Some comments on Morita equivalence and spectral triples

References

Talk based on:
(FD \& L. Dabrowski,
The SM in NCG and Morita equivalence,
J. Noncommut. Geom. 10 (2016) 551-578.
(.) L. Dabrowski, FD \& A. Sitarz,

The SM in NCG: fundamental fermions as internal forms,
Lett. Math. Phys. 108 (2018) 1323.

09/11/2019

Noncommutative Geometry and the Standard Model
Kraków, 8-9 November 2019

Prelude

"A theory is a black box that we can shake to make predictions of physical observables."

- Classical Yang-Mills Theory: $\mathrm{G}=$ Lie group, $\mathrm{H}=$ Hilbert space, $\mathcal{L}=$ Lagrangian
- Noncommutative Geometry: $A=*$-algebra, $\mathrm{H}=$ Hilbert space, $\mathrm{D}=$ Dirac operator

The NCG approach

$$
A, H, D
$$

Two main goals:
\checkmark derive the Standard Model (the complicated Lagrangian) from simple geometric data;
\checkmark get some clues on unification with gravity.

Advantages

- The Lagrangian is not postulated but derived from the geometry;
- One gets for free the Higgs field (in the Standard Model case). . .
- ... and a theory coupled with (classical) gravity.

D encodes the free parameters of the theory \rightsquigarrow constrains on D?

Spinors or differential forms?

In the Standard Model of elementary particles, the representation π of the gauge group $\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$ and is dictaded by the experiments. One has:

$$
\mathrm{H}=\text { spinors } \otimes \mathbb{C}^{32} \otimes \underbrace{\mathbb{C}^{\mathrm{g}}}_{\mathrm{g} \text { generations }}
$$

The representation π is highly non-trivial. Where does it come from?

Consider the inclusion (in block form):

$$
\mathrm{U}(1) \times \operatorname{SU}(2) \times \operatorname{SU}(3) \rightarrow \operatorname{SU}(5), \quad(x, y, z) \mapsto\left(\begin{array}{cc}
x^{3} y & \\
& \bar{x}^{2} z
\end{array}\right)
$$

It turns out that π is the restriction of the natural representation of $\operatorname{SU}(5)$ on $\underbrace{\wedge^{\bullet}}_{\text {dim }=32}$.
Is H given by some kind of noncommutative differential forms?

Spectral triples (again!)

Definition

A unital spectral triple (A, H, D) is the datum of:
(i) a (real or complex) unital $*$-algebra A of bounded operators on a (separable) complex Hilbert space H,
(ii) a selfadjoint operator D on H with compact resolvent,
such that $a \cdot \operatorname{Dom}(D) \subset \operatorname{DomD}$ and $[D, a] \in \mathcal{B}(H)$ for all $a \in A$.
It is called

- even if $\exists \gamma=\gamma^{*}$ on H s.t. $\gamma^{2}=1, \gamma \mathrm{D}=-\mathrm{D} \gamma$ and $[\gamma, \mathrm{a}]=0 \forall \mathrm{a} \in \mathrm{A}$;
- real if \exists an antilinear isometry J on H s.t.

$$
\mathrm{J}^{2}= \pm 1, \quad \mathrm{JD}= \pm \mathrm{DJ}, \quad \text { and (only in the even case) } \quad \mathrm{J} \gamma= \pm \gamma \mathrm{J}
$$

and $\forall \mathrm{a}, \mathrm{b} \in \mathrm{A}$:
$\left[\mathrm{a}, \mathrm{Jb}^{-1}\right]=0$
$\left[[D, a], \mathrm{JbJ}^{-1}\right]=0$
(reality)
(1st order)

The Standard Model

[Picture from www.texample.net/tikz]

Lin
(2) H carries commuting representations of $C(M)$ and $C \ell(M, g)$.

In the former,
(3) H carries two commuting representation of $\mathcal{C \ell}(M, g)$.

Remarks

In both examples, (1) there exists a real structure J, is a spectral triple.

Two main examples belonging to this class:

- the Hodge operator $\mathrm{D}=\mathrm{d}+\mathrm{d}^{*}$ on $\mathrm{E}=\Lambda^{\text {even }} \mathrm{T}_{\mathbb{C}}^{*} M \oplus \bigwedge^{\text {odd }} \mathrm{T}_{\mathbb{C}}^{*} M$ (always even);
- the Dirac operator $\mathrm{D}=\not \square$ on the spinor bundle E (if M is a spin manifold).

6

Particles in a box. .

We arrange particles in a 4×4 matrix

$$
\left[\begin{array}{llll}
v_{\mathrm{R}} & u_{\mathrm{R}}^{1} & u_{\mathrm{R}}^{2} & u_{\mathrm{R}}^{3} \\
e_{\mathrm{R}} & \mathrm{~d}_{\mathrm{R}} & d_{\mathrm{R}}^{2} & d_{\mathrm{R}}^{3} \\
v_{\mathrm{L}} & u_{\mathrm{L}}^{1} & u_{\mathrm{L}}^{2} & u_{\mathrm{L}}^{3} \\
e_{\mathrm{L}} & \mathrm{~d}_{\mathrm{L}}^{1} & d_{\mathrm{L}}^{2} & \mathrm{~d}_{\mathrm{L}}^{3}
\end{array}\right]
$$

So, for example the unit vectors:
$\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \quad$ and $\quad \frac{1}{\sqrt{2}}\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$
represent a right-handed electron a mix right-handed neutrino/left-handed electron. Internal degrees of freedom are encoded in the Hilbert space

$$
\underset{\text { (particles) }}{\mathrm{M}_{4}(\mathbb{C})} \oplus \underset{\text { (antiparticles) }}{\mathrm{M}_{4}(\mathbb{C})} \simeq \mathbb{C}^{32}
$$

The Standard Model spectral triple

The underlying space is
$\underset{\text { (spin manifold) }}{\mathrm{M}} \times \underset{\text { (finite nc space) }}{\mathrm{F}}$
with finite-dim. spectral triple $\left(A_{F}, H_{F}, D_{F}, \gamma_{F}, J_{F}\right)$ given by:

- $\mathrm{H}_{\mathrm{F}} \simeq \mathbb{C}^{32 \mathrm{~g}} \leadsto$ internal degrees of freedom of the elementary fermions. Total nr :

| 2 | 4 |
| :---: | :---: | :---: | :---: |
| (weak isospin) | $\times \underset{\substack{\text { (lepton + quark } \\ \text { in 3 colors) }}}{ }$ |

- $\gamma_{\mathrm{F}}=$ chirality operator
- $A_{F}=\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C})$
- $\mathrm{J}_{\mathrm{F}}=$ charge conjugation
- D_{F} encodes the free parameters of the theory.

Dirac vs. Hodge in NCG

Let (A, H, D, J) be a finite-dimensional real spectral triple. We set:

$$
\xi^{\circ}:=\mathrm{J}^{*} \mathrm{~J}^{-1}, \quad \forall \xi \in \operatorname{End}_{\mathbb{C}}(\mathrm{H})
$$

If B is a subset of $\operatorname{End}_{\mathbb{C}}(H)$, we call:

$$
\begin{aligned}
& \mathrm{B}^{\circ}:=\left\{\xi^{\circ}: \xi \in \mathrm{B}\right\} ; \\
& \mathrm{B}^{\prime}:=\left\{\xi, \operatorname{End}_{\mathbb{C}}(\mathrm{H}):[\xi, \eta]=0 \forall \eta \in \mathrm{~B}\right\} \quad \text { (the commutant of } B \text {) }
\end{aligned}
$$

Finally, we define the A-bimodule of 1-forms and the Clifford algebra as:
$\Omega_{D}^{1}(A):=$ complex vector subspace of $\operatorname{End}_{\mathbb{C}}(H)$ spanned by $a[D, b], a, b \in A$;
$\mathcal{C} \ell_{D}(A):=$ complex $*$-subalgebra of $\operatorname{End}_{\mathbb{C}}(H)$ generated by A and $\Omega_{D}^{1}(A)$.
Remark
Reality +1 st order cond. are equivalent to: $\quad A^{\circ} \subseteq \mathcal{C l}_{D}(A)$
The 2nd order condition is equivalent to: $\quad \mathcal{C} \ell_{D}(A)^{\circ} \subseteq \mathcal{C} \ell_{D}(A)^{\prime}$

We say that the spectral triple has the

Dirac property if (\star)

In the Standard Model, can we use the condition(s)

$$
\begin{array}{cc}
\text { Dirac } & \text { Hodge } \\
\mathcal{C} \ell_{D}(A)^{\prime}=A^{\circ} & \mathcal{C} \ell_{D}(A)^{\prime}=\mathcal{C} \ell_{D}(A)^{\circ}
\end{array}
$$

to "select" good Dirac operators?

Theorem

[FD \& L. Dabrowski]
In order to satisfy the Dirac condition, one must modify the operator studied by A. Connes and A. Chamseddine. As a byproduct one gets:
\rightarrow a new scalar field;
\rightarrow a field coupling leptons with quarks.

Physical implications are discussed in:
(v) M. Kurkov and F. Lizzi, Phys. Rev. D 97 (2018) 085024.

Lemma

$D_{0}+D_{2} \in \Omega_{D}^{1}(A)$.

Lemma (1st order)

D satisfies the 1st order condition if and only if:

$$
D_{2}=0, \quad D_{1} \in A^{\prime} \quad \text { and } \quad D_{R} \text { satisfies the } 1 \text { st order condition. }
$$

Corollary

If (A, H, D, J) is a finite-dimensional real spectral triple and $D_{R} \in A^{\prime}$, then

$$
\Omega_{D}^{1}=\Omega_{D_{0}}^{1}
$$

and $\mathcal{C} \ell_{D}(A)$ is generated by $A_{\mathbb{C}}$ and D_{0}.

Lemma (2nd order)

Let (A, H, D, J) be a finite-dimensional real spectral triple with $D_{R} \in A^{\prime}$.
The 2nd order condition is satisfied if and only if $\left[D_{0}, D_{1}\right]=0$.

Finite-dimensional spectral triples

Let (A, H, D) be a finite-dim. spectral triple and J an antilinear isometry satisfying the reality condition. From the structure theorem for finite-dimensional C^{*}-algebras:

$$
A_{\mathbb{C}} \simeq \bigoplus_{i=1}^{N} M_{n_{i}}(\mathbb{C})
$$

Call P_{i} the unit of the summand $M_{n_{i}}(\mathbb{C}), Q_{i}:=J P_{i} J^{-1}$ and

$$
H_{k l}:=P_{k} Q_{l} H, \quad D_{i j, k l}:=P_{i} Q_{j} D P_{k} Q_{l}
$$

We can decompose the Dirac operator into four pieces:

$$
\mathrm{D}=\mathrm{D}_{0}+\mathrm{D}_{1}+\mathrm{D}_{2}+\mathrm{D}_{\mathrm{R}}
$$

where

$$
\begin{array}{ll}
D_{0}:=\sum_{i, j, k: i \neq k} D_{i j, k j}, & D_{1}:=\sum_{i, j, l: j \neq l} D_{i j, i l}, \\
D_{2}:=\sum_{\substack{i, j, l, k \\
i \neq k, j \neq l}} D_{i j, k l}, & D_{R}:=\sum_{i, j} D_{i j, i j} .
\end{array}
$$

The Hodge property

Lemma

Let (A, H, D, J) be finite-dim. real and $B \subseteq \operatorname{End}_{\mathbb{C}}(H)$ a unital complex $*$-algebra s.t.:

$$
\mathrm{B}^{\prime}=\mathrm{B}^{\circ} \quad \text { and } \quad \mathcal{C} \ell_{D}(A) \subseteq B
$$

The following are equivalent:
(a) the Hodge property holds;
(b) $\mathcal{C} \ell_{D}(A)^{\prime} \subseteq B^{\circ}$;
(c) $\mathcal{C} \ell_{D}(A)=B$.

For the Standard Model, the strategy to classify D's satisfying the Hodge property is:
(1) Define a suitable B independent of D and containing $C_{D}(A)$ (for any D).
(2) Check that $\mathrm{B}^{\circ} \subseteq \mathrm{B}^{\prime}$.
(3) Prove that $B^{\circ}=B^{\prime}$ (it is enough to show that $\operatorname{dim} B=\operatorname{dim} B^{\prime}$).
(4) Find under what conditions on D one has $\mathcal{C} \ell_{D}(A)^{\prime} \subseteq B^{\circ}$.

Given ($\left.A_{F}, H_{F}, J_{F}, \gamma_{F}\right)$ of the $v S M$, the D's satisfying 2nd order belong to a set union of four (intersecting) vector spaces. For almost all of these D's, the Hodge property is satisfied (in the above parameter space, such a property fails only on a measure zero subset).

Dirac \times Dirac is Dirac

All spectral triples here are (unital) real and finite-dimensional.
The product $S:=(A, H, D, J)$ of two spectral triples $S_{1}:=\left(A_{1}, H_{1}, D_{1}, \gamma_{1}, J_{1}\right)$ and $S_{2}:=\left(A_{2}, H_{2}, D_{2}, J_{2}\right)$ is given by

$$
A=A_{1} \otimes A_{2}, \quad H=H_{1} \otimes H_{2}, \quad D=D_{1} \otimes 1+\gamma_{1} \otimes D_{2}, \quad J=J_{1} \otimes J_{2} .
$$

Lemma

If $\gamma_{1} \in \mathcal{C} \ell_{D_{1}}\left(A_{1}\right)$, then

$$
\mathcal{C} \ell_{\mathrm{D}}(A)=\mathcal{C} \ell_{D_{1}}\left(A_{1}\right) \otimes \mathcal{C} \ell_{\mathrm{D}_{2}}\left(\mathrm{~A}_{2}\right)
$$

If S_{1} is Dirac $\Rightarrow \gamma_{1} \in A_{1}^{\prime}=J_{1} \mathcal{C} \ell_{D_{1}}\left(A_{1}\right) J_{1}^{-1} \Rightarrow \gamma_{1}= \pm J_{1} \gamma_{1} J_{1}^{-1} \in \mathcal{C} \ell_{D_{1}}\left(A_{1}\right)$.
From this observation, the above Lemma and the commutation theorem for tensor products of (von Neumann) algebras, we get:

Proposition

If S_{1} and S_{2} are Dirac, their product S is Dirac.

Hodge \times Hodge is Hodge?

More tricky. In general, $\mathcal{C} \ell_{D}(A)$ is a graded tensor product of $\mathcal{C} \ell_{D_{1}}\left(A_{1}\right)$ and $\mathcal{C} \ell_{D_{2}}\left(A_{2}\right)$.
Assume both triples are even. The degree of $v \in \mathrm{H}_{1}$ and $a \in \operatorname{End}_{\mathbb{C}}\left(\mathrm{H}_{1}\right)$ is

$$
|v|=\left\{\begin{array}{ll}
0 & \text { if } \gamma_{1}(v)=+v \\
1 & \text { if } \gamma_{1}(v)=-v
\end{array} \quad|a|= \begin{cases}0 & \text { if } \gamma_{1} a=a \gamma_{1} \\
1 & \text { if } \gamma_{1} a=-a \gamma_{1}\end{cases}\right.
$$

The same for the second spectral triple.
For all homogeneous $a \in \operatorname{End}_{\mathbb{C}}\left(H_{1}\right), b \in \operatorname{End}_{\mathbb{C}}\left(H_{2}\right)$, define $a \odot b$ and $a \odot^{\prime} b \in \operatorname{End}_{\mathbb{C}}(H)$ by $(a \odot b)(v \otimes w)=(-1)^{|b||v|} a v \otimes b w \quad\left(a \odot^{\prime} b\right)(v \otimes w)=(-1)^{|a||w|} a v \otimes b w$
for all homogeneous $v \in \mathrm{H}_{1}$ and $w \in \mathrm{H}_{2}$. Then
Commutation theorem for graded tensor products
Let $\mathrm{B}_{\mathrm{i}} \subseteq \operatorname{End}_{\mathbb{C}}\left(\mathrm{H}_{\mathrm{i}}\right)$ be a unital $*$-subalgebra, $\boldsymbol{i}=1$, 2. Then $\left(\mathrm{B}_{1} \odot \mathrm{~B}_{2}\right)^{\prime}=\mathrm{B}_{1}^{\prime} \odot^{\prime} \mathrm{B}_{2}^{\prime}$.
Since $D=D_{1} \odot 1+1 \odot D_{2}$, one has $\mathcal{C} \ell_{D}(A)=\mathcal{C} \ell_{D_{1}}\left(A_{1}\right) \odot C_{D_{2}}\left(A_{2}\right)$.
If we change the real structure to

$$
\mathrm{J}(v \otimes w)=(-1)^{|v||w|} \mathrm{J}_{1}(v) \otimes \mathrm{J}_{2}(w)
$$

(so $\mathrm{J} \neq \mathrm{J}_{1} \otimes \mathrm{~J}_{2}$) then the product of two Hodge spectral triples is Hodge.

