Noncommutative inner geometry
of the Standard Model

Ludwik Dabrowski
SISSA, Trieste (1)

A non-commutative C*-algebra is commonly regarded as the algebra
of continuous functions on a 'quantum space’. Its smooth and metric
structures can be described in terms of a spectral triple which involves
an analogue of the Dirac operator. The Standard Model of fundamen-
tal particles in physics can be described as the almost commutative
geometry, the inner part of which can be interpreted as a quantum
analogue of the de-Rham-Hodge spectral triple

Krakéw, 9 November 2019
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Goal

Unveil the geometric nature of the flavour multiplet of fermions
in the Standard Model (acronym: SM) of fundamental particles

@ Dirac spinors, de Rham forms and Clifford fields.
@ quantum analogue of ().

© application to noncommutative SM (acronym: vSM).

\

Proviso: quantum = noncommutative (acronym: NC)
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Unreasonably) successful Standard Model

STANDARD MODEL OF ELEMENTARY PARTICLES

& interactions
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Lagrangian

1 1, 9 1 1 5 1
Lsm = —Eavgﬁavg: — 9.0, g%ghgS — ngr“‘" 199°gl s gilgs — Wi a W — MPW W, — Eavz“{avz‘; - sz‘;zg —3AVAY — igew(dvZR(WiWy —Wiw,)

) W W e e 1 . .
Z(WEDLW, — Wi Wil o Z0 (W 0y Wy — W5 0 W) — g (B AW Wy — W W) — Ay (Wi W, = Wi W) 4+ AWy W W, — Wy 0 WD) — 3P WI WL Wi Wy

S LPWIWLWIW, g (ZOW ZIWs — ZLZAWIWS) + 0755 AW AW, — AWAWWE WS )+ gPswen(AuZ (W Wy — Wi W) —2AZ0WI W) — Lo, HauH

Mo 00y — 10,070,0 — m( M +—H+ L 4 0000 + 200" ))
1 1
GO AT 200 — MWW~ 2q B0 Z0H — ig (W 60,07 — 070,0) ~ WE16°0,07 — 070,0°)) + 30 (Wi (HO0™ — 40, H)

2
Wy (MO0 — &0, H) + 5 gf[zwam“ ¢“0.AH)+M%Z?.amuwgm W0 t) g M (W0 — W) + igsu MAL W 6™ — Wid™)

—9c2 1, , . 1,1 , , . ,
95 B 21007 — 6007 g A6 00T — §70.07) — PWIW, (HE+ (077 207 07) 1 72 08 @ 2025 - 170 0)

2L W) 0 IO W) Lot A WG W) B AW Woa) 0o D Z0A

1, . - . ~ 2 1
—g*sZAALDT O + 319: 5@y q7)gp — e Myd +md)er — vMyd + mh)vh — W (v + mA)u} — d}yd + mY)d} +igswAy (—(e*v“eh + ;(u?v“u,*] - E[cl,*yval,*])

~ , 5 o d 5 - 8, . s i - len 1 e 5 .
gZ"((vv L+y V) + (eAv“usé,—1—v')c*]+(d,*ngsi,—1—v’)d;‘]+(\nﬁv“(l—gs@+v’)u?))+2‘—j§wg (P14 90Uy e¥) + (@Y (1 +7°) Cad))

Wi (€L Ly YY) 4 (0 y )+ e (iU (1= y7)e%) (P UT (14 7)e) 4 o (U] (1 y70ve)
m m} igm) igm} 1 P e V1 S T awvod
s 1y - S — JREHE ) + JT YV - PRGN - T ME, (13l — 7 ME, (T =¥,
i i 5y4% o 5)dx ig - 3 51uf) — m* (@ 5)uk mh mys
+2M"\/§¢+ (fms(u?ch(l—y»]dj)-mﬁ[u?cmuy‘)d,wQM"ﬁd: (mﬁ(d?C;\K(Ier‘)uj]fmu(dfC;\K(l—y‘)u])7gv W) - @)

N
N_f on —ganM (H® + Hp¢" +2Hp ¢ ) — ég%ch (H+ (0" +4(07d7)*

4/30



Conceptually /Geometrically:

U(1l) x SU(2) x SU(3) J
gauge fields (bosons) @ connection
minimally coupled to (~ multiplet of vectors)
matter fields (fermions) on (a multiplet of) spinors;
& Higgs field (boson) & a doublet of scalars )

2nd quantization with gauge fixing,
spontaneous symmetry breaking,
regularization & perturbative renormalization

However unexplained:
e contents of particles (especially 3 families)
e several parameters,
e not included the 4th known interaction: gravitation
+ its fundamental symmetry: general relativity (diffeomorphisms)

e & more
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Spectral Triple

NC geometry by A. Conneset.al. is primarily based on algebras
rather than groups, and it enriches the Gelfand-Naimark & SF

’topological spaces +— commutative C* —algebras ‘

& Serre-Swan

‘vector bundles <— modules ‘

equivalences, by encoding smoothness, calculusand metricstructure
in terms of spectral triples (acronym: ST), -+

(A,H,D)

which consists of a x-algebra A of operators on Hilbert space H
and D = DT on H, such that

[D,A] c B(H), (D-1i)"'ek(H).
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A ST is even if 3 a Zo-grading x of H, x? =1, x = x,
x,A] =0, {x,D}=0.

A ST is real if 3 a real structure, i.e. antiunitary J on H,
such that denoting B’ the commutant of B C B(H),

JAJ™1 c A, (order 0 condition). (1)
In addition, we call
JAJ™' c [D, 4], (order1 condition) (2)
d
o J[D,AlJY € [D, A}, (order 2 condition). (3)

Denote |Clp(A)| the algebra generated by AU [D, A]
& call its elements quantum Clifford fields.

Such J permits right actions
ab:=Jb*J! on H,
so that (1), (2), (3) mean that H contains densely a
A—A, A-Cilp(A) and Clp(A)—Clp(A)
bimodule, resp.
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Canonical ST

Prototype: the canonical ST on a spin manifold M (dim(M)even)

(COO(M)7 L2(SM)7 lp)'
where C*°(M) is the algebra of smooth complex functions on M,

Sy is rankc=2" Dirac bundle on M whose sections I'*°(Sy;) =:T"
(spinor fields) carry a faithful irrep 7 of the algebra of sections
I'>°(Clyr) (Clifford fields) of the Clifford bundle (& completions)

v D(Clur) = Endon T(Su) C B(L*(Sm)) (4)
and I is the usual Dirac operator on M:
D=40V (=) 9V, locally), (5)

with V : T' = Qp; ® T the spin cohnection & F:T(Cly) I —T.
% Now ~ in (4) means

I'(Snr) is a Morita equivalence I'(Clyr)—C(M) bimodule )

and this exactly characterizes spin. manifolds M [Plymen].
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Canonical ST 2

Due to [P, a] = v(da) for a € C*°(M), indeed

Clp(C(M)) ~ T=(CL(M)).

Next, 3 a "chiral” Zy-grading x4 of L?(S)

& also 3 real structure Jg that satisfies order 0 and 1 condition,
but obviously not the order 2 since it implements Morita eqv.

JsClp(C(M))Jg" = C(M);
this precisely characterizes spin manifolds.

Jg satisfies also
Ji=cidy, JsP=¢DJs, Jsxs=e€"xs s, (6)
where €, €/, €” € {£1}.

% The canonical ST fully encodes the geometric data on M,
that can be indeed reconstructed [Connes]. -

But it is not the only natural ST on a Riemannian manifold M, 3
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de Rham-Hodge ST

(C°°(M), L*(U(M)),d + d*),

where Q(M ) is the space of de Rham differential forms on M,
d is the exterior derivative and d* its adjoint with respect to the
hermitian product (from the metric g) on M.

The operator d + d* is Dirac-type:
d+d"=XoV, (7)
where V is the Levi-Civita connection and the representation
A T(CUM))—=EndonQ(M), AMv)=vA-va, veT™M (8)
is equivalent to the left regular self-representation of I'(C4(M)).
Clearly [d + d*,a] = A(da) so again

|Claya(C(M) = T(CE(M)). |
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de Rham-Hodge ST 2

Thereisalso an anti-representation (= right regular one of I'(C4(M)))
p: T(CUM))—=EndcanQ(M), p(v) = (vA+va)xa,

where x, is the grading £1 on even/odd forms.

Furthermore, since A\, and p,» commute, Q(M) is a
[(Ce(M))-T'(CL(M)) bimodule, equivalent to I'(C4(M)), and thus

Q(M) is a Morita equivalence T'(C4(M))—T'(C4(M)) bimodule )

which characterizes (M) up to ® with a complex line bundle.

Besides the parity grading x(, there is another
X¢, = normalized Hodge star.

With them (as well known):

index(d + d*) = Euler, resp., signature of M.
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de Rham-Hodge ST 3

On any M 3 also a real structure on Q(M)
Jq :=c.c,
which satisfies the order 0 and 1 conditions but not order 2,
and so can not implement the I'(C4(M)) self-Morita equivalence.

But 3 another J;, on Q(M): the main anti-involution o c.c.,

Jo = (=)FED26 e on QF (M), (9)
that interchanges the actions A and p.

It satisfies all the order 0, 1 and 2 conditions and does implement
the I'(CO(M)-T'(CL(M)) self-Morita equivalence (!).

Clearly (J4)? =€ = +1, & also €’ =1 for x

but for i, instead of a sign ¢’ we need the other grading

Joxa = €'xaxaJa (10)
However not even this works for €; we need:
vIGID = €DJhy, where v = (—)Fk+D/2 (11)
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digression: twisted real structure

This fits [Brzezinski,Ciccoli,LD,Sitarz]; [LD,Magee]:
Let v € B(H) with v~ € B(H), such that Ad, € AutA.
By v-twisted 1st (resp. 2nd) order condition we mean thatVa,b € A

(D, a], JbJ ™ age =0,
(D, a],[D, JbJ g2 Jagz =0,
while by v-twisted € (resp.€”) condition we mean that
DJv=¢vJD, ~Jv=¢€"vJy withé, e’ € {+, —}.

Actually, J{, is mildly twisted as v* = 1 (so plain order conditions).

Another example: conformal rescaling hDh by JAJ>h>0.

In a project with A.Sitarz yet a wider extension: multi-twisting
ie. D= Zj D; with v;10, Vj.

Then we are closed under the product of S.T.,

and include 'asymmetric NC torus’ ([LD, Sitarz], [Khalkhali...]),
matrix conformally rescaled D [Khalkhali,Sitarz])

& partially rescaled D by w € Qp(A) on S'-bundles [LD, Sitarz].
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ression?: real/modular twisted ST

@. In [Martinetti, Landi, Lizzi...] real twisted ST (with

[Da — p(a)D] € B(H)).

@. In "Crossed product” [Bruno, Thierry] another real modular
S.T.

In [Brzezinski, L.D., Sitarz] a method to "untwist” 1. (in some
cases) to our framework.

Also there a table with 3 twist types (for conformal case): (D fits.

A.Magee checks if . also fits (?) or if it can be "untwisted” (?).
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The underlying arena of ¥SM by Connes et.al. is
ordinary (spin) manifold M X a finite quantum space F,

described by the algebra C*>°(M) ® AR, where

|Ap = CoH® Ms(C).]

The Hilbert space is
L*(S) ® Hp,

where

Hp =C% = H; ® C?,

with C3 corresponding to g = 3 generations, and
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Hf = (C32 ~ M8X4((C)

with basis labelled by particles and antiparticles, we arrange as

(1,2,3=colors).

VR
€R
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The action of (A, q,m) € Ap, diagonal in generations, on H is:

'[)\ 00 01 T
0 A|0 0
{o o J 01
0 0
rafo o o> @
0
04 0 m
L 0 |
The grading is s ® vr, where
12
7F:|: 1]®13 (13)
—1a

on leptons and opposite on quarks.
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L/ES M: L])T é:t Ali)]T

The real conjugation is J = Js ® Jp, where Jr on Hy is
v vy
I
Finally, the Dirac operatoris D = ) ® id + vs ® Dp, where

Dp ~ (Dl @ D((JS)) @ 0169 (4 part commuting with Az) . (15)

Here g = 3 denotes the number of generations, and D;, D, € My,
acting on leptons and quarks, respectively, as

0 01T, 0 0O 0 |Y, O
B 0|0 T, B 0 0 | 0 Ty
Dy = T 0[]0 0 Dy = T 0|0 0 |’
0 Y[ 0 0 0 YTgx| 0 0
(16)

with (unitarily diagonalizable) Y's € M,.
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vSM

With all that:

e G :={U=uJuJ ' |ucAdetU =1} ~U(1)xSU(2)xSU(3)
(S.M. gauge group)

e all the fundamental fermions in H have the correct S.M. charges
w.r.t. G (broken to U(1)em x SU(3))

e the 1-forms a[D,b], a,b € A yield the S.M. gauge fields

A, W*,Z,G,, (from the part I) of D), plus the complex scalar
(weak doublet) Higgs field (from the part D of D).

SOME MERITS:

e gauge & Higgs field as a connection,

e explains why only the fundamental reps of G,

e a simple spectral action Trf(D/A) reproduces (besides gravity)
the bosonic part of Lgps as the lowest terms of expansion in A,

& and < ¢, Dp > the (Wick-rotated) fermionic part

e couples to gravity on M
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Internal geometry of YSM (1
The above “almost commutative” geometry is described by a ST
(CW(M)7L2(S)7lD) X (AF,Hf7DF),

that is a product of the 'external’ canonical ST on spin manifold M
with the 'internal’ finite ST.

What is the geometric meaning of (Ap, Hy, Dr) ?

Does it also correspond to a (noncommutative) spin manifold ?
Are the elements of H; 'Dirac spinors’ in some sense 7

Def

A spectral triple (A, H, D) is called spin,

if H contains densely a Morita equivalence C¢p(A)-A bimodule
and it is called spin if the right action of a € A is Ja*J .
Furthermore the elements of H are called quantum Dirac spinors
("charged” or "neutral”, respectively).

V.

Answer: 'NO’  [Farnsworth, PhD], c.f.[FD'A, LD], unless ... &
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Internal geometry of vSM (2

But may be (A, H, D) is some analogue of de-Rham forms?
Def

A spectral triple (A, H, D) is called Hodge. if H

contains densely a Morita equivalence C{p(A)-CLp(A) bimodule,
and Hodge if the right C{p(A)-action is implemented by J.
Furthermore we then say that H consists of, respectively,
complex or real quantum de Rham forms.

\

After a scrupulous analysis, first for 1g in [LD,FD'A,AS]:
Theorem (LD,AS)

Assume that both Y. and Y, have 3 distinct non-zero eigenvalues
and in the eigenbasis of Y. no matrix element of unitary U; which
diagonalizes Y, is of modulus 1, and analogously for Y, T4 & U,.
Let also any eigenvalue of Y, bedistinct from any eigenvalue of T,
and any eigenvalue of Y. be distinct from any eigenvalue of Y.
Then the Hodge property holds for Dp.
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Proof: partial condition

In the basis where
Dy ~ (D ® D¥) ©[0'% |+ (smth. € A7) . (17)

denoting n := M,
T(Ap)~(1@1a2)Ya|(193)Y)| (18)

Therefore C¢ contains , so C/' must contain 4g @ 4~g3

and if the Hodge duality holds so must C/.

But the other algebras besides 1%9 @ 3%9 that C/ contains are
generated by (1®1®2) & D; and (1@1®2)% & DS’ ([P.S])-
Thus the only possibility that the Hodge condition holds is when
these two algebras are exactly 4g and 4~g3 (=~ 4~g).

For that check if the only matrix that commutes with them is C 1.
Start with leptons:
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Proof: partial condition 2

A matrix that commutes with (1 ® 1 @ 2) has a form
P, @& P, ® (1, ® P3), where P, Py, P3 € g.
If it also commutes with D; then:

PlTl/ = TI/P37 PQTe = TeF)37

PsYl =7TEP, PsYr =P
But Y, should be invertible (as otherwise 3 solution P; # 1).
Similarly for T, and Ps.

Moreover Y's are normal so we infer that P; & P3 must commute
with T, T}, whereas P> & P3 must commute with T, Y.
Therefore in order P; = P3 = P, ~ 1, by Schur's lemma,

the pair T, Y} and T.Y7 should also generate the full algebra M.
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Proof: partial condition 3

The latter condition, by Burnside theorem means (for g = 3)
that Y, T} and Y.Y do not share a common eigenvector.

Since this is U(3) invariant issue (inessential for the algebra action)
w.l.o.g. we can assume that say T, is diagonal, while YT, is
diagonalized by some U; € U(3). Then U; should not map any the
basis vectors to another basis vector.

Assuming that both Y. and Y, have 3 distinct (+ 0) eigenvalues,
we only need that in the eigenbasis of T, no matrix element of U;
is of modulus 1 (or that some row and some column has two zeros).

Similar arguments hold for quarks: to assure that the algebra
generated by (191®2) & D, is the full 4g it suffices that
(diagonal) T, has 3 distinct # 0 eigenvalues and that invertible Y4
is unitarily diagonalized by U, € U(3) with properties like U;.
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Proof: full condition

This was only a partial condition for the Hodge property;
we need still that (1319 2)? & D; @ D, generate full 4g @ 4g,
which imposes certain requirements that relate D; and D,,.

If not, i.e. generate only a SUBalgebra, then there would exist a
matrix in 8g that commutes with both, and which w.l.g. can be
taken hermitian (as D; & D, are such) of the form

< c1lyy Q )
QY caly )’
where ¢1,c € R and

0#Q=0Q12 Q29 (12®Q3)

with each Q)1,Q2,Q3 € g.
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Proof: full condition 2

We get:
DiQ = QDy, DeQ = QDy,

which leads to:

T,Q3=Q1 1y, TeQz = Q2Yq, T,;Q1 = Q3Y,, T:0Q2 = Q37

and by simple manipulations

(T, Y5)Q1 = Q1 (Y, T7), (TeT2)Q2 = Q2(TaTy)
(T3700)Q3 = Q3(Y3Tw), (TeYXe)Q3 = Q3(Y3Ya) -

Thus in order (1@ 1@ 2)? & D; @ D, generate full 4g © 4g,
it suffices then that @1 = Q)2 = 3 = 0 are the only solutions.
Due to the diagonal form of the mixing matrices T, & T,

and unitary diagonalizability of T, & Y, this holds when

any eigenvalue of Y, is distinct from any eigenvalue of T,
and any eigenvalue of Y, is distinct from any eigenvalue of 1.
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Experimental data ?

e Leptons: T, = (5} = diag(me < my, < m;), with 0 < m, and
Y, = Uid Uy, with 8] = diag(m,, < my, <m,,) &

0.82+0.01 0.54+0.02 —0.15+0.03
U = Upyns = | —0.35+£0.06 0.70£0.06  0.62 & 0.06
0.444+0.06 —0.45+0.06 0.77 £0.06

o Quarks: T, = 0, Yq = U,0;U, with both &}, &; diagonal with
different positive masses &

Uy =Uckm = 52, parametrized by

012 = 13.04 £ 0.05, 023 = 2.38 £ 0.06, #13 = 0.201 + 0.011 and
013 = 1.20 + 0.08,

satisfy 1st part of our conditions.
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Full Hodge duality

Finally, also the lepton masses are different from quark masses,
so all (but m,, # 0 ?) our conditions are satisfied, so:

YES !

Main result (LD,AS)

Provided there is no massless neutrino, the Standard Model satisfies
the internal quantum Hodge condition and the flavor multiplet
of fundamental fermions constitutes quantum de-Rham forms.

This adds mainly to the conceptual significance of the
(noncommutative) geometry of S.M, which as stressed by Connes
brings a message about the geometric nature of the space-time ...
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Geometric conclusions

The vSM interprets geometry of the SM as the gravity

on the product M x F' of a (Riemannian) manifold M
with a finite noncommutative 'internal’ space F'.

The multiplet of fundamental fermions that constitute Hp,
each a Dirac spinor on M, corresponds just to fields on F' .

We show that the geometric nature of this flavor multiplet is not
a quantum analogue of Dirac spinors, but of de-Rham forms on F.
l.e. not only the 2nd O.C. but in fact the Hodge property holds:
Clp(A) = JClp(A)J in the full experimental range of values of
CKM and PMNS coefficients.

a Can grasp other features of SM with other type of structures ?
Jordan algebras ?
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