}_{\mathsf{D}}^{\bar{\nu}}(\psi,\phi) := \langle \mathsf{J}\psi, \nu^{-1}\mathsf{D}\phi \rangle,$$

where $\nu = \nu^*$ is required but $\nu = \nu^{-1}$ is not. However, requiring that

$$\operatorname{Tr}\left(f\left(\frac{D^2}{\Lambda^2}\right)\right) = \operatorname{Tr}\left(f\left(\frac{(D^u)^2}{\Lambda^2}\right)\right)$$

does appear to require that $\nu = \nu^{-1}$.

Bigger bites

Second-order condition

Following [5] and subsequent papers, and [6], we define the second-order condition for ordinary spectral triples to be

$$[[D, a], J[D, b]J^*] = 0$$

for all $a, b \in \mathcal{A}$. Just as spectral triples with mildly-twisted real structures follow the first-order condition like untwisted spectral triples, it may be possible to construct examples which follow the second-order condition.

Hodge spectral triple on the torus [D'Andrea, M. & Dąbrowski]

Consider the spectral triple for the torus T^2 with coordinates (x, y) given by

$$\left(\mathscr{A}=C^{\infty}\left(T^{2}\right),\mathscr{H}=M_{2}\left(L^{2}\left(T^{2}\right)\right),D=i\sigma_{1}\delta_{x}+i\sigma_{2}\delta_{y}\right).$$

Under the vector space isomorphism $\Sigma \colon \Omega_{\mathbb{C}}\left(T^{2}\right) \to M_{2}\left(C^{\infty}\left(T^{2}\right)\right)$ given by

$$\Sigma$$
: $f_0 + f_1 dx + f_2 dy + f_3 dx \wedge dy \mapsto f_0 1 + i f_1 \sigma_1 + i f_2 \sigma_2 - i f_3 \sigma_3$

we have that

$$D = \Sigma \circ (d + d^*) \circ \Sigma^{-1}$$
 and $\Sigma(df) = [D, f]$.

This spectral triple can be equipped with a number of real structures, e.g., $P \circ C.C.$, $\sigma_2 \circ C.C.$ but none satisfy the second-order condition.

Hodge spectral triple on the torus (cont.)

However, the same spectral triple equipped with a mildly-twisted real structure can satisfy the second-order condition. The twisted real structures which do this are

$$\begin{split} J_1 \colon \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} &\mapsto \begin{pmatrix} e^{i\theta}\bar{\alpha} & \bar{\gamma} \\ \bar{\beta} & e^{-i\theta}\bar{\delta} \end{pmatrix}, \quad \nu_1 \colon \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} &\mapsto \begin{pmatrix} e^{i\theta}\delta & \varepsilon'\beta \\ \varepsilon'\gamma & e^{-i\theta}\alpha \end{pmatrix}; \\ J_2 \colon \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} &\mapsto \begin{pmatrix} \bar{\delta} & e^{i\phi}\bar{\beta} \\ e^{-i\phi}\bar{\gamma} & \bar{\alpha} \end{pmatrix}, \quad \nu_2 \colon \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} &\mapsto \begin{pmatrix} \varepsilon'\alpha & e^{-i\phi}\gamma \\ e^{i\phi}\beta & \varepsilon'\delta \end{pmatrix}. \end{split}$$

Indeed, for J_{Ω} the main anti-involution composed with complex conjugation on $\Omega_{\mathbb{C}}(T^2)$, we find that

$$\Sigma(J_{\Omega}\omega) = -J_1|_{\theta=\pi}\Sigma(\omega)$$

for any $\omega \in \Omega_{\mathbb{C}}(T^2)$.

Conclusions and outlook

The work conducted on this topic so far is still rather preliminary and there are many unanswered questions, big and small.

For example: Can the formalism be generalised to "semi-twisted" spectral triples, bridging the gap between twisted and untwisted spectral triples? Is there a twisted version of the second-order condition? What is its correct interpretation?

Next on the agenda: investigate whether the NCG Pati-Salam model admits a twisted real structure.

References

- T. Brzeziński, N. Ciccoli, L. Dąbrowski and A. Sitarz, Twisted reality condition for Dirac operators, Math. Phys. Anal. Geom. 19:16 (2016).
- L. Dąbrowski and A. Sitarz, Twisted reality condition for spectral triple on two points, Proc. Corfu Summer Institute 2015 **3** (2016) 93.
- G. Landi and P. Martinetti, Gauge transformations for twisted spectral triples, Lett. Math. Phys. 108 (2018) 2589.
- A. Devastato, S. Farnsworth, F. Lizzi and P. Martinetti, Lorentz signature and twisted spectral triples, JHEP **2018**:3 (2018) 89.
- L. Boyle and S. Farnsworth, Non-Commutative Geometry, Non-Associative Geometry and the Standard Model of Particle Physics, New J. Phys. **16** (2014) 123027.
- L. Dąbrowski, F. D'Andrea and A. Sitarz, The Standard Model in noncommutative geometry: fundamental fermions as internal forms, Lett. Math. Phys. **108** (2018) 1323.