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deformation and unification G, ¢, i — plus Boltzmann's k



Interaction via deformation

» gravity = free fall in curved spacetime @
— extend this idea to all forces!

» — free Hamiltonian, interaction via deformation:
deformed symplectic structure (or operator algebra) [©.@] #0

» gauge theory recovered via Moser's lemma:
deformation maps are not unique = gauge symmetry

» works also in a graded setting, allows magnetic sources



Outline
» Noncommutative gauge theory (general, review)
» Effective actions for open strings and branes

» Graded/generalized geometry and gravity actions



Noncommutativity in electrodynamics and string theory

» electron in constant magnetic field B = B&,:
m ., S 7 . B i
L= §X2 —ex-A with A= —Ee,-jxf
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lim £ = e—X'e;x’! = K, %] = —=¢€
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» bosonic open strings in constant B-field

1

4ol

Sy / (802X 07X — 2mic/ Byje®*0,x 9px’ )
>

2

in low energy limit g ~ (a’)?> — 0:
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Sox = _5/82 Bjjx'x! = X', %] = (B)

C-S Chu, P-M Ho (1998); V Schomerus (1999); Seiberg, Witten



Open strings on D-branes in B-field background

(B (), (")) = 6P

non-commutative string endpoints with x-product depending on 6 via

1 1

B =cro +6 (closed-open string relations)

add fluctuations B ~» B + F; depending on regularization scheme:

R ordinary gauge theory (e.g. Pauli-Villars)
non-commutative gauge theory (e.g. point-splitting)

= SW map: commutative <> noncommutative theory (duality)



Star products

Deformation quantization of the point-wise product in the direction of a
Poisson bracket {f, g} = 099;f - 0;g:

i

frg=fg+ Eh{f,g} + 1°By(f,g) + B*Bs(f. g) + ... ,
with suitable bi-differential operators B, such that x is associative.
There is a natural gauge symmetry: “equivalent star products”
x>+, DfxDg=D(f+g),

will yield a new associcative star product for any (invertible) differential
operator Df = f + hDif 4+ h2Dof + . ..



Kontsevich formality and star product
U, maps n k;-multivector fields to a (2 — 2n+ Y k;)-differential operator

Un(Xr,..., Xn) = > wr Dr(dy,. .., &)
regG,

where the sum is over all possible diagrams with weight

1 n
wr = (271')Zki /H" ,:/\1 <d¢g} /\/\d(bzlkl) .

The star product for a given bivector 6 is:

Freg=o0)f.g) = S u0,....0)(f.g)

n:
n=0



Example constant 6:
The graphs and hence the integrals factorize. The basic graph
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yields the weight
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and the star product turns out to be the Moyal-Weyl one:

frg=3" (in) (;) O G (D), . D F) (O . Do)

n!



Formality condition
The U, define an L., quasi-isomorphisms of DGL algebras and satisfy

1
AU X, X))+ 5 Y ex(TT) [Un (X)), Uagy(Xa)]g
Tug=(1,...,n)
Z,J#0

= Z (_1)()¢U Un71<[Xi7‘ij]S>Xl7"'a‘i\‘/a"w‘i\_‘h"'aXn) )

i<j

relating Schouten brackets to Gerstenhaber brackets.
Kontsevich (1997)

For dy = —[—,*]¢ and dg = —[—, 0]s, FC implies d,®(0) = 17 P(deb), i.e.

* associative < 6 Poisson



Up to gauge equivalence
frg="Ffg+5) 070f g— > 070" 00uf 00
R? .
-= (Z 070,04 (9,04 - O1g — O - a,-a,g)) o,
where 6 = 019; ® 0; is a Poisson bi-vector.

Global vs local symmetry: The noncommutative theory has global symmetries,
like the commutative theory (if 6 is transformed as well). But partial
derivatives in the star product cause problems with local symmetries.

Could introduce covariant derivatives in * (as in gauge theories and GR), but
this will i.g. break associativity.

— symplectomorphisms, twisted symmetries, or NC gauge transformations



Formality: vector field — differential operator:

E=¢x)0 — Z=0&):= Z %U,,H(f,&, .., 0)

S(fxg)==fxg+g*x=g+[LeX|g

The differential operator =; generates deformed diffeomorphisms.
If £ is a symplectomorphism, then Lgx = 0.

Twisted symmetry & coproduct = & does not “see” the x-product

0e(frg) =Y Emf*&ae 0= &ny@&p)

NC gauge transformations are automatically x-derivations

SF = i(Ax F — F x ) SV = iAW



note: S(f*xW)=FfxiNxV A iNxf*xWV

= introduce covariant coordinates Dx* = x" + A" and covariant functions
Df =f +fa with dDf = i[A ¥ Df]

= equivalent star products
Df xDg =: D(f ¥ g)

= deformation of % by covariantizing change of coordinates (SW map)

quantization

B: e «
Moserlﬂ ip l'D
B+ F: o’ M)*/

Jur&o, PS, Wess (2001)



Moser's lemma on “nearby symplectic structures”
B: closed (dB = 0), non-degenerate (6 := B~1) 2-form
B'= B+ F, F exact (F = dA)

B; = B + tF, non-degenerate, t € [0,1] .
= B’ is obtained from B by a change of coordinates.
Proof: Let & = 07 A;8;, i.e ic, By = —A.

= LBy =i, dB+dig, B=0—-dA=—F =—-0,B; .

integrate the flow generated by L¢, from t =0 to t = 1 to obtain a map p
that depends on A and relates B’ to B.

B’ is gauge invariant, but the map p transforms by a canonical transformation
= (semi-classical) NC gauge transformation.



Semi-classical “Poisson” Moser
6: Poisson bi-vector (can be degenerate) ; F = dA
0=0-0-F-0+60-F-0-F-60—+...

0;=0-(L+tF-0)~1, Poisson, t € [0,1] ; &= —A-0,-0 .
= Oy = —L¢,0; = —[&:, 0:)s
p*(0) =0, with p* = exp(Le, + 9¢) exp(—t)|,_o

Gauge transformation: JA = d\ implies dp*(f) = {p*(f), A},
where A = 37 L(& + 9:)" (M),
pr(x*) = xt + 5, §F = Or 9\ + {&", 5\}, etc.

“Poisson gauge theory”



Quantum Moser (= Seiberg-Witten map)
Start again with the Moser vector field &;. The differential operator

= =0 =Y D uico....0)

generates deformed diffeomorphisms that can be integrated to a flow D,
which is the SW map (exact, to all orders):

Let x; = Z%Un(ﬁt,...ﬁt), * = %1,
= Or(xt) = —[Z¢, %6
D() = % . with D = exp(Ze + ) exp(—01)] o

Let A=o(\) =X YU, (N 0,....0) and A = 30 (& + 00)" (M),

n!

Gauge transformation 6A = d\ implies §Df = /[/N\ * Df]




NC gauge theory and equivalent star products
NC gauge theory = gauge theory of noncommutativity:
D[a](f *' g) = D[a]f * D[a]g
Star products *, *': locally equivalent, globally Morita equivalent.

Finite gauge transformations

classical gauge transformation: ¥ +— 9, = gy and a a; = a+ gdg™
gauge equivalence =

1

Vg a0 = Glg.al * Viwal » Dag)(f) = Gig .z x Dpa (F) % (Gig o)

Gle1,35,] * Glgr.a] = Clgi-g2,a)  (noncommutative group law)

can be used to patch and globalize construction = NC line bundles



It is consistent to use an abbreviated notation
Gjx = Gy, [a], Dy = Dyay-
The fundamental relations on U; N U; N Uy are
Gjj * Gjx = Gik, Gy * G =1, Dj x Gjx = Gj * D.

(There is no summation over j or k in these formulas.)
The Gjc play the role of noncommutative transition functions.

Sections: W = (W) with W; = Gy x Wy,
bimodule structure: f.W = (Dy(f) * Vi), W.f = (Vi)
f.(g.V) = (f ¥ g).V while (W.f).g =V.(fxg) etc. ...

Jurco, PS, Wess, Noncommutative line bundle and Morita equivalence,
Lett.Math.Phys. 61 (2002) 171-186



Born Infeld action

Open string effective action

1 1 A~ o2
SDBI=/an—det%(g+B-|—F):/dndeet%(G+¢+F)

S S
commutative < non-commutative duality

Expand to second order, ignore (cosmological) constants =

1
Sogl = / dnx%g’jgk’(B +F)x(B+F)y  (Maxwell/Yang-Mills)

S

_1
ste = [l o a0 (R0 XK KT (Matrix Model)
DBl — 42, 8ij8ki ) , atrix Mode

Covariant coordinates: X' = x/ + A/
Commutative <+ non-commutative duality fixes form of action



higher Born Infeld action

open p-brane (p > 1) effective action?

det[g + B] makes no sense for B a p + 1-form (p > 1),
but det[g + Bg 1B "] does, where g is antisymmetrized g©P
(B: (p + 1)-form written as rectangular matrix B;; with multiindex J)

Sper = i/dPI—HXdetx [g]dety[g—i- Bé'_lBT]
Em —
G
1

= —/dP’“xdet% [g]det”[1+g 'Bg 'BT]
&m

y=?

noncommutative “Nambuian” version of this?

M: Nambu-Poisson p + 1 multi-vector field



Effective open p-brane action

Miraculous identity
det[g+(B+F)g Y (B+F)T] = det?[1—FN"]-det[G+(d+F') G H(d+F")T]

where F' = (I — FNT)~LF, holds for all p.

The Jacobian of the Nambu-Poisson map fixes the appropriate power:

= Effective action (conjecture)

Sp-pBI = /d"lﬂxgidetx(g) ~det¥[g+ (C+F)g H(C+F)T]

m

with x =

_ 1
2(p€rl)' Y= 30p0)



Effective open p-brane action

NC Dual

|-
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Sp-NCDBI :/dp/+1 det*(G)

~det?[G + (& + F’) o+ F)T]

~ denotes objects evaluated at covariant coordinates
F’ is the Nambu (NC) field strength

open-closed membrane coupling constants

det G P
Gm: m
& (detg)




Expansion of action
ignore a cosmological constant term and let F = C + F

Sp.081 = det(g)tr [g ' FE 1 FT] + ...

2(p+1)gm

the coupling constant g, is dimensionless for:
» strings on D3 with 2-form field strength (Maxwell /Yang-Mills)
» 2-brane on 5-brane with 3-form field strength (~~ M2-M5 system)
» p-brane on 2(p + 1)-brane with p + 1 form field strength

consider p =2, p’ =5 and expand further (k = FX Fiy):

1 1 1 1
dets(1+ k) =4/1+ —trk — =trk?2 + —(tr k)2 +....
ets (1 + k) \/+3r g +36(r)+

= exact match with k-symmetry computation of
Cederwall, Nilsson, Sundell, “An Action for the superfive-brane” (1998)



Effective open p-brane action

From higher gauge theory to matrix model. ..
Expanding to lowest order (ignoring a non-cosmological constant) =

semi-classical /infinite-dimensional version of a matrix model

InjzT 2(p + 1)8m
. gfojo .. -g,-pjp{)?h, . ,)?j”}{)?io, C. ,)?i"}

quantize:

1

LI (A.. B [)’Zjo,._.y)?jp] [)?in,'“’)?ip:l)
T 2ot 1)y | \Eon B



Closed string effective action, gravity

Massless bosonic modes

» open strings: A, ¢’ — gauge and scalar fields
» closed strings: g, Bu,, ® — background geometry, gravity

Closed string effective action
Weyl invariance (at 1 loop) requires vanishing beta functions:

Buv(g) = @LVELB) =pB(®)=0

equations of motion for g,,,,, B,

f

closed string effective action
1 1
/dDX| —gl? <R - Ee-“’ﬁHMHW — P+ )

Noncommutative version of this?



graded Poisson structure

Now try to do the same for gravity! Since the metric g, is symmetric (unlike
FH”) we need odd variables to deform Poisson brackets with it.

Graded Poisson algebra on T*[2] & T[1]M, deformed by metric:
001 =28"0) AP} =80 AP F(0} = 07 (%)
0 270 0

Jacobi identity (i.e. associativity) < metric connection

{pu,e } = raﬁeﬁ V0%

{pu, {0°,0°}} = 20,8°" = {{p.,0°},0°} + {6, {p,, 0" }}
and curvature
Hpu, P}, 0% = [V, V,]0% = 0°Rs% .0,

= {pl“pl/} - % '80 Rﬁauu



our initial example:
deformation by a gauge field A
Q' = dx' Adp; + 1F;(x)dx" A dx!, dF =0, locally F = dA

Q=Q+tdA|, A=A(x)dx'
0

Ve=Ailx)5 -+ Lv.~ pa(p) =p+A
Pi

{piaxj}t - 6{

{pi,pite = t Fi(x)

gauge transformation A = d\ <+ Jpja): canonical transformation
non-abelian versions: A%(x){,dx’ and AL (x)67xpdx’

~> Abelian and non-abelian gauge theory



deformation by a spin connection w

Q=dx' Adpi+ 3n.pd0® AdO® 07 =0, g =elelnap

, w = wi(x, O)dxi = %wiab(x)ﬁaebdxi
Vi =wiOp, Ly, ~ pj(p) =p+w

(pixl}e=0  {6°,6°), =y

{pi,0°} = tnPPwipc(x) 0 wWipe = —wiep

{pi,pj}t =t R; R=dw+twAw

gauge transformation éw = d\ <> dpy,): canonical transformation

~~ Einstein-Cartan gravity



deformation by a general connection I
Q = dx' Adp; +db’ Ady;
[Q=Q+tdl], T =Tdx = (x)# xedx
Ve=Ti0p, Lv,~ pri(p)=p+T
{Piaxj}t = 5{ {Xi:ei}t = 5{
{pi, 0} = tTh0"  {pi,x;} = —tTxk
{piopiye =tR 0% Ry =0} — ol +rorh —rorl

gauge transformation 6 = dA <> dpr): canonical transformation

~+ General relativity and alternative gravity theories



Graded geometry

Graded Poisson manifold T*[2] T[1]M

iu

» degree 0: x' “coordinates”

> degree 1: £ = (07, x;)

» degree 2: p; “momenta”
symplectic 2-form

w=dp; ANdx + %Gaﬁdga A dEP = dp; A dx" + dy; A db
even (degree -2) Poisson bracket on functions f(x, &, p)
A}y =0. {px} =0, {¢.&}=6"
metric G*P: natural pairing of TM, T*M:

{X,,Gj}:(sj, {XI7XJ}:07 {91761}:0



Graded geometry

degree-preserving canonical transformations

» infinitesimal, generators of degree 2:

V¥ (x)pa + SM*P(x)éaés  ~  diffeos and o(d, d)

> finite, idempotent (“coordinate flip"): (¥, 6) = 7(x, ) with 72 = id
~~ generating function F of type 1 with F(0,6) = —F(6,6):
F-0.g.0-10.8.0+10.8.0
oF - OF
=—=0- 0-B \=—7>==0"
X 20 g+ ) X BY;

—1B -1
= =000 (; g tig Ge)

g+9~-B

~~ generalized metric



Generalized geometry

Generalized geometry as a derived structure

degree 3 “Hamiltonian": Dirac operator
0= £ah¢i3¢(x)pi + %Ca,ﬁ'ygagﬁg’y
————’
twisting/flux terms
For e = e, (x)€* € T(TM @ T*M) (degree 1, odd):

» pairing: (e, e’y = {e, e’}
» anchor: h(e)f = {{e, ©},f}
» bracket: [e, e']p = {{e, O}, €'}



Generalized geometry

Generalized geometry as a derived structure
Courant algebroid axioms from associativity and {©,0©} = 0:

h(&1) (62, 62) = {{©, &1}, {62, &1}
=2{{{0,6}, 6} & =2([61,&] . &) (axiom 1)
=2{&, {{6, &), 61 = 2(&, [, &) (axiom 2)

[fla [€27€3]] = {{6751}7 {{9752}753}}
= [f6n, &1, 61 + [62, 161,61 + 5 {{1{0,0}, 61}, &}, ).

{6,0} =0 <& [,]-Jacobi identity (in 1st slot) (axiom 3)



general (deformed) Poisson structure
{v,f} =v.f
{v,W}=G(V,w)=(V,W)
{v,V}=V,V <« connection metric wrt. G
{v,w} =[v.w]ie + R(v,w) < curvature of ¥V
with
> degree 0: f(x)
» degree 1: V = V¥(x){, “generalized vectors”
> degree 2: v =v/(x)p; ‘“vector fields"

general Hamiltonian

0 = *h(&a) + %Cagyéaéﬂ@ + general flux (H,fQ,R)



derived bracket
{{{V,@}, W}7X} = <VVW,X>_<VWV3 X>+<VXV7 W>+C(V, WaX)

{{{fou @}7§ﬁ}7§’7} = raﬂv - rﬁav 'H_Wﬁ + Caﬁ‘f =: r;eawﬂ

torsion

“mother of all brackets”

[V,W]=VyW —VyV + (VV, W)+ C(V,W,-)
=[[V,W]] + T(V, W)+ (VV, W) + C(V, W, )

In order to obtain a regular Courant algebroid, impose

0.0)-0 < VC+%{C,C}=0, Gp=0,...



Generalized differential geometry

generalized Lie-bracket (involves anchor h: E — TM)
(V. W]l =-[w,V]], [[V,W]]=(h(V))W +f[V,W]]
generalized connection “type I and miraculous triple identity

r(v;w,U) = (h(V)F)(W,U)+ fr(V; W, U),

(V. IW, Z]) = (V,[[W, Z])) + T(V; W, 2) |

(VyW, Uy :=T(V; W, U)
generalized curvature and torsion
R(V, W) =VyVw — VwVy - Viv.w
T(V,W)=VyW-VpuV -]V, W]
Boffo, PS (2019/2020)



cookbook recipe

>

>
>
4
>

deform graded Poisson structure

pick Hamiltonian © (e.g. canonical), compute derived brackets
choose generalized Lie bracket [[, ]] (e.g. canonical)

determine connection I from triple identity

project (or rather embed) via non-isotropic splitting (e.g. canonical)
s:T(TM) — T(E) pos=id (X, Y)mm = (s(X),s(Y))

(VzX,YY1m :=T(s(2);s(X),s(Y))

compute Riemann and Ricci tensors, take trace with g + B, write action
in terms of resulting Ricci scalar



Graded/generalized geometry and gravity

deformation by generalized vielbein E
Q= dx' Adp; +do' Ady;

deformation by change of coordinates in the odd (degree 1) sector
two choices:

0 . 1 0\ (¢ and 1 n+G\ (0
b% g+B 1 X -g+B 1 %
Boffo, PS

now crank the “machine” (deformed derived bracket, connection, project,
Riemann, Ricci) ~~ (effective) gravity actions ...



Graded/generalized geometry and gravity

generalized Koszul formula for nonsymmetric G = g + B
2g(VzX,Y) = (Z,[X,Y])

— XG(Y.Z) - YG(X,Z)+ ZG(X,Y)
=G(Y, [X, Z]iie) — G([X, Ylte, Z2) + G(X, Y, Z]Lie)

= 2g(VY,Z)+ H(X,Y,2)

= non-symmetric Ricci tensor
e loweyi 1, igm ik jl
Ri = Ri~ = 5VitHy' = 4 Him'Hj R=Gig"g"Ru

U

= gravity action (closed string effective action) after partial integration:

/ dix/—g <RLC o M H’f")

Khoo, Vysoky, Jurco, Boffo, PS

5 = 167TG



Graded/generalized geometry and gravity

This formulation consistently combines all approaches of Einstein:
Non-symmetric metric, Weitzenbock and Levi-Civita connections,
without any of the usual drawbacks.

The dilaton ¢(x) rescales the generalized tangent bundle. The deformation
can be formulated in terms of vielbeins

2/ 1 0 aap [ —30i0 0
F=e 3<g+3 1) E a’E_<8,-(g+B) ~190

Going through the same steps as before we find in d = 10

1 .
S=o / dx e 20 /=g (R — L H? + 4(Ve)?)

Boffo, PS (JHEP 2020)



Graded/generalized geometry and gravity

new approach, symmetric in open-closed string relations
(g-B) '=6G61-n

deformation via

(o <) - o202

~~ low energy effective action for non-geometric closed strings

s[6=Ln = / d%x V/det 61 [RG - 1—121?2 — %R’m"kaiGquk
M

1. 1
- ZQﬂka”iijGlnGm’ - §Q’Jkam/Gjm]

where locally R = 3Nl19,NUK and Q¥) = 9, N¥
Boffo, PS (2021)



Conclusion

» interaction via deformation: “forces = free fall in deformed phase space”
» powerful approach to NC gauge theory: allows to find SW to all orders
» effective actions via commutative-noncommutative duality

» graded/generalized geometry provides a perfect setting for the
formulation of low energy effective actions and theories of gravity

» approach is based on deformed graded geometry is algebraic in nature:
everything follows from associativity as unifying principle

Thanks for listening!



