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Prelude

“A theory is a black box that we can shake to make predictions of physical observables.”
[ particlephd.wordpress.com ]

G , H , L
G , H , L

A , H , D
A , H , D LL

I Classical Yang-Mills Theory: G = Lie group, H = Hilbert space, L = Lagrangian

I Noncommutative Geometry: A = ∗-algebra, H = Hilbert space, D = Dirac operator
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The NCG approach

A , H , D

Two main goals:

�X derive the Standard Model (the complicated Lagrangian) from simple geometric data;

�X get some clues on unification with gravity.

Advantages:

• The Lagrangian is not postulated but derived from the geometry;

• One gets for free the Higgs field (in the Standard Model case). . .

• . . . and a theory coupled with (classical) gravity.

D encodes the free parameters of the theory constrains on D?
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Spinors or differential forms?

In the Standard Model of elementary particles, the representation π of the gauge group
U(1)× SU(2)× SU(3) and is dictaded by the experiments. One has:

H = spinors⊗ C32 ⊗ Cg︸︷︷︸
g generations

The representation π is highly non-trivial. Where does it come from?

Consider the inclusion (in block form):

U(1)× SU(2)× SU(3)→ SU(5) , (x,y, z) 7→
( 2×2
↓

3×3
↓

x3 y

x2 z

)

It turns out that π is the restriction of the natural representation of SU(5) on ∧•C5︸ ︷︷ ︸
dim=32

.

Is H given by some kind of noncommutative differential forms?
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Spectral triples (again!)

Definition

A unital spectral triple (A,H,D) is the datum of:

(i) a (real or complex) unital ∗-algebra A of bounded operators on a (separable)
complex Hilbert space H,

(ii) a selfadjoint operator D on H with compact resolvent,

such that a ·Dom(D) ⊂ DomD and [D,a] ∈ B(H) for all a ∈ A.
It is called

I even if ∃ γ = γ∗ on H s.t. γ2 = 1, γD = −Dγ and [γ,a] = 0 ∀ a ∈ A;

I real if ∃ an antilinear isometry J on H s.t.

J2 = ±1, JD = ±DJ, and (only in the even case) Jγ = ±γJ

and ∀ a,b ∈ A:
[a, JbJ−1] = 0

(reality)

[[D,a], JbJ−1] = 0

(1st order)
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Examples of spectral triples

Let: (M,g) = compact oriented Riemannian manifold without boundary, E→M herm.

vector bundle equipped with a unitary Clifford action c : C∞(M, T∗CM⊗ E)→ C∞(M,E)

and a connection ∇E compatible with g. Then:

A = C(M) H = L2(M,E) D = c ◦ ∇E

is a spectral triple.

Two main examples belonging to this class:

I the Hodge operator D = d+ d∗ on E =
∧even

T∗CM⊕
∧odd

T∗CM (always even);

I the Dirac operator D = D/ on the spinor bundle E (if M is a spin manifold).

Remarks

In both examples, (1) there exists a real structure J,
(2) H carries commuting representations of C(M) and C`(M,g).

In the former, (3) H carries two commuting representation of C`(M,g).
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The Standard Model [Picture from www.texample.net/tikz ]

1st 2nd 3rd generation
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
νR u1

R u2
R u3

R

eR d1R d2R d3R

νL u1
L u2

L u3
L

eL d1L d2L d3L


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Particles in a box. . .
We arrange particles in a 4× 4 matrix:

νR u1
R u2

R u3
R

eR d1R d2R d3R

νL u1
L u2

L u3
L

eL d1L d2L d3L


So, for example the unit vectors:

0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 and
1√
2


1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0


represent a right-handed electron a mix right-handed neutrino/left-handed electron.

Internal degrees of freedom are encoded in the Hilbert space

M4(C)
(particles)

⊕ M4(C)
(antiparticles)

' C32

8 / 17

The Standard Model spectral triple

The underlying space is

M × F

(spin manifold) (finite nc space)

with finite-dim. spectral triple (AF,HF,DF,γF, JF) given by:

I HF ' C32g  internal degrees of freedom of the elementary fermions. Total nr:

2 × 4 × 2 × 2 × g = 32g

(weak isospin) (lepton + quark (L,R chirality) (particle or (generations)
in 3 colors) antiparticle)

I γF = chirality operator

I AF = C⊕H⊕M3(C)

I JF = charge conjugation

I DF encodes the free parameters of the theory.
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Dirac vs. Hodge
From the example of Hodge operator, we learn:

Real spectral triple ←→ oriented Riemannian manifold

How to algebraically characterize Dirac’s Dirac operator? Take M = R4:

ψ ∈ Ω•(M) has 16 components. A Dirac spinor ψ ∈ L2(M,S) has 4 components.

Both carry a rep. of C0(M) and C`4,0(R), but only the latter satisfies the following:

If a bounded operator commutes with C0(M) and all γµ’s, then it is a function.

This completely characterizes Dirac spinors.

Theorem
1. A closed oriented Riem. manifold M admits a spinc structure iff ∃ a Morita equivalence
C(M)-C`(M) bimodule Σ, with C`(M) the algebra of sections of the Clifford bundle.

2. Σ = C0 sections of the spinor bundle S→M (Dirac spinors in the conventional sense).

Once we have S, we can introduce the Dirac operator D of the spinc structure:

3. M is a spin manifold iff ∃ a real structure J on L2(M,S).
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Dirac vs. Hodge in NCG
Let (A,H,D, J) be a finite-dimensional real spectral triple. We set:

ξ◦ := Jξ∗J−1, ∀ ξ ∈ EndC(H)

If B is a subset of EndC(H), we call:

B◦ :=
{
ξ◦ : ξ ∈ B

}
;

B ′ :=
{
ξ ∈ EndC(H) : [ξ,η] = 0 ∀ η ∈ B

}
(the commutant of B)

Finally, we define the A-bimodule of 1-forms and the Clifford algebra as:

Ω1
D(A) := complex vector subspace of EndC(H) spanned by a[D,b], a,b ∈ A;

C`D(A) := complex ∗-subalgebra of EndC(H) generated by A and Ω1
D(A).

Remark

Reality + 1st order cond. are equivalent to: A◦ ⊆ C`D(A)
′ (?)

The 2nd order condition is equivalent to: C`D(A)
◦ ⊆ C`D(A)

′ (??)

We say that the spectral triple has the
Dirac property if (?)

Hodge property if (??)
is an equality.
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In the Standard Model, can we use the condition(s)

Dirac Hodge

C`D(A)
′ = A◦ C`D(A)

′ = C`D(A)
◦

to “select” good Dirac operators?

Theorem [FD & L. Dabrowski]

In order to satisfy the Dirac condition, one must modify the operator studied by A. Connes
and A. Chamseddine. As a byproduct one gets:

→ a new scalar field;

→ a field coupling leptons with quarks.

Physical implications are discussed in:

M. Kurkov and F. Lizzi, Phys. Rev. D 97 (2018) 085024.
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Finite-dimensional spectral triples

Let (A,H,D) be a finite-dim. spectral triple and J an antilinear isometry satisfying the
reality condition. From the structure theorem for finite-dimensional C∗-algebras:

AC '
N⊕
i=1

Mni
(C) .

Call Pi the unit of the summand Mni
(C), Qi := JPiJ−1 and

Hkl := PkQlH , Dij,kl := PiQjDPkQl .

We can decompose the Dirac operator into four pieces:

D = D0 +D1 +D2 +DR ,

where

D0 :=
∑

i,j,k : i 6=k

Dij,kj , D1 :=
∑

i,j,l : j6=l

Dij,il ,

D2 :=
∑
i,j,l,k
i 6=k,j 6=l

Dij,kl , DR :=
∑
i,j

Dij,ij .

13 / 17

Lemma

D0 +D2 ∈ Ω1
D(A).

Lemma (1st order)

D satisfies the 1st order condition if and only if:

D2 = 0 , D1 ∈ A ′ and DR satisfies the 1st order condition.

Corollary

If (A,H,D, J) is a finite-dimensional real spectral triple and DR ∈ A ′, then

Ω1
D = Ω1

D0

and C`D(A) is generated by AC and D0.

Lemma (2nd order)

Let (A,H,D, J) be a finite-dimensional real spectral triple with DR ∈ A ′.
The 2nd order condition is satisfied if and only if [D0,D1] = 0.
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The Hodge property

Lemma

Let (A,H,D, J) be finite-dim. real and B ⊆ EndC(H) a unital complex ∗-algebra s.t.:

B ′ = B◦ and C`D(A) ⊆ B .

The following are equivalent:

(a) the Hodge property holds; (b) C`D(A)
′ ⊆ B◦; (c) C`D(A) = B.

For the Standard Model, the strategy to classify D’s satisfying the Hodge property is:

1 Define a suitable B independent of D and containing C`D(A) (for any D).

2 Check that B◦ ⊆ B ′.
3 Prove that B◦ = B ′ (it is enough to show that dimB = dimB ′).

4 Find under what conditions on D one has C`D(A)
′ ⊆ B◦.

Given (AF,HF, JF,γF) of the νSM, the D’s satisfying 2nd order belong to a set union of four
(intersecting) vector spaces. For almost all of these D’s, the Hodge property is satisfied (in
the above parameter space, such a property fails only on a measure zero subset).
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Dirac × Dirac is Dirac

All spectral triples here are (unital) real and finite-dimensional.

The product S := (A,H,D, J) of two spectral triples S1 := (A1,H1,D1,γ1, J1) and
S2 := (A2,H2,D2, J2) is given by

A = A1 ⊗A2 , H = H1 ⊗H2 , D = D1 ⊗ 1+ γ1 ⊗D2 , J = J1 ⊗ J2 .

Lemma

If γ1 ∈ C`D1
(A1), then

C`D(A) = C`D1
(A1)⊗ C`D2

(A2)

If S1 is Dirac ⇒ γ1 ∈ A ′1 = J1C`D1
(A1)J

−1
1 ⇒ γ1 = ±J1γ1J

−1
1 ∈ C`D1

(A1).

From this observation, the above Lemma and the commutation theorem for tensor products
of (von Neumann) algebras, we get:

Proposition

If S1 and S2 are Dirac, their product S is Dirac.
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Hodge × Hodge is Hodge?
More tricky. In general, C`D(A) is a graded tensor product of C`D1

(A1) and C`D2
(A2).

Assume both triples are even. The degree of v ∈ H1 and a ∈ EndC(H1) is

|v| =

{
0 if γ1(v) = +v

1 if γ1(v) = −v
|a| =

{
0 if γ1a = aγ1

1 if γ1a = −aγ1

.

The same for the second spectral triple.
For all homogeneous a ∈ EndC(H1),b ∈ EndC(H2), define a�b and a� ′ b ∈ EndC(H) by

(a� b)(v⊗w) = (−1)|b| |v|av⊗ bw (a� ′ b)(v⊗w) = (−1)|a| |w|av⊗ bw

for all homogeneous v ∈ H1 and w ∈ H2. Then

Commutation theorem for graded tensor products

Let Bi ⊆ EndC(Hi) be a unital ∗-subalgebra, i = 1, 2. Then (B1 � B2)
′ = B ′1 � ′ B ′2.

Since D = D1 � 1+ 1�D2, one has C`D(A) = C`D1
(A1)� C`D2

(A2).
If we change the real structure to

J(v⊗w) = (−1)|v| |w|J1(v)⊗ J2(w)

(so J 6= J1 ⊗ J2) then the product of two Hodge spectral triples is Hodge.
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Thank you for your attention.


