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Background and definitions

Definition (Real spectral triple)

A real spectral triple (A ,H ,D, J) is given by an action of the
*-algebraA on the Hilbert spaceH , with D = D∗ an unbounded
operator with (D− λ)−1 ∈ K (H ) and [D, a] ∈ B (H ) for all
a ∈ A , equipped with an antiunitary operator J such that
JA J∗ ⊂ A ′ and

J2 = ϵ 1H and DJ = ϵ′JD

for ϵ, ϵ′ ∈ {−1,+1}.

We also typically require the satisfaction of the first-order condition

[D, a]JbJ∗ = JbJ∗[D, a] (1)

for all a, b ∈ A .



Definition (Spectral triple with twisted real structure)

A spectral triple with twisted real structure is a real spectral triple
(A ,H ,D, J) equipped with a (bounded) operator ν such that
ν̄(A ) := νA ν−1 ' A , νJν = J and now

DJν = ϵ′νJD

for ϵ′ ∈ {−1,+1}.

The first-order condition is here replaced by the twisted first-order
condition

[D, a]Jν̄2(b)J∗ = JbJ∗[D, a] (2)

for all a, b ∈ A .



Conformal transformation [Brzeziński, Ciccoli, Dąbrowski &
Sitarz]

For a real spectral triple (A ,H ,D, J), one can define a conformally
transformed Dirac operator

Dk := JkJ∗DJkJ∗

for k, k−1 ∈ A+ , such that Dk = D∗k and

[D, a] ∈ B (H ) =⇒ [Dk, a] ∈ B (H )

for all a ∈ A , so that now (A ,H ,Dk, J, ν) is a spectral triple with
twisted real structure for the twist operator ν = k−1JkJ∗.



Nibbling around the edges
Conformal transformtions

A twist operator ν which is involutory ν2 = 1 we refer to as being
mild.

Conformal transformation (small generalisation)

For a spectral triple with mildly-twisted real structure (A ,H ,D, J, χ)
with

χ2 = 1 and χ ∈ A ′,

one can define a conformally transformed Dirac operator as before so
that now (A ,H ,Dk, J, ν) is a spectral triple with twisted real
structure for the twist operator ν = χk−1JkJ∗.



Nibbling around the edges
The even case

If a real spectral triple (A ,H ,D, J) admits a Z2 grading onH
implemented by the grading operator γ, it is called even. One
requires that γD = −Dγ and

γJ = ϵ′′Jγ (3)

for ϵ′′ ∈ {−1,+1}. It is not immediately obvious how γ should
interact with ν in the case of a twisted real structure. It was identifed
in [1] that we should require γν2 = ν2γ, but it was previously
assumed that we should take (3) as-is (cf. [1, 2]). However, the fact
that νJDJ∗ν = ±D suggests we should instead require

γνJ = ϵ′′νJγ. (4)



Bigger bites
Gauge transformations

It is clear that if fluctuations of Dirac operators are generated by
1-forms, then D = ϵ′νJDJ∗ν demands that fluctuations must be of
the form

Dω = D+ ω+ ϵ′νJωJ∗ν

for Ω1
D(A ) 3 ω =

∑︀
j aj
[︀
D, bj

]︀
a 1-form. Note that

ν ∈ B (H ) =⇒ νJωJ∗ν ∈ B (H ). Interestingly,

ϵ′νJa[D, b]J∗ν = ν̄(JaJ∗)
[︀
D, ν̄−1(JbJ∗)

]︀
ν̄2 .

This suggests it should be possible to define Morita equivalence
following the standard construction (right) and the construction for
twisted spectral triples by [3] (left).



This is the case, with some minor modifications.

For reference...
For a unitary element u ∈ U (A ), the gauge transformation of a
gauge potential 1-form ω 7→ ωu and Dirac operator D 7→ Du are given
by their standard definitions, i.e.,

ωu = uωu∗ + u[D, u∗] ,

(Dω)u = Dωu

= D+ ωu + ϵ′νJωuJ∗ν.

In the standard case, gauge transformations are implemented by the
operator U := uJuJ∗ such that Du = UDU∗.



It is more natural to define the rightA -action onH by

ψ · a = ν̄−1(Ja∗J∗)ψ

for a ∈ A , ψ ∈ H . This means that we have

Ad(u)(ψ) =: Vψ = uν−1JuJ∗νψ and̃︁Ad(u)(ψ) =: Ṽψ = uνJuJ∗ν−1ψ.

These operators implement the gauge transformations by

Du = ṼDV−1.

Rmk: Gauge transformations commute with conformal
transformations.



Note that the operators V and Ṽ are not unitary! However, the
self-adjointness of Dirac operators

(Du)∗ = (ṼDV−1)∗
!
= Du = ṼDV−1

requires that Ṽ∗ = V−1 and V∗ = Ṽ−1. This suggests that we
demand that ν = ν∗ (up to sign), which in turn implies that gauge
potentials are self-adjoint, ω = ω∗, as in the standard case.

Rmk: Self-adjointness of the twist operator is also consistent with the
typical requirement of twisted spectral triples that the algebra
automorphism ρ satisfies ρ(a∗) = (ρ−1(a))∗ for all a ∈ A .



Bigger bites
Spectral action

Ongoing work

In this context, the bilinear form AD(ψ, ϕ) := 〈Jψ,Dϕ〉 is not gauge
covariant or antisymmetric any more and must be modified, similar
to [4]. It appears that the correct modification is given by

Aν̄

D(ψ, ϕ) := 〈Jψ, ν
−1Dϕ〉,

where ν = ν∗ is required but ν = ν−1 is not. However, requiring that

Tr

(︃
f

(︃
D2

Λ2

)︃)︃
= Tr

(︃
f

(︃
(Du)2

Λ2

)︃)︃
does appear to require that ν = ν−1.



Bigger bites
Second-order condition

Following [5] and subsequent papers, and [6], we define the
second-order condition for ordinary spectral triples to be

[[D, a] , J[D, b]J∗] = 0

for all a, b ∈ A . Just as spectral triples with mildly-twisted real
structures follow the first-order condition like untwisted spectral
triples, it may be possible to construct examples which follow the
second-order condition.



Hodge spectral triple on the torus [D’Andrea, M. & Dąbrowski]

Consider the spectral triple for the torus T2 with coordinates (x, y)
given by(︁

A = C∞
(︀
T2
)︀
,H =M2

(︀
L2
(︀
T2
)︀)︀
,D = iσ1∂x + iσ2∂y

)︁
.

Under the vector space isomorphism : ΩC
(︀
T2
)︀
→M2

(︀
C∞
(︀
T2
)︀)︀

given by

: f0 + f1dx+ f2dy + f3dx∧ dy 7→ f01+ if1σ1 + if2σ2 − if3σ3

we have that

D =  ◦ (d+ d∗) ◦ −1 and (df) = [D, f] .

This spectral triple can be equipped with a number of real structures,
e.g., P ◦ c. c. , σ2 ◦ c. c. but none satisfy the second-order condition.



Hodge spectral triple on the torus (cont.)

However, the same spectral triple equipped with a mildly-twisted real
structure can satisfy the second-order condition. The twisted real
structures which do this are

J1 :

(︃
α β

γ δ

)︃
7→

(︃
eiθᾱ γ̄

β̄ e−iθδ̄

)︃
, ν1 :

(︃
α β

γ δ

)︃
7→

(︃
eiθδ ϵ′β

ϵ′γ e−iθα

)︃
;

J2 :

(︃
α β

γ δ

)︃
7→

(︃
δ̄ eiϕβ̄

e−iϕγ̄ ᾱ

)︃
, ν2 :

(︃
α β

γ δ

)︃
7→

(︃
ϵ′α e−iϕγ
eiϕβ ϵ′δ

)︃
.

Indeed, for JΩ the main anti-involution composed with complex
conjugation on ΩC

(︀
T2
)︀
, we find that

(JΩω) = −J1|θ=π(ω)

for any ω ∈ ΩC
(︀
T2
)︀
.



Conclusions and outlook

The work conducted on this topic so far is still rather preliminary and
there are many unanswered questions, big and small.

For example: Can the formalism be generalised to “semi-twisted”
spectral triples, bridging the gap between twisted and untwisted
spectral triples? Is there a twisted version of the second-order
condition? What is its correct interpretation?

Next on the agenda: investigate whether the NCG Pati-Salam model
admits a twisted real structure.
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