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Prelude

“A theory is a black box that we can shake to make predictions of physical observables.”

» Classical Yang-Mills Theory: G = Lie group, H = Hilbert space, £ = Lagrangian

» Noncommutative Geometry: A = x-algebra, H = Hilbert space, D = Dirac operator

[ particlephd.wordpress.com ]

The NCG approach

Two main goals:

VI derive the Standard Model (the complicated Lagrangian) from simple geometric data;

VI get some clues on unification with gravity.

Advantages:

® The Lagrangian is not postulated but derived from the geometry;
® One gets for free the Higgs field (in the Standard Model case). ..

e _..and a theory coupled with (classical) gravity.

D encodes the free parameters of the theory ~~ constrains on D?
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Spinors or differential forms?

In the Standard Model of elementary particles, the representation 7t of the gauge group
U(1) x SU(2) x SU(3) and is dictaded by the experiments. One has:

H = spinors ® C* @ C9
~~

g generations

The representation 7t is highly non-trivial. Where does it come from?
Consider the inclusion (in block form): 2%2  3x3

Uu(1) x x SU(3) — SU(5),

It turns out that 7t is the restriction of the natural representation of SU(5) on A°CS .
dim=32
Is H given by some kind of noncommutative differential forms?
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Spectral triples (again!)

Definition
A unital spectral triple (A, H, D) is the datum of:

(i) a (real or complex) unital x-algebra A of bounded operators on a (separable)
complex Hilbert space H,

(i) a selfadjoint operator D on H with compact resolvent,

such that a - Dom(D) € DomD and [D, a] € B(H) forall a € A.
It is called

> evenif Iy =vy*onHsty>=1,yD=-Dyand[y,ad =0V acA;

» real if 3 an antilinear isometry ] on H s.t.

J?=4+1, JD =4DJ, and (onlyinthe evencase) Jy=+Y]
andVa,beA:
[a,Jb] =0 [[D,al,JbJ 'l =0
(reality) (1st order)
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Examples of spectral triples

Let: (M, g) ‘: compact oriented Riemannian manifold without boundary, E — M  herm.
vector bundle equipped with a unitary Clifford action c: C*(M, TtM ® E) — C*(M, E) ‘

and a connection ‘ VE compatible with g. Then:

A =C(M) H=1L1%(M,E) D=coVF

is a spectral triple.

Two main examples belonging to this class:
» the Hodge operator D = d 4+ d* on E = A®*" TAM & A°* T:M (always even);

> the Dirac operator D = [P on the spinor bundle E (if M is a spin manifold).

Remarks

In both examples, (1) there exists a real structure J,
(2) H carries commuting representations of C(M) and C¢{(M, g).

In the former, (8) H carries two commuting representation of C{(M, g).
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The Standard Model
Lot Pna

[Picture from www.texample.net/tikz ]
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Particles in a box. ..
We arrange particles in a 4 x 4 matrix:

VR uR U.R uR
er db 42 43
Vi LLL u]_ LLL
e dl &2 &

So, for example the unit vectors:

0 0 0 O 1 0 0 O
1 0 0 O and 110 0 0 0
0 0 0 O V210 0 0 0
0 0 0 O 1 0 0 O

represent a right-handed electron a mix right-handed neutrino/left-handed electron.

Internal degrees of freedom are encoded in the Hilbert space

The Standard Model spectral triple

The underlying space is

M X F
(spin manifold) (finite nc space)
with finite-dim. spectral triple (Af, Hg, D, vr, J£) given by:

> Hp ~ C329 ~~ internal degrees of freedom of the elementary fermions. Total nr:

2 X 4 X 2 X 2 X g = 32¢
(weak isospin) (lepton + quark (L,R chirality) (particle or (generations)
in 3 colors) antiparticle)

> v = chirality operator

> Ar =CaH® M;(C)

M,(C) @& M,yC) ~C® > J¢ = charge conjugation
(particles)  (antiparticles) » D; encodes the free parameters of the theory.
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Dirac vs. Hodge Dirac vs. Hodge in NCG
From the example of Hodge operator, we learn: Let (A, H, D, ]) be a finite-dimensional real spectral triple. We set:
Real spectral triple +— oriented Riemannian manifold o :=J&*]71, V&€ Ende(H)
How to algebraically characterize Dirac’s Dirac operator? Take M = R*: If B is a subset of Endc(H), we call:
1P € Q*(M) has 16 components. A Dirac spinor \ € L2(M, S) has 4 components. B :={&°:{ €B};
Both carry a rep. of Co(M) and @, o(R), but only the latter satisfies the following: B':={& € Endc(H): [E,n] =0Vn e B} (the commutant of B)
If a bounded operator commutes with Co(M) and ally*’s, then it is a function. Finally, we define the A-bimodule of 1-forms and the Clifford algebra as:
This completely characterizes Dirac spinors. Qf (A) := complex vector subspace of Endc(H) spanned by a[D, b], a,b € A;
Theorem Clp (A) := complex x-subalgebra of End¢(H) generated by A and Q1 (A).
1. A closed oriented Riem. manifold M admits a spin®© structure iff 3 a Morita equivalence Remark
C(M)-C¢(M) bimodule X, with C¢(M) the algebra of sections of the Clifford bundle. Reality -+ 1st order cond. are equivalentto: A° C Clp(A)’ (%)
2. X = C sections of the spinor bundle S — M (Dirac spinors in the conventional sense). The 2nd order condition is equivalent to: Clp(A)° C Clp(A) (%)

Once we have S, we can introduce the Dirac operator D of the spin® structure:

3. M is a spin manifold iff 3 a real structure ] on L2(M, S).

v
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Dirac property if
We say that the spectral triple has the rac property ) () is an equality.
Hodge property if (x%)

11/17




In the Standard Model, can we use the condition(s)

Dirac Hodge

Clp(A) =A° Clp(A) =Clp(A)°

to “select” good Dirac operators?

Theorem [FD & L. Dabrowski]

In order to satisfy the Dirac condition, one must modify the operator studied by A. Connes
and A. Chamseddine. As a byproduct one gets:

— a new scalar field;

— afield coupling leptons with quarks.

Physical implications are discussed in:

) M. Kurkov and F. Lizzi, Phys. Rev. D 97 (2018) 085024.
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Finite-dimensional spectral triples

Let (A, H, D) be a finite-dim. spectral triple and ] an antilinear isometry satisfying the
reality condition. From the structure theorem for finite-dimensional C*-algebras:

N
Ac~E@P M., (C).
i=1

Call P; the unit of the summand M,,, (C), Q; := JP;J ! and
Hy := P QH, Dij 1 := PiQ;DPiQy .
We can decompose the Dirac operator into four pieces:

D =Dy + D3 +D; + Dy,

where
Do == Z Dijxj D; = Z Dijit,
1§ k:itk 1,j,1:j#L
D = Z Dij,kl ) Dg = ZDij,ij .
ij,Lk ij
1#£k,j#L
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Lemma
Do + D, € QL (A).

Lemma (1st order)

D satisfies the 1st order condition if and only if:

D, =0, D; € A’ and Dy satisfies the 1st order condition.

Corollary

If (A, H, D,]J) is a finite-dimensional real spectral triple and Dg € A’, then
Qf =Qp,

and C{p (A) is generated by A and Dy.

Lemma (2nd order)

Let (A, H, D, ]) be a finite-dimensional real spectral triple with Dg € A’.
The 2nd order condition is satisfied if and only if [Dg, D] = 0.
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The Hodge property

Lemma

Let (A, H, D, ]) be finite-dim. real and B C End¢(H) a unital complex *-algebra s.t.:
B'=B° and Clp(A)CB.

The following are equivalent:

(a) the Hodge property holds; (b) Clp(A) C B (c) Clp(A) =B.

For the Standard Model, the strategy to classify D’s satisfying the Hodge property is:
© Define a suitable B independent of D and containing C¢p (A) (for any D).
® Check that B° C B'.
® Prove that B° = B’ (it is enough to show that dim B = dim B’).
@ Find under what conditions on D one has C{p(A)’ C B°.
Given (A, Hg, Jr, vE) of the vSM, the D’s satisfying 2nd order belong to a set union of four

(intersecting) vector spaces. For almost all of these D’s, the Hodge property is satisfied (in

the above parameter space, such a property fails only on a measure zero subset).
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Dirac x Dirac is Dirac

All spectral triples here are (unital) real and finite-dimensional.

The product S := (A, H, D, J) of two spectral triples S; := (A, Hy, D1,v1,J1) and
S, := (Ay, Ha, Dy, J2) is given by

A=A1®A,, H=H; ®H,, D=D:®1+v:®D,, J=Th®]Ja.
Lemma
|f'Y1 € G@Dl(/\l),then

Clp(A) = Clp, (A1) ® Clp,(A,)

If Sy is Dirac = v1 € A] =J1Clp, (A1)];! = vi=21v1)i* € Clp, (Ay).

From this observation, the above Lemma and the commutation theorem for tensor products
of (von Neumann) algebras, we get:

Proposition
If S; and S, are Dirac, their product S is Dirac. J
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Hodge x Hodge is Hodge?

More tricky. In general, Clp (A) is a graded tensor product of Clp, (A7) and Clp, (Az).

Assume both triples are even. The degree of v € H; and a € End¢(H;) is

0 0
vl = lal =
1 1

The same for the second spectral triple.
For all homogeneous a € End¢(H;), b € Endc(H,), define a®band a®’b € Endc(H) by

ifyi(v) = +v
if yi(v) =—v

ifyia=ay
ifyia=—ay:

(aob)veaw)=(1"Mawobw  (a@'b)vew)=(-1)""a o bw

for all homogeneous v € H; and w € H,. Then

Commutation theorem for graded tensor products
Let B; € Endc(H:) be a unital #-subalgebra, i = 1,2. Then (B; ® B,)’ = B] @' BJ. }

Since D =D; ®1+1® Dy, one has Clp(A) = Clp, (A1) ® Clp, (Asz).
If we change the real structure to

Jveow) = (=DM W) @ Jo(w)

(so ] # J1 ® J2) then the product of two Hodge spectral triples is Hodge.
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Thank you for your attention.




