Noncommutative inner geometry of the Standard Model

Ludwik Dąbrowski
 SISSA, Trieste (I)

A non-commutative C^{*}-algebra is commonly regarded as the algebra of continuous functions on a 'quantum space'. Its smooth and metric structures can be described in terms of a spectral triple which involves an analogue of the Dirac operator. The Standard Model of fundamental particles in physics can be described as the almost commutative geometry, the inner part of which can be interpreted as a quantum analogue of the de-Rham-Hodge spectral triple

Kraków, 9 November 2019

Goal

Unveil the geometric nature of the flavour multiplet of fermions in the Standard Model (acronym: SM) of fundamental particles

Plan

(1) Dirac spinors, de Rham forms and Clifford fields.
(2) quantum analogue of (1).
(3) application to noncommutative SM (acronym: $\nu S M$).

Proviso: quantum $=$ noncommutative (acronym: NC)

(Unreasonably) successful Standard Model

STANDARD MODEL OF ELEMENTARY PARTICLES
\& interactions

$2 \times(3+1) \times 2 \times 2 \times 3=96$
'flavors'

governed by:

Lagrangian

$\mathcal{L}_{S M}=-\frac{1}{2} \partial_{v} g_{\mu}^{a} \partial_{v} g_{\mu}^{a}-g_{s} f^{a b c} \partial_{\mu} g_{v}^{a} g_{\mu}^{b} g_{v}^{c}-\frac{1}{4} g_{s}^{2} f^{a b c} f^{a d e} g_{\mu}^{b} g_{v}^{c} g_{\mu}^{d} g_{v}^{e}-\partial_{v} W_{\mu}^{+} \partial_{v} W_{\mu}^{-}-M^{2} W_{\mu}^{+} W_{\mu}^{-}-\frac{1}{2} \partial_{v} Z_{\mu}^{0} \partial_{v} Z_{\mu}^{0}-\frac{1}{2 c_{w}^{2}} M^{2} Z_{\mu}^{0} Z_{\mu}^{0}-\frac{1}{2} \partial_{\mu} A_{v} \partial_{\mu} A_{v}-i g c_{w}\left(\partial_{v} Z_{\mu}^{0}\left(W_{\mu}^{+} W_{v}^{-}-W_{v}^{+} W_{\mu}^{-}\right)\right.$ $\left.-Z_{v}^{0}\left(W_{\mu}^{+} \partial_{v} W_{\mu}^{-}-W_{\mu}^{-} \partial_{v} W_{\mu}^{+}\right)+Z_{\mu}^{0}\left(W_{v}^{+} \partial_{\nu} W_{\mu}^{-}-W_{v}^{-} \partial_{\nu} W_{\mu}^{+}\right)\right)-i g s_{w}\left(\partial_{v} A_{\mu}\left(W_{\mu}^{+} W_{v}^{-}-W_{v}^{+} W_{\mu}^{-}\right)-A_{v}\left(W_{\mu}^{+} \partial_{v} W_{\mu}^{-}-W_{\mu}^{-} \partial_{v} W_{\mu}^{+}\right)+A_{\mu}\left(W_{v}^{+} \partial_{v} W_{\mu}^{-}-W_{v}^{-} \partial_{\nu} W_{\mu}^{+}\right)\right)-\frac{1}{2} g^{2} W_{\mu}^{+} W_{\mu}^{-} W_{v}^{+} W_{v}^{-}$ $+\frac{1}{2} g^{2} W_{\mu}^{+} W_{v}^{-} W_{\mu}^{+} W_{v}^{-}+g^{2} c_{w}^{2}\left(Z_{\mu}^{0} W_{\mu}^{+} Z_{v}^{0} W_{v}^{-}-Z_{\mu}^{0} Z_{\mu}^{0} W_{v}^{+} W_{v}^{-}\right)+g^{2} s_{w}^{2}\left(A_{\mu} W_{\mu}^{+} A_{v} W_{v}^{-}-A_{\mu} A_{\mu} W_{v}^{+} W_{v}^{-}\right)+g^{2} s_{w} c_{w}\left(A_{\mu} Z_{v}^{0}\left(W_{\mu}^{+} W_{v}^{-}-W_{v}^{+} W_{\mu}^{-}\right)-2 A_{\mu} Z_{\mu}^{0} W_{v}^{+} W_{v}^{-}\right)-\frac{1}{2} \partial_{\mu} H \partial_{\mu} H$ $-2 M^{2} \alpha_{h} H^{2}-\partial_{\mu} \phi^{+} \partial_{\mu} \phi^{-}-\frac{1}{2} \partial_{\mu} \phi^{0} \partial_{\mu} \phi^{0}-\beta_{h}\left(\frac{2 M^{2}}{g^{2}}+\frac{2 M}{g} H+\frac{1}{2}\left(H^{2}+\phi^{0} \phi^{0}+2 \phi^{+} \phi^{-}\right)\right)+\frac{2 M^{4}}{g^{2}} \alpha_{h}-g \alpha_{h} M\left(H^{3}+H \phi^{0} \phi^{0}+2 H \phi^{+} \phi^{-}\right)-\frac{1}{8} g^{2} \alpha_{h}\left(H^{4}+\left(\phi^{0}\right)^{4}+4\left(\phi^{+} \phi^{-}\right)^{2}\right.$ $\left.+4\left(\phi^{0}\right)^{2} \phi^{+} \phi^{-}+4 H^{2} \phi^{+} \phi^{-}+2\left(\phi^{0}\right)^{2} H^{2}\right)-g M W_{\mu}^{+} W_{\mu}^{-} H-\frac{1}{2} g \frac{M}{c_{w}^{2}} Z_{\mu}^{0} Z_{\mu}^{0} H-\frac{1}{2} i g\left(W_{\mu}^{+}\left(\phi^{0} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{0}\right)-W_{\mu}^{-}\left(\phi^{0} \partial_{\mu} \phi^{+}-\phi^{+} \partial_{\mu} \phi^{0}\right)\right)+\frac{1}{2} g\left(W_{\mu}^{+}\left(H \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} H\right)\right.$ $\left.+W_{\mu}^{-}\left(H \partial_{\mu} \phi^{+}-\phi^{+} \partial_{\mu} H\right)\right)+\frac{1}{2} g \frac{1}{c_{w}}\left(Z_{\mu}^{0}\left(H \partial_{\mu} \phi^{0}-\phi^{0} \partial_{\mu} H\right)+M\left(\frac{1}{c_{w}} Z_{\mu}^{0} \partial_{\mu} \phi^{0}+W_{\mu}^{+} \partial_{\mu} \phi^{-}+W_{\mu}^{-} \partial_{\mu} \phi^{+}\right)-i g \frac{s_{w}^{2}}{c_{w}} M Z_{\mu}^{0}\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)+i g s_{w} M A_{\mu}\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)\right.$ $-\mathrm{ig} \frac{1-2 \mathrm{c}_{w}^{2}}{2 \mathrm{c}_{w}} Z_{\mu}^{0}\left(\phi^{+} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{+}\right)+\mathrm{igs} s_{w} A_{\mu}\left(\phi^{+} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{+}\right)-\frac{1}{4} g^{2} W_{\mu}^{+} W_{\mu}^{-}\left(H^{2}+\left(\phi^{0}\right)^{2}+2 \phi^{+} \phi^{-}\right)-\frac{1}{8} g^{2} \frac{1}{c_{w}^{2}} Z_{\mu}^{0} Z_{\mu}^{0}\left(H^{2}+\left(\phi^{0}\right)^{2}+2\left(2 s_{w}^{2}-1\right)^{2} \phi^{+} \phi^{-}\right)$ $-\frac{1}{2} g^{2} \frac{s_{w}^{2}}{c_{w}} Z_{\mu}^{0} \phi^{0}\left(W_{\mu}^{+} \phi^{-}+W_{\mu}^{-} \phi^{+}\right)-\frac{1}{2} i g^{2} \frac{s_{w}^{2}}{c_{w}} Z_{\mu}^{0} H\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)+\frac{1}{2} g^{2} s_{w} A_{\mu} \phi^{0}\left(W_{\mu}^{+} \phi^{-}+W_{\mu}^{-} \phi^{+}\right)+\frac{1}{2} i g^{2} s_{w} A_{\mu} H\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)-g^{2} \frac{s_{w}}{c_{w}}\left(2 c_{w}^{2}-1\right) Z_{\mu}^{0} A_{\mu} \phi^{+} \phi^{-}$ $-g^{2} s_{w}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-}+\frac{1}{2} \mathrm{ig}_{\mathrm{s}} \lambda_{\mathrm{ij}}^{\mathrm{a}}\left(\overline{\mathrm{q}}_{\mathrm{i}}^{\sigma} \gamma^{\mu} \mathrm{q}_{\mathrm{j}}^{\sigma}\right) \mathrm{g}_{\mu}^{\mathrm{a}}-\bar{e}^{\lambda}\left(\gamma \partial+\mathrm{m}_{\mathrm{e}}^{\lambda}\right) \mathrm{e}^{\lambda}-\bar{v}^{\lambda}\left(\gamma \partial+\mathrm{m}_{\mathrm{v}}^{\lambda}\right) v^{\lambda}-\bar{u}_{\mathrm{j}}^{\lambda}\left(\gamma \partial+\mathrm{m}_{\mathrm{u}}^{\lambda}\right) \mathrm{u}_{\mathrm{j}}^{\lambda}-\overline{\mathrm{d}}_{\mathrm{j}}^{\lambda}\left(\gamma \partial+\mathrm{m}_{\mathrm{d}}^{\lambda}\right) \mathrm{d}_{\mathrm{j}}^{\lambda}+\mathrm{ig} s_{w} \mathcal{A}_{\mu}\left(-\left(\bar{e}^{\lambda} \gamma^{\mu} e^{\lambda}\right)+\frac{2}{3}\left(\bar{u}_{\mathrm{j}}^{\lambda} \gamma^{\mu} u_{\mathrm{j}}^{\lambda}\right)-\frac{1}{3}\left(\bar{d}_{\mathrm{j}}^{\lambda} \gamma^{\mu} \mathrm{d}_{\mathrm{j}}^{\lambda}\right)\right)$ $+\frac{\mathrm{ig}}{4 \mathrm{c}_{w}} \mathrm{Z}_{\mu}^{0}\left\{\left(\bar{v}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) v^{\lambda}\right)+\left(\bar{e}^{\lambda} \gamma^{\mu}\left(4 \mathrm{~s}_{w}^{2}-1-\gamma^{5}\right) e^{\lambda}\right)+\left(\overline{\mathrm{d}}_{\mathrm{j}}^{\lambda} \gamma^{\mu}\left(\frac{4}{3} \mathrm{~s}_{w}^{2}-1-\gamma^{5}\right) \mathrm{d}_{\mathrm{j}}^{\lambda}\right)+\left(\bar{u}_{\mathrm{j}}^{\lambda} \gamma^{\mu}\left(1-\frac{8}{3} \mathrm{~s}_{w}^{2}+\gamma^{5}\right) \mathrm{u}_{\mathrm{j}}^{\lambda}\right)\right\}+\frac{\mathrm{ig}}{2 \sqrt{2}} W_{\mu}^{+}\left(\left(\bar{v}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) \mathrm{u}^{l e p}{ }_{\lambda \kappa} \mathrm{e}^{\kappa}\right)+\left(\bar{u}_{\mathrm{j}}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) \mathrm{C}_{\lambda \kappa} \mathrm{d}_{\mathrm{j}}^{\mathrm{K}}\right)\right)$ $+\frac{i g}{2 \sqrt{2}} W_{\mu}^{-}\left(\left(\bar{e}^{\kappa} u^{l e p_{\kappa \lambda}} \gamma^{\mu}\left(1+\gamma^{5}\right) v^{\lambda}\right)+\left(\bar{d}_{j}^{\kappa} C_{\kappa \lambda}^{\dagger} \gamma^{\mu}\left(1+\gamma^{5}\right) u_{j}^{\lambda}\right)\right)+\frac{i g}{2 M \sqrt{2}} \phi^{+}\left(-m_{e}^{\kappa}\left(\bar{v}^{\lambda} u^{l e p} \lambda_{\lambda \kappa}\left(1-\gamma^{5}\right) e^{\kappa}\right)+m_{\gamma}^{\lambda}\left(\bar{v}^{\lambda} u^{l e p}{ }_{\lambda \kappa}\left(1+\gamma^{5}\right) e^{\kappa}\right)+\frac{i g}{2 M \sqrt{2}} \phi^{-}\left(m_{e}^{\lambda}\left(\bar{e}^{\lambda} u^{l e p_{\lambda \kappa}^{\dagger}}\left(1+\gamma^{5}\right) v^{\kappa}\right)\right.\right.$ $-m_{v}^{\kappa}\left(\bar{e}^{\lambda} u^{l e p_{\lambda k}}{ }_{\lambda k}\left(1-\gamma^{5}\right) v^{\kappa}\right)-\frac{g}{2} \frac{m_{v}^{\lambda}}{M} H\left(\bar{v}^{\lambda} v^{\lambda}\right)-\frac{g}{2} \frac{m_{e}^{\lambda}}{M} H\left(\bar{e}^{\lambda} e^{\lambda}\right)+\frac{i g}{2} \frac{m_{v}^{\lambda}}{M} \phi^{0}\left(\bar{v}^{\lambda} \gamma^{5} v^{\lambda}\right)-\frac{i g}{2} \frac{m_{e}^{\lambda}}{M} \phi^{0}\left(\bar{e}^{\lambda} \gamma^{5} e^{\lambda}\right)-\frac{1}{4} \bar{v}_{\lambda} M_{\lambda \kappa}^{R}\left(1-\gamma_{5}\right) \hat{v}_{k}-\frac{1}{4} \overline{\bar{v}_{\lambda} M_{\lambda k}^{R}\left(1-\gamma_{5}\right) \hat{v}_{k}}$ $+\frac{i g}{2 M \sqrt{2}} \phi^{+}\left(-m_{d}^{\kappa}\left(\bar{u}_{j}^{\lambda} C_{\lambda \kappa}\left(1-\gamma^{5}\right) d_{j}^{\kappa}\right)+m_{u}^{\lambda}\left(\bar{u}_{j}^{\lambda} C_{\lambda \kappa}\left(1+\gamma^{5}\right) d_{j}^{\kappa}\right)+\frac{i g}{2 M \sqrt{2}} \phi^{-}\left(m_{d}^{\lambda}\left(\bar{d}_{j}^{\lambda} C_{\lambda \kappa}^{\dagger}\left(1+\gamma^{5}\right) u_{j}^{\kappa}\right)-m_{u}^{\kappa}\left(\bar{d}_{j}^{\lambda} C_{\lambda \kappa}^{\dagger}\left(1-\gamma^{5}\right) u_{j}^{\kappa}\right)-\frac{g}{2} \frac{m_{u}^{\lambda}}{M} H\left(\bar{u}_{j}^{\lambda} u_{j}^{\lambda}\right)-\frac{g}{2} \frac{m_{d}^{\lambda}}{M} H\left(\bar{d}_{j}^{\lambda} d_{j}^{\lambda}\right)\right.\right.$ $+\frac{i g}{2} \frac{m_{u}^{\lambda}}{M} \phi^{0}\left(\bar{u}_{j}^{\lambda} \gamma^{5} u_{j}^{\lambda}\right)-\frac{i g}{2} \frac{m_{d}^{\lambda}}{M} \phi^{0}\left(\bar{d}_{j}^{\lambda} \gamma^{5} d_{j}^{\lambda}\right)$

Conceptually/Geometrically:

$$
U(1) \times S U(2) \times S U(3)
$$

> (Ф) gauge fields (bosons) minimally coupled to matter fields (fermions) \& Higgs field (boson)
(M) connection
(\sim multiplet of vectors) on (a multiplet of) spinors; \& a doublet of scalars

> 2nd quantization with gauge fixing, spontaneous symmetry breaking, regularization \& perturbative renormalization

However unexplained:

- contents of particles (especially 3 families)
- several parameters,
- not included the 4th known interaction: gravitation + its fundamental symmetry: general relativity (diffeomorphisms)
- \& more

Spectral Triple

NC geometry by A. Connes et.al. is primarily based on algebras rather than groups, and it enriches the Gelfand-Naimark AF

$$
\text { topological spaces } \longleftrightarrow \text { commutative } C^{*} \text {-algebras }
$$

\& Serre-Swan

$$
\text { vector bundles } \longleftrightarrow \text { modules }
$$

equivalences, by encoding smoothness, calculus and metricstructure in terms of spectral triples (acronym: ST),

$$
(A, H, D)
$$

which consists of a *-algebra A of operators on Hilbert space H and $D=D^{\dagger}$ on H, such that

$$
[D, A] \subset \mathcal{B}(H), \quad(D-i)^{-1} \in \mathcal{K}(H)
$$

A ST is even if \exists a \mathbb{Z}_{2}-grading χ of $H, \chi^{2}=1, \chi^{\dagger}=\chi$,

$$
[\chi, A]=0, \quad\{\chi, D\}=0
$$

A ST is real if \exists a real structure, i.e. antiunitary J on H, such that denoting B^{\prime} the commutant of $B \subset \mathcal{B}(H)$,

$$
\begin{equation*}
J A J^{-1} \subset A^{\prime}, \quad \text { (order } 0 \text { condition). } \tag{1}
\end{equation*}
$$

In addition, we call

$$
\begin{equation*}
J A J^{-1} \subset[D, A]^{\prime}, \quad \text { (order } 1 \text { condition) } \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
J[D, A] J^{-1} \subset[D, A]^{\prime}, \quad(\text { order } 2 \text { condition). } \tag{3}
\end{equation*}
$$

Denote $C l_{D}(A)$ the algebra generated by $A \cup[D, A]$ \& call its elements quantum Clifford fields.

Such J permits right actions

$$
\triangleleft b:=J b^{*} J^{-1} \text { on } H
$$

so that (1), (2), (3) mean that H contains densely a

$$
A-A, \quad A-C l_{D}(A) \quad \text { and } \quad C l_{D}(A)-C l_{D}(A)
$$

bimodule, resp.

Canonical ST

Prototype: the canonical ST on a spin manifold $M(\operatorname{dim}(M)$ even $)$

$$
\left(C^{\infty}(M), L^{2}\left(S_{M}\right), \not D\right)
$$

where $C^{\infty}(M)$ is the algebra of smooth complex functions on M, S_{M} is rank $_{\mathbb{C}}=2^{n}$ Dirac bundle on M whose sections $\Gamma^{\infty}\left(S_{M}\right)=: \Gamma$ (spinor fields) carry a faithful irrep γ of the algebra of sections $\Gamma^{\infty}\left(\mathcal{C} \ell_{M}\right)$ (Clifford fields) of the Clifford bundle (\& completions)

$$
\begin{equation*}
\gamma: \Gamma\left(\mathcal{C} \ell_{M}\right) \underset{\approx}{\boldsymbol{E}} \operatorname{End}_{C(M)} \Gamma\left(S_{M}\right) \subset B\left(L^{2}\left(S_{M}\right)\right) \tag{4}
\end{equation*}
$$

and D is the usual Dirac operator on M :

$$
\begin{equation*}
\not D=\check{\gamma} \circ \tilde{\nabla} \quad\left(=\sum \gamma^{j} \tilde{\nabla}_{j} \quad \text { locally }\right) \tag{5}
\end{equation*}
$$

with $\tilde{\nabla}: \Gamma \rightarrow \Omega_{M} \otimes \Gamma$ the spin connection $\& \check{\gamma}: \Gamma\left(\mathcal{C} \ell_{M}\right) \otimes \Gamma \rightarrow \Gamma$.
\rightarrow Now \approx in (4) means
$\Gamma\left(S_{M}\right)$ is a Morita equivalence $\Gamma\left(\mathcal{C} \ell_{M}\right)-C(M)$ bimodule and this exactly characterizes $\underline{\mathrm{spin}_{c}}$ manifolds M [Plymen].

Canonical ST 2

Due to $[\not D, a]=\gamma(d a)$ for $a \in C^{\infty}(M)$, indeed

$$
\mathcal{C} \ell_{D D}\left(C^{\infty}(M)\right) \approx \Gamma^{\infty}(\mathcal{C} \ell(M))
$$

Next, \exists a "chiral" \mathbb{Z}_{2}-grading χ_{S} of $L^{2}(S)$
\& also \exists real structure J_{S} that satisfies order 0 and 1 condition, but obviously not the order 2 since it implements Morita eqv.

$$
J_{S} \mathcal{C} \ell_{\not D}(C(M)) J_{S}^{-1}=C(M)^{\prime}
$$

this precisely characterizes spin manifolds.
J_{S} satisfies also

$$
\begin{equation*}
J_{S}^{2}=\epsilon \mathrm{id}_{H}, \quad J_{S} \not D=\epsilon^{\prime} \not D J_{S}, \quad J_{S} \chi_{S}=\epsilon^{\prime \prime} \chi_{S} J_{S} \tag{6}
\end{equation*}
$$

where $\epsilon, \epsilon^{\prime}, \epsilon^{\prime \prime} \in\{ \pm 1\}$.
\rightarrow The canonical ST fully encodes the geometric data on M, that can be indeed reconstructed [Connes].
But it is not the only natural ST on a Riemannian manifold M, \exists

de Rham-Hodge ST

$$
\left(C^{\infty}(M), L^{2}(\Omega(M)), d+d^{*}\right)
$$

where $\Omega(M)$ is the space of de Rham differential forms on M, d is the exterior derivative and d^{*} its adjoint with respect to the hermitian product (from the metric g) on M.

The operator $d+d^{*}$ is Dirac-type:

$$
\begin{equation*}
d+d^{*}=\lambda \circ \nabla \tag{7}
\end{equation*}
$$

where ∇ is the Levi-Civita connection and the representation

$$
\begin{equation*}
\left.\lambda: \Gamma(\mathcal{C} \ell(M)) \rightarrow \operatorname{End}_{C(M)} \Omega(M), \quad \lambda(v)=v \wedge-v\right\lrcorner, \quad v \in T^{*} M \tag{8}
\end{equation*}
$$

is equivalent to the left regular self-representation of $\Gamma(\mathcal{C} \ell(M))$.
Clearly $\left[d+d^{*}, a\right]=\lambda(d a)$ so again

$$
\mathcal{C} \ell_{d+d^{*}}\left(C^{\infty}(M)\right) \approx \Gamma^{\infty}(\mathcal{C} \ell(M))
$$

de Rham-Hodge ST 2

There is also an anti-representation $(\approx$ right regular one of $\Gamma(\mathcal{C} \ell(M)))$

$$
\left.\rho: \Gamma(\mathcal{C} \ell(M)) \rightarrow \operatorname{End}_{C(M)} \Omega(M), \rho(v)=(v \wedge+v\lrcorner\right) \chi_{\Omega},
$$

where χ_{Ω} is the grading ± 1 on even/odd forms.
Furthermore, since λ_{v} and $\rho_{v^{\prime}}$ commute, $\Omega(M)$ is a $\Gamma(\mathcal{C} \ell(M))-\Gamma(\mathcal{C} \ell(M))$ bimodule, equivalent to $\Gamma(\mathcal{C} \ell(M))$, and thus

$$
\Omega(M) \text { is a Morita equivalence } \Gamma(\mathcal{C} \ell(M))-\Gamma(\mathcal{C} \ell(M)) \text { bimodule }
$$

which characterizes $\Omega(M)$ up to \otimes with a complex line bundle. Besides the parity grading χ_{Ω} there is another

$$
\chi_{\Omega}^{\prime}=\text { normalized Hodge star. }
$$

With them (as well known):

$$
\text { index }\left(d+d^{*}\right)=\text { Euler, resp., signature of } M
$$

de Rham-Hodge ST 3

On any $M \exists$ also a real structure on $\Omega(M)$

$$
J_{\Omega}:=c . c,
$$

which satisfies the order 0 and 1 conditions but not order 2 , and so can not implement the $\Gamma(\mathcal{C} \ell(M))$ self-Morita equivalence.

But \exists another J_{Ω}^{\prime} on $\Omega(M)$: the main anti-involution \circ c.c.,

$$
\begin{equation*}
J_{\Omega}^{\prime}=(-)^{k(k-1) / 2} \circ c . c . \quad \text { on } \quad \Omega^{k}(M), \tag{9}
\end{equation*}
$$

that interchanges the actions λ and ρ.
It satisfies all the order 0,1 and 2 conditions and does implement the $\Gamma(\mathcal{C} \ell(M)-\Gamma(\mathcal{C} \ell(M))$ self-Morita equivalence (!).
Clearly $\left(J_{\Omega}^{\prime}\right)^{2}=\epsilon=+1$, \& also $\epsilon^{\prime \prime}=1$ for χ_{Ω} but for χ_{Ω}^{\prime} instead of a sign $\epsilon^{\prime \prime}$ we need the other grading

$$
\begin{equation*}
J_{\Omega}^{\prime} \chi_{\Omega}^{\prime}=\epsilon^{\prime \prime} \chi_{\Omega} \chi_{\Omega}^{\prime} J_{\Omega}^{\prime} . \tag{10}
\end{equation*}
$$

However not even this works for ϵ^{\prime}; we need:

$$
\begin{equation*}
\nu J_{\Omega}^{\prime} \not D=\epsilon^{\prime} \not D J_{\Omega}^{\prime} \nu, \quad \text { where } \quad \nu=(-)^{k(k+1) / 2} \tag{11}
\end{equation*}
$$

digression: twisted real structure

This fits [Brzezinski,Ciccoli,LD,Sitarz]; [LD,Magee]:
Let $\nu \in B(H)$ with $\nu^{-1} \in B(H)$, such that $A d_{\nu} \in A u t A$.
By ν-twisted 1st (resp. 2nd) order condition we mean that $\forall a, b \in A$

$$
\begin{gathered}
{\left[[D, a], J b J^{-1}\right]_{A d_{\nu}^{2}}=0} \\
{\left[[D, a],\left[D, J b J^{-1}\right]_{A d_{\nu}^{2}}\right]_{A d_{\nu}^{2}}=0}
\end{gathered}
$$

while by ν-twisted ϵ^{\prime} (resp. $\epsilon^{\prime \prime}$) condition we mean that

$$
D J \nu=\epsilon^{\prime} \nu J D, \quad \gamma J \nu=\epsilon^{\prime \prime} \nu J \gamma \quad \text { with } \epsilon^{\prime}, \epsilon^{\prime \prime} \in\{+,-\} .
$$

Actually, J_{Ω}^{\prime} is mildly twisted as $\nu^{2}=1$ (so plain order conditions). Another example: conformal rescaling $h D h$ by $J A J \ni h>0$. In a project with A. Sitarz yet a wider extension: multi-twisting i.e. $D=\sum_{j} D_{j}$ with $\nu_{j} 1 \mathrm{O}, \forall j$.

Then we are closed under the product of S.T., and include 'asymmetric NC torus' ([LD, Sitarz], [Khalkhali...]), matrix conformally rescaled D [Khalkhali,Sitarz])
\& partially rescaled D by $\omega \in \Omega_{D}(A)$ on S^{1}-bundles [LD, Sitarz].

digression²: real/modular twisted ST

(1). In [Martinetti, Landi, Lizzi...] real twisted ST (with $[D a-\rho(a) D] \in B(H))$.
(2). In "Crossed product" [Bruno, Thierry] another real modular S.T..

In [Brzezinski, L.D., Sitarz] a method to "untwist" 1. (in some cases) to our framework.
Also there a table with 3 twist types (for conformal case): (1) fits. A. Magee checks if (2). also fits (?) or if it can be "untwisted" (?).

The underlying arena of $\nu \mathrm{SM}$ by Connes et.al. is ordinary (spin) manifold $M \times$ a finite quantum space F, described by the algebra $C^{\infty}(M) \otimes A_{F}$, where

$$
A_{F}=\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C})
$$

The Hilbert space is

$$
L^{2}(S) \otimes H_{F}
$$

where

$$
H_{F}=\mathbb{C}^{96}=: H_{f} \otimes \mathbb{C}^{3},
$$

with \mathbb{C}^{3} corresponding to $g=3$ generations, and

$$
H_{f}=\mathbb{C}^{32} \simeq M_{8 \times 4}(\mathbb{C})
$$

with basis labelled by particles and antiparticles, we arrange as

$$
\left[\begin{array}{cccc}
\nu_{R} & u_{R}^{1} & u_{R}^{2} & u_{R}^{3} \\
e_{R} & d_{R}^{1} & d_{R}^{2} & d_{R}^{3} \\
\nu_{L} & u_{L}^{1} & u_{L}^{2} & u_{L}^{3} \\
e_{L} & d_{L}^{1} & d_{L}^{2} & d_{L}^{3} \\
\bar{\nu}_{R} & \bar{e}_{R} & \bar{\nu}_{L} & \bar{e}_{L} \\
\bar{u}_{R}^{1} & \bar{d}_{R}^{1} & \bar{u}_{L}^{1} & \bar{d}_{L}^{1} \\
\bar{u}_{R}^{2} & \bar{d}_{R}^{2} & \bar{u}_{L}^{2} & \bar{d}_{L}^{2} \\
\bar{u}_{R}^{3} & \bar{d}_{R}^{3} & \bar{u}_{L}^{3} & \bar{d}_{L}^{3}
\end{array}\right]
$$

(1,2,3=colors).

The action of $(\lambda, q, m) \in A_{F}$, diagonal in generations, on H_{f} is:

$$
\left[\begin{array}{ccccc}
{\left[\right]} & & & & \tag{12}\\
& 0_{4} & & & \\
& {\left[\begin{array}{l|lll}
\lambda & 0 & 0 & 0 \\
\hline 0 & & & \\
0 & & m & \\
0 & & &
\end{array}\right]}
\end{array}\right]
$$

The grading is $\gamma_{S} \otimes \gamma_{F}$, where

$$
\gamma_{F}=\left[\begin{array}{ll}
1_{2} & \tag{13}\\
& -1_{2}
\end{array}\right] \otimes 1_{3}
$$

on leptons and opposite on quarks.

$\nu \mathbf{S M}: J_{F}$ \& D_{F}

The real conjugation is $J=J_{S} \otimes J_{F}$, where J_{F} on H_{f} is

$$
J_{F}\left[\begin{array}{l}
v_{1} \tag{14}\\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
v_{2}^{*} \\
v_{1}^{*}
\end{array}\right]
$$

Finally, the Dirac operator is $D=\not D \otimes \mathrm{id}+\gamma_{S} \otimes D_{F}$, where

$$
\begin{equation*}
D_{F} \simeq\left(D_{l} \oplus D_{q}^{(3)}\right) \oplus 0^{(16 g)}\left(+ \text { part commuting with } A_{F}\right) \tag{15}
\end{equation*}
$$

Here $g=3$ denotes the number of generations, and $D_{l}, D_{q} \in M_{4 g}$ acting on leptons and quarks, respectively, as
$D_{l}=\left(\begin{array}{cc|cc}0 & 0 & \Upsilon_{\nu} & 0 \\ 0 & 0 & 0 & \Upsilon_{e} \\ \hline \Upsilon_{\nu}^{*} & 0 & 0 & 0 \\ 0 & \Upsilon_{e}^{*} & 0 & 0\end{array}\right), \quad D_{q}=\left(\begin{array}{cc|cc}0 & 0 & \Upsilon_{u} & 0 \\ 0 & 0 & 0 & \Upsilon_{d} \\ \hline \Upsilon_{u}^{*} & 0 & 0 & 0 \\ 0 & \Upsilon_{d^{*}} & 0 & 0\end{array}\right)$,
with (unitarily diagonalizable) Υ 's $\in M_{g}$.

With all that:

- $\mathcal{G}:=\left\{U=u J u J^{-1} \mid u \in A, \operatorname{det} U=1\right\} \simeq U(1) \times S U(2) \times S U(3)$
(S.M. gauge group)
- all the fundamental fermions in H have the correct S.M. charges w.r.t. $\mathcal{G} \quad$ (broken to $\left.U(1)_{e m} \times S U(3)\right)$
- the 1 -forms $a[D, b], a, b \in A$ yield the S.M. gauge fields $A_{\mu}, W^{ \pm}, Z, G_{\mu}$ (from the part $D D$ of D), plus the complex scalar (weak doublet) Higgs field (from the part D_{F} of D).

SOME MERITS:

- gauge \& Higgs field as a connection,
- explains why only the fundamental reps of \mathcal{G},
- a simple spectral action $\operatorname{Tr} f(D / \Lambda)$ reproduces (besides gravity) the bosonic part of $\mathcal{L}_{S M}$ as the lowest terms of expansion in Λ, \& and $<\phi, D \phi>$ the (Wick-rotated) fermionic part
- couples to gravity on M

Internal geometry of $\nu \mathrm{SM}$ (1)

The above "almost commutative" geometry is described by a ST

$$
\left(C^{\infty}(M), L^{2}(S), \not D\right) \times\left(A_{F}, H_{f}, D_{F}\right)
$$

that is a product of the 'external' canonical ST on spin manifold M with the 'internal' finite ST.

What is the geometric meaning of $\left(A_{F}, H_{f}, D_{F}\right)$?
Does it also correspond to a (noncommutative) spin manifold ? Are the elements of H_{f} 'Dirac spinors' in some sense ?

Def

A spectral triple (A, H, D) is called spin $_{c}$
if H contains densely a Morita equivalence $\mathcal{C} \ell_{D}(A)$ - A bimodule and it is called spin if the right action of $a \in A$ is $J a^{*} J^{-1}$.
Furthermore the elements of H are called quantum Dirac spinors ("charged" or "neutral", respectively).

Answer: 'NO' [Farnsworth, PhD], c.f. [FD'A, LD], unless ...

Internal geometry of ν SM (2)

But may be (A, H, D) is some analogue of de-Rham forms?

Def

A spectral triple (A, H, D) is called Hodge $_{c}$ if H contains densely a Morita equivalence $\mathcal{C} \ell_{D}(A)-\mathcal{C} \ell_{D}(A)$ bimodule, and Hodge if the right $\mathcal{C} \ell_{D}(A)$-action is implemented by J.
Furthermore we then say that H consists of, respectively, complex or real quantum de Rham forms.

After a scrupulous analysis, first for 1 g in [LD,FD'A,AS]:

Theorem (LD,AS)

Assume that both Υ_{e} and Υ_{ν} have 3 distinct non-zero eigenvalues and in the eigenbasis of Υ_{e} no matrix element of unitary U_{l} which diagonalizes Υ_{ν} is of modulus 1, and analogously for $\Upsilon_{u}, \Upsilon_{d} \& U_{q}$. Let also any eigenvalue of Υ_{ν} be distinct from any eigenvalue of Υ_{u}, and any eigenvalue of Υ_{e} be distinct from any eigenvalue of Υ_{d}. Then the Hodge property holds for D_{F}.

In the basis where

$$
\begin{equation*}
D_{F} \simeq\left(D_{l} \oplus D_{q}^{3}\right) \oplus 0^{16 g}+\left(\text { smth. } \in A_{F}^{\prime}\right) \tag{17}
\end{equation*}
$$

denoting $\mathbf{n}:=M_{n}$,

$$
\begin{equation*}
\pi\left(A_{F}\right) \simeq(\mathbf{1} \oplus \tilde{\mathbf{1}} \oplus \mathbf{2})^{4 g} \oplus(\mathbf{1} \oplus \mathbf{3})^{4 g} \tag{18}
\end{equation*}
$$

Therefore $\mathcal{C} \ell$ contains $\mathbf{1}^{4 g} \oplus \mathbf{3}^{4 g}$, so $\mathcal{C} \ell^{\prime}$ must contain $\mathbf{4 g} \oplus \tilde{\mathbf{4 g}}^{3}$ and if the Hodge duality holds so must $\mathcal{C} \ell$.
But the other algebras besides $\mathbf{1}^{4 g} \oplus \mathbf{3}^{4 g}$ that $\mathcal{C} \ell$ contains are generated by $(\mathbf{1} \oplus \tilde{\mathbf{1}} \oplus \mathbf{2})^{g} \& D_{l} \quad$ and $\quad(\mathbf{1} \oplus \tilde{\mathbf{1}} \oplus \mathbf{2})^{3 g}$ \& $D_{q}^{3}([\mathrm{P}, \mathrm{S}])$. Thus the only possibility that the Hodge condition holds is when these two algebras are exactly 4 g and $\tilde{4 g}^{3}(\approx \tilde{4 \mathrm{~g}})$.
For that check if the only matrix that commutes with them is $\mathbb{C} 1$. Start with leptons:

Proof: partial condition 2

A matrix that commutes with $(\mathbf{1} \oplus \tilde{\mathbf{1}} \oplus \mathbf{2})$ has a form $P_{1} \oplus P_{2} \oplus\left(1_{2} \otimes P_{3}\right)$, where $P_{1}, P_{2}, P_{3} \in \mathbf{g}$.
If it also commutes with D_{l} then:

$$
\begin{array}{ll}
P_{1} \Upsilon_{\nu}=\Upsilon_{\nu} P_{3}, & P_{2} \Upsilon_{e}=\Upsilon_{e} P_{3} \\
P_{3} \Upsilon_{\nu}^{*}=\Upsilon_{\nu}^{*} P_{1}, & P_{3} \Upsilon_{e}^{*}=\Upsilon_{e}^{*} P_{1}
\end{array}
$$

But Υ_{ν} should be invertible (as otherwise \exists solution $P_{1} \neq 1$). Similarly for Υ_{e} and P_{2}.

Moreover Υ_{s} are normal so we infer that $P_{1} \& P_{3}$ must commute with $\Upsilon_{\nu} \Upsilon_{\nu}^{*}$ whereas $P_{2} \& P_{3}$ must commute with $\Upsilon_{e} \Upsilon_{e}^{*}$.
Therefore in order $\quad P_{1}=P_{3}=P_{2} \sim 1$, by Schur's lemma, the pair $\Upsilon_{\nu} \Upsilon_{\nu}^{*}$ and $\Upsilon_{e} \Upsilon_{e}^{*}$ should also generate the full algebra M_{g}.

Proof: partial condition 3

The latter condition, by Burnside theorem means (for $g=3$) that $\Upsilon_{\nu} \Upsilon_{\nu}^{*}$ and $\Upsilon_{e} \Upsilon_{e}^{*}$ do not share a common eigenvector.
Since this is $U(3)$ invariant issue (inessential for the algebra action) w.l.o.g. we can assume that say Υ_{e} is diagonal, while Υ_{ν} is diagonalized by some $U_{l} \in U(3)$. Then U_{l} should not map any the basis vectors to another basis vector.
Assuming that both Υ_{e} and Υ_{ν} have 3 distinct $(\neq 0)$ eigenvalues, we only need that in the eigenbasis of Υ_{e} no matrix element of U_{l} is of modulus 1 (or that some row and some column has two zeros).
Similar arguments hold for quarks: to assure that the algebra generated by $(\mathbf{1} \oplus \tilde{\mathbf{1}} \oplus \mathbf{2}) \& D_{q}$ is the full $\mathbf{4 g}$ it suffices that (diagonal) Υ_{u} has 3 distinct $\neq 0$ eigenvalues and that invertible Υ_{d} is unitarily diagonalized by $U_{q} \in U(3)$ with properties like U_{l}.

This was only a partial condition for the Hodge property; we need still that $(\mathbf{1} \oplus \tilde{\mathbf{1}} \oplus \mathbf{2})^{(2)} \& D_{l} \oplus D_{q}$ generate full $\mathbf{4 g} \oplus \tilde{\mathbf{4 g}}$, which imposes certain requirements that relate D_{l} and D_{q}.
If not, i.e. generate only a SUBalgebra, then there would exist a matrix in 8 g that commutes with both, and which w.l.g. can be taken hermitian (as $D_{l} \& D_{q}$ are such) of the form

$$
\left(\begin{array}{cc}
c_{1} 1_{4 g} & Q \\
Q^{*} & c_{2} 1_{4 g}
\end{array}\right)
$$

where $c_{1}, c_{2} \in \mathbb{R}$ and

$$
0 \neq Q=Q_{1} \oplus Q_{2} \oplus\left(1_{2} \otimes Q_{3}\right)
$$

with each $Q_{1}, Q_{2}, Q_{3} \in \mathbf{g}$.

Proof: full condition 2

We get:

$$
D_{l} Q=Q D_{q}, \quad D_{q} Q=Q D_{l}
$$

which leads to:

$$
\Upsilon_{\nu} Q_{3}=Q_{1} \Upsilon_{u}, \Upsilon_{e} Q_{3}=Q_{2} \Upsilon_{d}, \Upsilon_{\nu}^{*} Q_{1}=Q_{3} \Upsilon_{u}^{*}, \Upsilon_{e}^{*} Q_{2}=Q_{3} \Upsilon_{d}^{*}
$$

and by simple manipulations

$$
\begin{array}{ll}
\left(\Upsilon_{\nu} \Upsilon_{\nu}^{*}\right) Q_{1}=Q_{1}\left(\Upsilon_{u} \Upsilon_{u}^{*}\right), & \left(\Upsilon_{e} \Upsilon_{e}^{*}\right) Q_{2}=Q_{2}\left(\Upsilon_{d} \Upsilon_{d}^{*}\right) \\
\left(\Upsilon_{\nu}^{*} \Upsilon_{\nu}\right) Q_{3}=Q_{3}\left(\Upsilon_{u}^{*} \Upsilon_{u}\right), & \left(\Upsilon_{e}^{*} \Upsilon_{e}\right) Q_{3}=Q_{3}\left(\Upsilon_{d}^{*} \Upsilon_{d}\right) .
\end{array}
$$

Thus in order $(\mathbf{1} \oplus \tilde{\mathbf{1}} \oplus \mathbf{2})^{(2)}$ \& $D_{l} \oplus D_{q}$ generate full $\mathbf{4 g} \oplus \tilde{\mathbf{4 g}}$, it suffices then that $Q_{1}=Q_{2}=Q_{3}=0$ are the only solutions.
Due to the diagonal form of the mixing matrices $\Upsilon_{e} \& \Upsilon_{u}$, and unitary diagonalizability of $\Upsilon_{\nu} \& \Upsilon_{d}$, this holds when any eigenvalue of Υ_{ν} is distinct from any eigenvalue of Υ_{u}, and any eigenvalue of Υ_{e} is distinct from any eigenvalue of Υ_{d}.

- Leptons: $\Upsilon_{e}=\delta_{l}^{\downarrow}=\operatorname{diag}\left(m_{e}<m_{\mu}<m_{\tau}\right)$, with $0<m_{e}$ and $\Upsilon_{\nu}=U_{l} \delta_{l}^{\uparrow} U_{l}^{*}$, with $\delta_{l}^{\uparrow}=\operatorname{diag}\left(m_{\nu_{e}}<m_{\nu_{\mu}}<m_{\nu_{\tau}}\right) \&$

$$
U_{l}=U_{\mathrm{PMNS}}=\left[\begin{array}{rrr}
0.82 \pm 0.01 & 0.54 \pm 0.02 & -0.15 \pm 0.03 \\
-0.35 \pm 0.06 & 0.70 \pm 0.06 & 0.62 \pm 0.06 \\
0.44 \pm 0.06 & -0.45 \pm 0.06 & 0.77 \pm 0.06
\end{array}\right]
$$

- Quarks: $\Upsilon_{u}=\delta_{q}^{\uparrow}, \Upsilon_{d}=U_{q} \delta_{q}^{\downarrow} U_{q}^{*}$, with both $\delta_{q}^{\uparrow}, \delta_{q}^{\downarrow}$ diagonal with different positive masses \&
$U_{q}=U_{\mathrm{CKM}}=\delta_{q}^{\uparrow}$, parametrized by
$\theta_{12}=13.04 \pm 0.05, \theta_{23}=2.38 \pm 0.06, \theta_{13}=0.201 \pm 0.011$ and $\delta_{13}=1.20 \pm 0.08$,
satisfy 1st part of our conditions.

Full Hodge duality

Finally, also the lepton masses are different from quark masses, so all (but $m_{\nu_{e}} \neq 0$?) our conditions are satisfied, so:

YES!

Main result (LD,AS)

Provided there is no massless neutrino, the Standard Model satisfies the internal quantum Hodge condition and the flavor multiplet of fundamental fermions constitutes quantum de-Rham forms.

This adds mainly to the conceptual significance of the (noncommutative) geometry of S.M, which as stressed by Connes brings a message about the geometric nature of the space-time ...

Geometric conclusions

> The $\nu S M$ interprets geometry of the $S M$ as the gravity on the product $M \times F$ of a (Riemannian) manifold M with a finite noncommutative 'internal' space F. The multiplet of fundamental fermions that constitute H_{F}, each a Dirac spinor on M, corresponds just to fields on F.

We show that the geometric nature of this flavor multiplet is not a quantum analogue of Dirac spinors, but of de-Rham forms on F. I.e. not only the 2nd O.C. but in fact the Hodge property holds: $\mathcal{C} \ell_{D}(A)^{\prime}=J \mathcal{C} \ell_{D}(A) J$ in the full experimental range of values of CKM and PMNS coefficients.

- Can grasp other features of SM with other type of structures ? Jordan algebras ?
L. Boyle, S. Farnsworth, New J. Phys. 16 (2014) 123027
A.H. Chamseddine, A. Connes, Resilience of the Spectral Standard Model, JHEP 1209 (2012) 104.
A. Connes, On the spectral characterization of manifolds, J. Noncommut. Geom. 7 (2013) 1-82.
F. D'Andrea, L. Dąbrowski, The Standard Model in Noncommutative Geometry and Morita equivalence, J. Noncommut. Geom. 10 (2016) 551-578.
L. Dąbrowski, F. D'Andrea, A Sitarz, The Standard Model in noncommutative geometry: fundamental fermions as internal forms, Lett. Math. Phys., 108: 1323, 2018
L. Dąbrowski, A. Sitarz, Fermion masses, mass-mixing and the almost commutative geometry of the Standard Model, JHEP 2019:68, 2019
S. Lord, A. Rennie, J.C. Várilly, Riemannian manifolds in noncommutative geometry, J. Geom. Phys. 62 (2012) 1611-1638.

