"Geometry" \longrightarrow Noncommutative/Generalized Geometry \longleftarrow "Algebra" deformation and unification G,c,\hbar – plus Boltzmann's k #### Interaction via deformation - gravity = free fall in curved spacetime - \rightarrow extend this idea to all forces! - ► → free Hamiltonian, interaction via deformation: - deformed symplectic structure (or operator algebra) $[\bullet, \bullet] \neq 0$ - gauge theory recovered via Moser's lemma: deformation maps are not unique ⇒ gauge symmetry - works also in a graded setting, allows magnetic sources #### Outline - ► Noncommutative gauge theory (general, review) - Effective actions for open strings and branes - ► Graded/generalized geometry and gravity actions ## Noncommutativity in electrodynamics and string theory • electron in constant magnetic field $\vec{B} = B\hat{e}_z$: $$\mathcal{L} = \frac{m}{2}\dot{\vec{x}}^2 - e\dot{\vec{x}} \cdot \vec{A} \quad \text{with} \quad A_i = -\frac{B}{2}\epsilon_{ij}x^j$$ $$\lim_{m \to 0} \mathcal{L} = e\frac{B}{2}\dot{x}^i\epsilon_{ij}x^j \quad \Rightarrow \quad [\hat{x}^i, \hat{x}^j] = \frac{2i}{eB}\epsilon^{ij}$$ bosonic open strings in constant *B*-field $$S_{\Sigma} = \frac{1}{4\pi\alpha'} \int_{\Sigma} \left(g_{ij} \partial_{a} x^{i} \partial^{a} x^{j} - 2\pi i \alpha' B_{ij} \epsilon^{ab} \partial_{a} x^{i} \partial_{b} x^{j} \right)$$ in low energy limit $g_{ij} \sim (\alpha')^2 \rightarrow 0$: $$S_{\partial \Sigma} = -\frac{i}{2} \int_{\partial \Sigma} B_{ij} x^i \dot{x}^j \qquad \Rightarrow \qquad [\hat{x}^i, \hat{x}^j] = \left(\frac{i}{B}\right)^{ij}$$ C-S Chu, P-M Ho (1998); V Schomerus (1999); Seiberg, Witten #### Open strings on D-branes in B-field background $$\langle [x^i(\tau), x^j(\tau')] \rangle = i\theta^{ij}$$ non-commutative string endpoints with \star -product depending on θ via $$\frac{1}{g+B} = \frac{1}{G+\Phi} + \theta$$ (closed-open string relations) add fluctuations $B \rightsquigarrow B + F$; depending on regularization scheme: $$\rightarrow \begin{cases} \text{ ordinary gauge theory} & \text{(e.g. Pauli-Villars)} \\ \text{non-commutative gauge theory} & \text{(e.g. point-splitting)} \end{cases}$$ \Rightarrow SW map: commutative \leftrightarrow noncommutative theory (duality) ### Star products Deformation quantization of the point-wise product in the direction of a Poisson bracket $\{f,g\} = \theta^{ij}\partial_i f \cdot \partial_i g$: $$f \star g = fg + \frac{i\hbar}{2} \{f,g\} + \hbar^2 B_2(f,g) + \hbar^3 B_3(f,g) + \dots ,$$ with suitable bi-differential operators B_n such that \star is associative. There is a natural gauge symmetry: "equivalent star products" $$\star \mapsto \star'$$, $Df \star Dg = D(f \star' g)$, will yield a new associcative star product for any (invertible) differential operator $Df = f + \hbar D_1 f + \hbar^2 D_2 f + \dots$ ### Kontsevich formality and star product U_n maps n k_i -multivector fields to a $(2-2n+\sum k_i)$ -differential operator $$\label{eq:Un} \textit{U}_\textit{n}(\mathcal{X}_1,\dots,\mathcal{X}_\textit{n}) = \sum_{r=1}^{n} \; \textit{w}_{\Gamma} \; \textit{D}_{\Gamma}(\mathcal{X}_1,\dots,\mathcal{X}_\textit{n}) \; ,$$ where the sum is over all possible diagrams with weight $$w_{\Gamma} = rac{1}{(2\pi)^{\sum k_i}} \int_{\mathbb{H}_n} \bigwedge_{i=1}^n \left(\mathrm{d}\phi^h_{e^1_i} \wedge \cdots \wedge \mathrm{d}\phi^h_{e^{k_i}_i} ight) \,.$$ The star product for a given bivector θ is: $$f\star g=\Phi(\theta)(f,g):=\sum_{n=0}^{\infty}\frac{(\mathrm{i}\,\hbar)^n}{n!}\,U_n(\theta,\ldots,\theta)(f,g)$$ Example constant θ : The graphs and hence the integrals factorize. The basic graph yields the weight $$w_{\Gamma_1} = rac{1}{(2\pi)^2} \int_0^{2\pi} d\psi_1 \int_0^{\psi_1} d\phi_1 = rac{1}{(2\pi)^2} \left[rac{1}{2} (\psi_1)^2 ight]_0^{2\pi} = rac{1}{2}$$ and the star product turns out to be the Moyal-Weyl one: $$f\star g=\sum rac{(i\hbar)^n}{n!}\left(rac{1}{2} ight)^n heta^{\mu_1 u_1}\dots heta^{\mu_n u_n}(\partial_{\mu_1}\dots\partial_{\mu_n}f)(\partial_{ u_1}\dots\partial_{ u_n}g)$$ #### Formality condition The U_n define an L_∞ quasi-isomorphisms of DGL algebras and satisfy $$d. U_{n}(\mathcal{X}_{1},...,\mathcal{X}_{n}) + \frac{1}{2} \sum_{\substack{\mathcal{I} \sqcup \mathcal{J} = (1,...,n) \\ \mathcal{I},\mathcal{J} \neq \emptyset}} \varepsilon_{\mathcal{X}}(\mathcal{I},\mathcal{J}) \left[U_{|\mathcal{I}|}(\mathcal{X}_{\mathcal{I}}), U_{|\mathcal{J}|}(\mathcal{X}_{\mathcal{J}}) \right]_{G}$$ $$= \sum_{i < j} (-1)^{\alpha_{ij}} U_{n-1}([\mathcal{X}_{i},\mathcal{X}_{j}]_{S},\mathcal{X}_{1},...,\widehat{\mathcal{X}}_{i},...,\widehat{\mathcal{X}}_{j},...,\mathcal{X}_{n}),$$ relating Schouten brackets to Gerstenhaber brackets. Kontsevich (1997) For $$\mathrm{d}_\star = -[-,\star]_{\mathcal{G}}$$ and $\mathrm{d}_\theta = -[-,\theta]_{\mathcal{S}}$, FC implies $\mathrm{d}_\star \Phi(\theta) = \mathrm{i}\,\hbar\,\Phi(\mathrm{d}_\theta\theta)$, i.e. $$\star$$ associative \Leftrightarrow θ Poisson Up to gauge equivalence $$f \star g = f \cdot g + \frac{i}{2} \sum_{j} \theta^{ij} \partial_{i} f \cdot \partial_{j} g - \frac{\hbar^{2}}{4} \sum_{j} \theta^{ij} \theta^{kl} \partial_{i} \partial_{k} f \cdot \partial_{j} \partial_{l} g$$ $$- \frac{\hbar^{2}}{6} \left(\sum_{j} \theta^{ij} \partial_{j} \theta^{kl} \left(\partial_{i} \partial_{k} f \cdot \partial_{l} g - \partial_{k} f \cdot \partial_{i} \partial_{l} g \right) \right) + \dots ,$$ where $\theta = \theta^{ij} \partial_i \otimes \partial_i$ is a Poisson bi-vector. Global vs local symmetry: The noncommutative theory has global symmetries, like the commutative theory (if θ is transformed as well). But partial derivatives in the star product cause problems with local symmetries. Could introduce covariant derivatives in \star (as in gauge theories and GR), but this will i.g. break associativity. \longrightarrow symplectomorphisms, twisted symmetries, or NC gauge transformations Formality: vector field \mapsto differential operator: $\Xi(f\star g) = \Xi f\star g + g\star \Xi g + f[\mathcal{L}_{\varepsilon\star}]g$ $$\xi = \xi^{i}(x)\partial_{i} \quad \mapsto \quad \Xi = \Phi(\xi) := \sum \frac{(i\hbar)^{n}}{n!} U_{n+1}(\xi, \theta, \dots, \theta)$$ The differential operator Ξ_t generates deformed diffeomorphisms. If ξ is a symplectomorphism, then $\mathcal{L}_{\xi} \star = 0$. Twisted symmetry & coproduct $\Rightarrow \xi$ does not "see" the \star -product $$\delta_{\xi}(f \star g) = \sum \xi_{(1)} f \star \xi_{(2)} g$$ $\delta \xi \equiv \sum \xi_{(1)} \otimes \xi_{(2)}$ NC gauge transformations are automatically *-derivations $$\delta F = i(\Lambda \star F - F \star \Lambda) \qquad \qquad \delta \Psi = i\Lambda \star \Psi$$ note: $$\delta(f \star \Psi) = f \star i \Lambda \star \Psi \neq i \Lambda \star f \star \Psi$$ \Rightarrow introduce covariant coordinates $\mathcal{D}x^{\mu} = x^{\mu} + \hat{A}^{\mu}$ and covariant functions $$\mathcal{D}f = f + f_A$$ with $\delta \mathcal{D}f = i[\Lambda , \mathcal{D}f]$ ⇒ equivalent star products $$\mathcal{D}f \star \mathcal{D}g =: \mathcal{D}(f \star' g)$$ \Rightarrow deformation of \star by covariantizing change of coordinates (SW map) Jurčo, PS, Wess (2001) ### Moser's lemma on "nearby symplectic structures" B: closed (dB = 0), non-degenerate $(\theta := B^{-1})$ 2-form B' = B + F. F exact (F = dA) $B_t = B + t F$, non-degenerate, $t \in [0,1]$. \Rightarrow B' is obtained from B by a change of coordinates. Proof: Let $\xi_t = \theta_t^{ij} A_i \partial_i$, i.e $i_{\xi_t} B_t = -A$. $$\Rightarrow \mathcal{L}_{\xi_t} B_t = i_{\xi_t} dB + di_{\xi_t} B = 0 - dA = -F = -\partial_t B_t \ .$$ integrate the flow generated by \mathcal{L}_{ξ_t} from t=0 to t=1 to obtain a map ρ that depends on A and relates B' to B. B' is gauge invariant, but the map ρ transforms by a canonical transformation = (semi-classical) NC gauge transformation. #### Semi-classical "Poisson" Moser θ : Poisson bi-vector (can be degenerate) ; F = dA $\theta' = \theta - \theta \cdot F \cdot \theta + \theta \cdot F \cdot \theta \cdot F \cdot \theta - +$ $$heta_t = heta \cdot (1 + tF \cdot heta)^{-1}$$, Poisson, $t \in [0,1]$; $\xi_t = -A \cdot heta_t \cdot \partial$. $$\Rightarrow \partial_t heta_t = -\mathcal{L}_{\xi_t} heta_t = -[\xi_t, heta_t]_{\mathcal{S}}$$ $$ho^*(heta') = heta$$, with $ho^* = \left. \exp(\mathcal{L}_{\xi_t} + \partial_t) \exp(-\partial_t) ight|_{t=0}$ Gauge transformation: $\delta A = d\lambda$ implies $\delta \rho^*(f) = \{\rho^*(f), \tilde{\lambda}\}$, where $\tilde{\lambda} = \sum \frac{1}{n!} (\xi_t + \partial_t)^{n+1} (\lambda) \big|_{t=0}$. $$\rho^*(x^\mu) =: x^\mu + \tilde{a}^\mu, \quad \delta \tilde{a}^\mu = \theta^{\mu\nu} \partial_\nu \tilde{\lambda} + \{\tilde{a}^\mu, \tilde{\lambda}\}, \text{ etc.}$$ "Poisson gauge theory" ### Quantum Moser (= Seiberg-Witten map) Start again with the Moser vector field ξ_t . The differential operator $$\Xi_t = \Phi(\xi_t) := \sum \frac{(i\hbar)^n}{n!} U_{n+1}(\xi_t, \theta, \dots, \theta)$$ generates deformed diffeomorphisms that can be integrated to a flow \mathcal{D} , which is the SW map (exact, to all orders): Let $$\star_t = \sum \frac{i\hbar}{n!} U_n(\theta_t, \dots \theta_t), \quad \star' = \star_1,$$ $$\Rightarrow \partial_t(\star_t) = -[\Xi_t, \star_t]_G$$ $$\mathcal{D}(\star') = \star \ , \ \text{with} \ \mathcal{D} = \exp(\Xi_t + \partial_t) \exp(-\partial_t)|_{t=0}$$ Let $$\Lambda = \Phi(\lambda) = \sum \frac{(i\hbar)^n}{n!} U_{n+1}(\lambda, \theta, \dots, \theta)$$ and $\tilde{\Lambda} = \sum \frac{1}{n!} (\xi_t + \partial_t)^{n+1}(\Lambda) \Big|_{t=0}$. Gauge transformation $\delta A = d\lambda$ implies $\delta \mathcal{D} f = i[\tilde{\Lambda} , \mathcal{D} f]$ ### NC gauge theory and equivalent star products NC gauge theory = gauge theory of noncommutativity: $$\mathcal{D}_{[a]}(f\star'g)=\mathcal{D}_{[a]}f\star\mathcal{D}_{[a]}g$$ Star products \star , \star' : locally equivalent, globally Morita equivalent. ### Finite gauge transformations classical gauge transformation: $\psi \mapsto \psi_g = g\psi$ and $a \mapsto a_g = a + gdg^{-1}$ gauge equivalence \Rightarrow $$\begin{split} \Psi_{[\psi_g,a_g]} &= \mathit{G}_{[g,a]} \star \Psi_{[\psi,a]} \;, \quad \mathcal{D}_{[a_g]}(f) = \mathit{G}_{[g,a]} \star \mathcal{D}_{[a]}(f) \star (\mathit{G}_{[g,a]})^{-1} \\ & \mathit{G}_{[g_1,a_{g_2}]} \star \mathit{G}_{[g_2,a]} = \mathit{G}_{[g_1\cdot g_2,a]} \quad \text{(noncommutative group law)} \end{split}$$ can be used to patch and globalize construction \Rightarrow NC line bundles It is consistent to use an abbreviated notation $$G_{jk} \equiv G_{g_{jk}}[a_k], \qquad \mathcal{D}_k \equiv \mathcal{D}_{[a_k]}.$$ The fundamental relations on $U_i \cap U_i \cap U_k$ are $$G_{ij} \star G_{jk} = G_{ik}, \qquad G_{kj} \star G_{jk} = 1, \qquad \mathcal{D}_{j} \star G_{jk} = G_{jk} \star \mathcal{D}_{k}.$$ (There is no summation over j or k in these formulas.) The G_{jk} play the role of noncommutative transition functions. Sections: $$\Psi = (\Psi_k)$$ with $\Psi_j = G_{jk} \star \Psi_k$ bimodule structure: $f.\Psi = (\mathcal{D}_k(f) \star \Psi_k)$, $\Psi.f = (\Psi_k \star f)$ $f.(g.\Psi) = (f \star' g).\Psi$ while $(\Psi.f).g = \Psi.(f \star g)$ etc. . . . Jurco, PS, Wess, *Noncommutative line bundle and Morita equivalence*, Lett.Math.Phys. 61 (2002) 171-186 #### Born Infeld action ### Open string effective action $$\mathcal{S}_{\mathsf{DBI}} = \int d^n x rac{1}{g_s} \det{}^{ rac{1}{2}}(g+B+F) = \int d^n x rac{1}{\hat{G}_s} \det{}^{ rac{1}{2}}(\hat{G} + \hat{\Phi} + \hat{F})$$ commutative \leftrightarrow non-commutative duality Expand to second order, ignore (cosmological) constants \Rightarrow $$\mathcal{S}_{\mathrm{DBI}} = \int d^n x rac{|-g|^{ rac{1}{2}}}{4g_s} g^{ij} g^{kl} (B+F)_{ik} (B+F)_{jl} \qquad ext{(Maxwell/Yang-Mills)}$$ $$\mathcal{S}^{NC}_{\mathsf{DBI}} = \int d^n x \frac{|\theta|^{-\frac{1}{2}}}{4\hat{g}_s} \hat{g}_{ij} \hat{g}_{kl} \{\hat{X}^i, \hat{X}^k\} \{\hat{X}^j, \hat{X}^l\} \qquad \mathsf{(Matrix Model)}$$ Covariant coordinates: $\hat{X}^i = x^i + \hat{A}^i$ Commutative \leftrightarrow non-commutative duality fixes form of action # higher Born Infeld action ### open p-brane (p > 1) effective action? $$\begin{split} &\det[g+B] \text{ makes no sense for } B \text{ a } p+1\text{-form } (p>1) \text{ ,} \\ &\text{but } \det[g+B\tilde{g}^{-1}B^T] \text{ does, where } \tilde{g} \text{ is antisymmetrized } g^{\otimes p} \\ &(B:\ (p+1)\text{-form written as rectangular matrix } B_{iJ} \text{ with multiindex } J) \end{split}$$ $$S_{DBI} = rac{1}{g_m} \int d^{ ho'+1} x \det^x [g] \det^y \left[\underbrace{g + B ilde{g}^{-1} B^T}_G ight]$$ $= rac{1}{g_m} \int d^{ ho'+1} x \det^{ rac{1}{2}} [g] \det^y \left[1 + g^{-1} B ilde{g}^{-1} B^T ight]$ y=? noncommutative "Nambuian" version of this? Π : Nambu-Poisson p+1 multi-vector field #### Miraculous identity $$\det[g+(B+F)\tilde{g}^{-1}(B+F)^T] = \det{}^2[1-F\Pi^T] \cdot \det[G+(\Phi+F')\tilde{G}^{-1}(\Phi+F')^T]$$ where $F' = (I-F\Pi^T)^{-1}F$, holds for all p . The Jacobian of the Nambu-Poisson map fixes the appropriate power: $$S_{ extit{p-DBI}} = \int d^{p'+1}x \, rac{1}{g_m} \det{}^{\mathrm{x}}(g) \cdot \det{}^{\mathrm{y}}ig[g + (C+F) ilde{g}^{-1}(C+F)^Tig]$$ with $$x = \frac{p}{2(p+1)}$$, $y = \frac{1}{2(p+1)}$ #### NC Dual $$egin{aligned} S_{ extit{p-NCDBI}} &= \int d^{p'+1} x \, rac{1}{\widehat{G}_m} \, rac{\left|\widehat{m{\Pi}} ight|^{ rac{1}{p+1}}}{\left|m{\Pi} ight|^{ rac{1}{p+1}}} \det^{\,\mathrm{x}}(\widehat{G}) \ &\cdot \det^{\,\mathrm{y}}igl[\widehat{G} + (\widehat{\Phi} + \widehat{F}')\widehat{\widetilde{G}}^{-1}(\widehat{\Phi} + \widehat{F}')^Tigr] \end{aligned}$$ ^ denotes objects evaluated at covariant coordinates \widehat{F}' is the Nambu (NC) field strength open-closed membrane coupling constants $$G_m = g_m \left(\frac{\det G}{\det g} \right)^{\frac{p}{2(p+1)}}$$ ### Expansion of action ignore a cosmological constant term and let $\mathcal{F} = C + F$ $$\mathcal{S}_{ extit{p-DBI}} = rac{1}{2(extit{p}+1)g_{ extit{m}}} \det^{ rac{1}{2}}\!\left(g ight) ext{tr}\left[g^{-1}\mathcal{F} ilde{g}^{-1}\mathcal{F}^{T} ight] + \ldots$$ the coupling constant g_m is dimensionless for: - strings on D3 with 2-form field strength (Maxwell/Yang-Mills) - ▶ 2-brane on 5-brane with 3-form field strength (~> M2-M5 system) - ▶ p-brane on 2(p+1)-brane with p+1 form field strength consider $$p = 2$$, $p' = 5$ and expand further $(k = \mathcal{F}_i^{kl} \mathcal{F}_{jkl})$: $$det^{\frac{1}{6}}(1+k) = \sqrt{1 + \frac{1}{3}\operatorname{tr} k - \frac{1}{6}\operatorname{tr} k^2 + \frac{1}{36}(\operatorname{tr} k)^2 + \dots}.$$ \Rightarrow exact match with κ -symmetry computation of Cederwall, Nilsson, Sundell, "An Action for the superfive-brane" (1998) ### From higher gauge theory to matrix model... Expanding to lowest order (ignoring a non-cosmological constant) \Rightarrow semi-classical/infinite-dimensional version of a matrix model $$\int d^{p+1}x \, \frac{1}{|\Pi|^{\frac{1}{p+1}}} \, \frac{1}{2(p+1)\widehat{g}_m} \cdot \widehat{g}_{i_0j_0} \cdots \widehat{g}_{i_pj_p} \{\widehat{X}^{j_0}, \dots, \widehat{X}^{j_p}\} \{\widehat{X}^{i_0}, \dots, \widehat{X}^{i_p}\}$$ quantize: $$ightsquigar rac{1}{2(p+1)\widehat{g}_m}\operatorname{\mathsf{Tr}}\left(\widehat{g}_{i_0j_0}\cdots\widehat{g}_{i_pj_p}\left[\widehat{X}^{j_0},\ldots,\widehat{X}^{j_p} ight]\left[\widehat{X}^{i_0},\ldots,\widehat{X}^{i_p} ight] ight)$$ # Closed string effective action, gravity #### Massless bosonic modes - lacktriangle open strings: $A_{\mu},\ \phi^i\ ightarrow$ gauge and scalar fields - lacktriangle closed strings: $g_{\mu\nu}$, $B_{\mu\nu}$, Φ ightarrow background geometry, gravity ### Closed string effective action Weyl invariance (at 1 loop) requires vanishing beta functions: $$\beta_{\mu\nu}(g) = \beta_{\mu\nu}(B) = \beta(\Phi) = 0$$ $\downarrow \downarrow$ equations of motion for $g_{\mu\nu}$, $B_{\mu\nu}$, Φ closed string effective action $$\int d^D x |-g|^{\frac{1}{2}} \left(R - \frac{1}{12} e^{-\Phi/3} H_{\mu\nu\lambda} H^{\mu\nu\lambda} - \frac{1}{6} \partial_\mu \Phi \partial^\mu \Phi + \ldots\right)$$ Noncommutative version of this? # graded Poisson structure Now try to do the same for gravity! Since the metric $g_{\mu\nu}$ is symmetric (unlike $F^{\mu\nu}$) we need odd variables to deform Poisson brackets with it. Graded Poisson algebra on $T^*[2] \oplus T[1]M$, deformed by metric: $$\{egin{aligned} \{eta^{\mu}_{1},eta^{ u}_{1}\} &= 2 {m g}^{\mu u}_{0}(x) \qquad \{m p_{\mu},m x^{ u}_{0}\} &= \delta^{ u}_{\mu} \qquad \{m p_{\mu},f(x)\} &= \partial_{\mu}f(x) \end{aligned}$$ Jacobi identity (i.e. associativity) ⇔ metric connection $$\{\underset{2}{\rho_{\mu}},\underset{1}{\theta^{\alpha}}\} = \Gamma^{\alpha}_{\mu\beta} \underset{1}{\theta^{\beta}} =: \nabla_{\mu} \theta^{\alpha}$$ $$\{p_{\mu},\{\theta^{\alpha},\theta^{\beta}\}\}=2\partial_{\mu}\mathsf{g}^{\alpha\beta}=\{\{p_{\mu},\theta^{\alpha}\},\theta^{\beta}\}+\{\theta^{\alpha},\{p_{\mu},\theta^{\beta}\}\}$$ and curvature $$\begin{aligned} \{\{p_{\mu}, p_{\nu}\}, \theta^{\alpha}\} &= [\nabla_{\mu}, \nabla_{\nu}]\theta^{\alpha} = \theta^{\beta} R_{\beta}{}^{\alpha}{}_{\mu\nu} \\ \Rightarrow &\{p_{\mu}, p_{\nu}\} = \frac{1}{4} \theta_{1}^{\beta} \theta_{1}^{\alpha} R_{\beta\alpha\mu\nu} \end{aligned}$$ #### deformations our initial example: ## deformation by a gauge field A $$\Omega' = dx^i \wedge dp_i + \frac{1}{2}F_{ij}(x)dx^i \wedge dx^j$$, $dF = 0$, locally $F = dA$ $$\boxed{\Omega_t = \Omega + t dA}, \quad A = A_i(x)dx^i$$ $$V_t = A_i(x)\frac{\partial}{\partial p_i}, \quad \mathcal{L}_{V_t} \leadsto \rho_{[A]}(p) = p + A$$ $$\{p_i, x^j\}_t = \delta^j_i$$ $$\{p_i, p_j\}_t = t F_{ij}(x)$$ gauge transformation $\delta A=d\lambda\leftrightarrow\delta\rho_{[A]}$: canonical transformation non-abelian versions: $A_i^{\alpha}(x)\ell_{\alpha}dx^i$ and $A_{ia}^b(x)\theta^a\chi_bdx^i$ → Abelian and non-abelian gauge theory #### deformation by a spin connection ω $$\begin{split} \Omega &= dx^i \wedge dp_i + \frac{1}{2} \eta_{ab} d\theta^a \wedge d\theta^b \qquad \theta^a = e^a_i \theta^i \;, \quad g_{ij} = e^a_i e^b_j \eta_{ab} \\ \hline \Omega_t &= \Omega + t \; d\omega \;, \quad \omega = \omega_i(x,\theta) dx^i = \frac{1}{2} \omega_{iab}(x) \theta^a \theta^b dx^i \\ V_t &= \omega_i \partial_{p_i} \;, \quad \mathcal{L}_{V_t} \leadsto \rho_{[\omega]}(p) = p + \omega \\ \{p_i, x^j\}_t &= \delta^j_i \qquad \{\theta^a, \theta^b\}_t = \eta^{ab} \\ \{p_i, \theta^a\} &= t \; \eta^{ab} \omega_{ibc}(x) \; \theta^c \qquad \omega_{ibc} = -\omega_{icb} \\ \{p_i, p_j\}_t &= t \; R_{ij} \qquad R = d\omega + t\omega \wedge \omega \end{split}$$ gauge transformation $\delta\omega=d\lambda\leftrightarrow\delta\rho_{[\omega]}$: canonical transformation → Einstein-Cartan gravity ### deformation by a general connection Γ $$\begin{split} \Omega &= dx^i \wedge dp_i + d\theta^i \wedge d\chi_i \\ \hline \Omega_t &= \Omega + t \, d\Gamma \end{split}, \quad \Gamma = \Gamma_i dx^i = \Gamma_{ij}{}^k(x) \theta^j \chi_k dx^i \\ V_t &= \Gamma_i \partial_{p_i} \,, \quad \mathcal{L}_{V_t} \leadsto \rho_{[\Gamma]}(p) = p + \Gamma \\ \{p_i, x^j\}_t &= \delta^j_i \qquad \{\chi_i, \theta^j\}_t = \delta^j_i \\ \{p_i, \theta^j\} &= t \, \Gamma^j_{ik} \theta^k \qquad \{p_i, \chi_j\} = -t \, \Gamma^k_{ij} \chi_k \\ \{p_i, p_j\}_t &= t \, R_k{}^I{}_{ij} \theta^k \chi_l \qquad R_k{}^I{}_{ij} = \partial_i \Gamma^I_{jk} - \partial_j \Gamma^I_{ik} + \Gamma^m_{ik} \Gamma^I_{jm} - \Gamma^m_{jk} \Gamma^I_{im} \end{split}$$ gauge transformation $\delta \Gamma = d\Lambda \leftrightarrow \delta \rho_{[\Gamma]}$: canonical transformation General relativity and alternative gravity theories # Graded geometry ### Graded Poisson manifold $T^*[2]T[1]M$ - ▶ degree 0: x^i "coordinates" - degree 1: $\xi^{\alpha} = (\theta^i, \chi_i)$ - ▶ degree 2: *p_i* "momenta" symplectic 2-form $$\omega = dp_i \wedge dx^i + \frac{1}{2}G_{\alpha\beta}d\xi^{\alpha} \wedge d\xi^{\beta} = dp_i \wedge dx^i + d\chi_i \wedge d\theta^i$$ even (degree -2) Poisson bracket on functions $f(x, \xi, p)$ $$\{x^{i}, x^{j}\} = 0, \quad \{p_{i}, x^{j}\} = \delta_{i}^{j}, \quad \{\xi^{\alpha}, \xi^{\beta}\} = G^{\alpha\beta}$$ metric $G^{\alpha\beta}$: natural pairing of TM, T^*M : $$\{\chi_i, \theta^j\} = \delta_i^j$$, $\{\chi_i, \chi_j\} = 0$, $\{\theta^i, \theta^j\} = 0$ # Graded geometry ### degree-preserving canonical transformations ▶ infinitesimal, generators of degree 2: $$v^{\alpha}(x)p_{\alpha} + \frac{1}{2}M^{\alpha\beta}(x)\xi_{\alpha}\xi_{\beta} \quad \leadsto \quad \text{diffeos and } o(d,d)$$ ▶ finite, idempotent ("coordinate flip"): $(\tilde{\chi}, \tilde{\theta}) = \tau(\chi, \theta)$ with $\tau^2 = id$ \rightarrow generating function F of type 1 with $F(\theta, \tilde{\theta}) = -F(\tilde{\theta}, \theta)$: $$F = \theta \cdot g \cdot \tilde{\theta} - \frac{1}{2} \theta \cdot B \cdot \theta + \frac{1}{2} \tilde{\theta} \cdot B \cdot \tilde{\theta}$$ $$\chi = \frac{\partial F}{\partial \theta} = \tilde{\theta} \cdot g + \theta \cdot B , \qquad \tilde{\chi} = -\frac{\partial F}{\partial \tilde{\theta}} = \theta \cdot g + \tilde{\theta} \cdot B$$ $$\Rightarrow \quad \tau(\chi, \theta) = (\chi, \theta) \cdot \begin{pmatrix} g^{-1}B & g^{-1} \\ g - Bg^{-1}B & -Bg^{-1} \end{pmatrix}$$ → generalized metric # Generalized geometry ### Generalized geometry as a derived structure degree 3 "Hamiltonian": Dirac operator $$\Theta = \xi^{\alpha} h_{\alpha}^{i}(x) p_{i} + \underbrace{\frac{1}{6} C_{\alpha\beta\gamma} \xi^{\alpha} \xi^{\beta} \xi^{\gamma}}_{\text{twisting/flux terms}}$$ For $e = e_{\alpha}(x)\xi^{\alpha} \in \Gamma(TM \oplus T^*M)$ (degree 1, odd): - ▶ pairing: $\langle e, e' \rangle = \{e, e'\}$ - ▶ anchor: $h(e)f = \{\{e,\Theta\},f\}$ - ▶ bracket: $[e, e']_D = \{\{e, \Theta\}, e'\}$ # Generalized geometry #### Generalized geometry as a derived structure Courant algebroid axioms from associativity and $\{\Theta, \Theta\} = 0$: $$\begin{split} h(\xi_1) & \langle \xi_2, \xi_2 \rangle = \{ \{\Theta, \xi_1\}, \{\xi_2, \xi_2\} \} \\ &= 2 \{ \{\{\Theta, \xi_1\}, \xi_2\}, \xi_2\} = 2 \, \langle [\xi_1, \xi_2], \xi_2 \rangle & \text{(axiom 1)} \\ &= 2 \{ \xi_1, \{\{\Theta, \xi_2\}, \xi_2\} \} = 2 \, \langle \xi_1, [\xi_2, \xi_2] \rangle & \text{(axiom 2)} \end{split}$$ $$\begin{split} [\xi_1, [\xi_2, \xi_3]] &= \{\{\Theta, \xi_1\}, \{\{\Theta, \xi_2\}, \xi_3\}\} \\ &= [[\xi_1, \xi_2], \xi_3] + [\xi_2, [\xi_1, \xi_3]] + \frac{1}{2} \{\{\{\{\Theta, \Theta\}, \xi_1\}, \xi_2\}, \xi_3\}. \end{split}$$ $$\{\Theta, \Theta\} = 0 \quad \Leftrightarrow \quad [,] \text{-Jacobi identity (in 1st slot)} \tag{axiom 3}$$ #### Deformation ### general (deformed) Poisson structure #### with - ightharpoonup degree 0: f(x) - degree 1: $V = V^{\alpha}(x)\xi_{\alpha}$ "generalized vectors" - degree 2: $v = v^i(x)p_i$ "vector fields" ### general Hamiltonian $$\Theta = \tilde{\xi}^{\alpha} h(\xi_{\alpha}) + \frac{1}{6} C_{\alpha\beta\gamma} \tilde{\xi}^{\alpha} \tilde{\xi}^{\beta} \tilde{\xi}^{\gamma} \quad \leftarrow \text{general flux (H,f,Q,R)}$$ #### Deformation #### derived bracket $$\begin{split} &\{\{\{V,\Theta\},W\},X\} = \langle \nabla_V W,X \rangle - \langle \nabla_W V,X \rangle + \langle \nabla_X V,W \rangle + C(V,W,X) \\ &\{\{\{\xi_\alpha,\Theta\},\xi_\beta\},\xi_\gamma\} = \underbrace{\Gamma_{\alpha\beta\gamma} - \Gamma_{\beta\alpha\gamma}}_{\text{torsion}} + \Gamma_{\gamma\alpha\beta} + C_{\alpha\beta\gamma} =: \Gamma^{\text{new}}_{\gamma\alpha\beta} \end{split}$$ #### "mother of all brackets" $$[V, W] = \nabla_V W - \nabla_W V + \langle \nabla V, W \rangle + C(V, W, -)$$ = $[[V, W]] + T(V, W) + \langle \nabla V, W \rangle + C(V, W, -)$ In order to obtain a regular Courant algebroid, impose $$\{\Theta,\Theta\}=0\quad\Leftrightarrow\quad \nabla \mathcal{C}+\frac{1}{2}\{\mathcal{C},\mathcal{C}\}=0\,,\quad \mathcal{G}^{-1}|_{\text{h}}=0\,,\dots$$ # Generalized differential geometry generalized Lie-bracket (involves anchor $h: E \rightarrow TM$) $$[[V, W]] = -[[W, V]], \quad [[V, fW]] = (h(V)f)W + f[[V, W]]$$ generalized connection "type I" and miraculous triple identity $$\Gamma(V; fW, U) = (h(V)f)\langle W, U \rangle + f\Gamma(V; W, U),$$ $$\langle V, [W, Z] \rangle = \langle V, [[W, Z]] \rangle + \Gamma(V; W, Z)$$ $$\langle \nabla_V W, U \rangle := \Gamma(V; W, U)$$ generalized curvature and torsion $$R(V, W) = \nabla_{V} \nabla_{W} - \nabla_{W} \nabla_{V} - \nabla_{[[V, W]]}$$ $$T(V, W) = \nabla_V W - \nabla_W V - [[V, W]]$$ ### cookbook recipe - deform graded Poisson structure - ▶ pick Hamiltonian Θ (e.g. canonical), compute derived brackets - choose generalized Lie bracket [[,]] (e.g. canonical) - determine connection Γ from triple identity - project (or rather embed) via non-isotropic splitting (e.g. canonical) $$s: \Gamma(TM) \to \Gamma(E)$$ $\rho \circ s = \mathrm{id}$ $\langle X, Y \rangle_{TM} := \langle s(X), s(Y) \rangle$ $\langle \nabla_Z X, Y \rangle_{TM} := \Gamma(s(Z); s(X), s(Y))$ ightharpoonup compute Riemann and Ricci tensors, take trace with g+B, write action in terms of resulting Ricci scalar ### deformation by generalized vielbein E $$\Omega = dx^i \wedge dp_i + d\theta^i \wedge d\chi_i$$ deformation by change of coordinates in the odd (degree 1) sector two choices: $$\begin{pmatrix} \theta \\ \chi \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 \\ g+B & 1 \end{pmatrix} \cdot \begin{pmatrix} \theta \\ \chi \end{pmatrix} \quad \text{ and } \quad \begin{pmatrix} 1 & \Pi+G \\ -g+B & 1 \end{pmatrix} \cdot \begin{pmatrix} \theta \\ \chi \end{pmatrix}$$ Boffo, PS now crank the "machine" (deformed derived bracket, connection, project, Riemann, Ricci) → (effective) gravity actions . . . generalized Koszul formula for nonsymmetric $\mathcal{G} = g + B$ $$2g(\nabla_{Z}X,Y) = \langle Z, [X,Y]' \rangle'$$ $$= X\mathcal{G}(Y,Z) - Y\mathcal{G}(X,Z) + Z\mathcal{G}(X,Y)$$ $$-\mathcal{G}(Y, [X,Z]_{Lie}) - \mathcal{G}([X,Y]_{Lie},Z) + \mathcal{G}(X, [Y,Z]_{Lie})$$ $$= 2g(\nabla_{X}^{LC}Y,Z) + H(X,Y,Z)$$ ⇒ non-symmetric Ricci tensor $$R_{jl} = R_{jl}^{LC} - \frac{1}{2} \nabla_i^{LC} H_{jl}^{\ i} - \frac{1}{4} H_{lm}^{\ i} H_{ij}^{\ m} \qquad R = \mathcal{G}_{ij} g^{ik} g^{jl} R_{kl}$$ ⇒ gravity action (closed string effective action) after partial integration: $$S_{\mathcal{G}} = rac{1}{16\pi G_N} \int d^d x \sqrt{-g} \left(R^{LC} - rac{1}{12} H_{ijk} H^{ijk} ight)$$ This formulation consistently combines all approaches of Einstein: Non-symmetric metric, Weitzenböck and Levi-Civita connections, without any of the usual drawbacks. The dilaton $\phi(x)$ rescales the generalized tangent bundle. The deformation can be formulated in terms of vielbeins $$E = e^{- rac{\phi}{3}} egin{pmatrix} 1 & 0 \ g+B & 1 \end{pmatrix} \qquad E^{-1}\partial_i E = egin{pmatrix} - rac{1}{3}\partial_i \phi & 0 \ \partial_i (g+B) & - rac{1}{3}\partial_i \phi \end{pmatrix}$$ Going through the same steps as before we find in d=10 $$S = \frac{1}{2\kappa} \int d^{10}x \, e^{-2\phi} \sqrt{-g} \Big(R^{\text{LC}} - \frac{1}{12} H^2 + 4(\nabla \phi)^2 \Big)$$ Boffo, PS (JHEP 2020) new approach, symmetric in open-closed string relations $$(g-B)^{-1} =: G^{-1} - \Pi$$ deformation via $$\mathcal{E} = \begin{pmatrix} 1 & (g-B)^{-1} \\ -(g+B) & 1 \end{pmatrix} \quad \rightsquigarrow \quad \mathcal{G} = \begin{pmatrix} -2g & 0 \\ 0 & 2G^{-1} \end{pmatrix}$$ → low energy effective action for non-geometric closed strings $$S[G^{-1}, \Pi] = \int_{M} d^{d}x \sqrt{\det G^{-1}} \left[R_{G} - \frac{1}{12} R^{2} - \frac{1}{2} R^{lmi} Q^{jk}{}_{i} G_{lj} G_{mk} - \frac{1}{4} Q^{jl}{}_{m} Q^{kn}{}_{i} G_{jk} G_{ln} G^{mi} - \frac{1}{2} Q^{lj}{}_{k} Q^{km}{}_{l} G_{jm} \right]$$ where locally $R^{ijk} = 3\Pi^{[i|l}\partial_l\Pi^{[jk]}$ and $Q^{ij}{}_k = \partial_k\Pi^{ij}$ #### Conclusion - ▶ interaction via deformation: "forces = free fall in deformed phase space" - powerful approach to NC gauge theory: allows to find SW to all orders - effective actions via commutative—noncommutative duality - graded/generalized geometry provides a perfect setting for the formulation of low energy effective actions and theories of gravity - approach is based on deformed graded geometry is algebraic in nature: everything follows from associativity as unifying principle Thanks for listening!