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The Cayley-Hamilton Theorem

Every matrix obeys its own characteristic polynomial.

pX (λ) = det(λIN − X ) = λN + cN−1λ
N−1 + · · ·+ c1λ+ c0

pX (X ) = XN + cN−1X
N−1 + · · ·+ det(−X ) = 0

cn−1 = − tr (X ), cn−2 =
1

2

(
( tr (X ))2 − tr (X 2)

)
, etc.

Tr(pX ) = 0 =⇒ det(X ) expressed in terms of traces of X k

Tr(X pX (X )) = 0 =⇒ Tr(X n+1) = sum of products of traces.
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Two or more matrices

pX1(X1) = 0, pX2(X2) = 0 and pX1+X2(X1 + X2) = 0

The only independent traces are

Tr(X1),Tr(X2),Tr(X 2
1 ),Tr(X 2

2 ) and Tr(X1X2)

For three 2× 2 matrices one needs in addition

Tr(X1X2X3)

and generically such products up to triples is sufficient for any
number of 2× 2 matrices.
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It quickly gets complicated!

Two 3× 3 matrices

The independent traces for N = 3 are:

Tr(X1),Tr(X2),Tr(X 2
1 ),Tr(X1 X2),Tr(X 2

2 ),

Tr(X 3
1 ),Tr(X 2

1 X2),Tr(X1 X
2
2 ),Tr(X 3

2 ),

Tr(X 2
1 X 2

2 ),Tr(X 2
1 X 2

2 X1 X2)

We have a 6th order term!

For a nice review of some of the mathematics background see
V. Drensky, Computing with Matrix Invariants,
arXiv:math/0506614.
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Matrices of oscillators

Consider matrices of creation oscellators a†ij and b†ij we can ask
about the allowed states U(N) invariant states e.g. states such as:

Tr(a†)|0〉, Tr(b†)|0〉,Tr((a†)2)|0〉, Tr(a†) Tr(a†)|0〉 . . .

Tr(a†)2|0〉 . . . Tr((a†)n1(b†)n2) · · · (b†)nk |0〉

How do we avoid double counting?
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A gauge Gaussian model

SGG [X ] =

∫
dt

D∑
a=1

1

2
Tr

[
DtX

aDtX
a −m2X aX a

]
Dt = ∂t − i [A, ].

The Hamiltonian formulation involves a system of harmonic
oscillators with a Gauss law constraint which implies the states
must be U(N) singlets.
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In a thermal bath: for small N

A single oscillator

Tr(e−βH) =
∞∑
n=0

e−βm(n+ 1
2

) =
e−β

m
2

1− e−βm

Without zero point energy

S(t) = Tr(t â
†a) =

1

1− t
, t = e−βm.

For k oscillators

S(t, k) =
1

(1− t)k
= 1+kt+

k(k + 1)

2
t2 +

k(k + 1)(k + 2)

3!
t3 +· · ·

The coefficient of tn is the dimension of the level n vector space.
S(t, k) is called a Hilbert (or Poincaré) series.

Multi-matrix Trace relations and Hagedorn Transitions



A single matrix Gauge Gaussian model

SGG [X ] = N

∫ β

0
dτ

1

2
Tr

[
(DτX )2 + m2X 2

]

The allowed states

|0〉
Tr(a†)|0〉

Tr(a†a†)|0,Tr(a†) Tr(a†)|0〉
· · ·

Tr(a†)n|0〉,Tr(a†)n Tr(a†)|0〉 · · · (Tr a†)n

· · ·
The Hilbert Series in the N →∞ limit is then

S(t) =
∞∏
n=1

1

1− tn
=

1

Φ(t)

with Φ(t) the Euler function.
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The Multi-matrix case

On integrating out X a and suppressing the zero-point energy, the
effective action for θi , the eigenvalues of βA is

SGG (θ) =
D

2

N∑
i ,j=1

ln |1− e−βm+i(θi−θj )|2

−D ln(1− e−βm)− 1

2

N∑
i 6=j=1

ln |1− ei(θi−θj )|2.

Hilbert-Poincaré series from gauge Gaussian Matrix Model

S(t,D) =
1

N!

∫ N∏
i=1

dθi
2π

e−SGG (θ)

Equivalently S is the sentence generating function for words
formed from traces of creation operators.
See Furuuchi et al arXiv:0310286.
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Hilbert-Poincaré series as Molien-Weyl formula.

The integrations can be case as contours integral giving

S(t,D) =
1

(1− t)D(N−1)

1

N!

∫ N∏
i=1

dzi
2πizi

∆({z})∆({1/z})
(∆(t, {z})∆(t, {1/z}))D

where ∆(t, {z}) =
∏

1≤i<j≤N(tzi − zj) and ∆({z}) = ∆(1, {z}) is
the Vandermonde determinant.

This expression is the Molien-Weyl formula for the Hilbert-Poincaré
series. (See F. Dolan arXiv:0704.1038 and Kristensson et al
arXiv:2005.06480).
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Caley-Hamilton

But for finite N Caley-Hamilton tells us that Tr((a†)N+1) is
related to lower traces.
The finite N result for one matrix is in fact

S(t) =
N∏

n=1

1

1− tn
= PN(t)

and PN(t) is the generating function for pN(n) the number of
partitions of n into no more than N parts and

PN(t) =
∞∑
n=0

pN(n)tn

which can be seen directly from the Fock basis.
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Example D=2

With different masses for the two matrices

SU(2)
GG (t1, t2, 2) =

1

(1− t1)(1− t2)(1− t2
1 )(1− t2

2 )(1− t1t2)

For t1 = t2 and SU(2) it becomes:

SSU(2)
GG (t, 2) =

1

(1− t2)3

SSU(3)
GG (t, 2) =

1

(1− t)4

(1− t2 + t4)

(1− t2)4(1 + t + t2)4
= 1+3t2+4t3+7t4+· · ·

The results are know up to SU(7) with SU(7) computed in
Kristensson et al arXiv:2005.06480.
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Observables for small N .
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Free Energy for N=2,3,4,5,6 and 7
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E=<H>/N^2 for SU(N) N=2,3,4,5,6 and 7

The free Energy and Internal Energy for gauged Gaussian matrix
models.
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Fluctuation Observables
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T
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<(H-<H>)^2>/N^2

Energy fluctuations SU(N) N=2,3,4,5,6 and 7
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C

C=β^2<(H-<H>)^2>/N^2; N=2,3,4,5,6 and 7

The Standard Deviation of the Energy and the Heat Capacity for
gauged Gaussian matrix models.

Multi-matrix Trace relations and Hagedorn Transitions



Dimensional Reduction of Yang-Mills

The Matrix models of interest are the zero volume limits of
Yang-Mills compactified on a torus.
On R3+1 we have the Yang-Mills action:

SYM =
1

4g2

∫
dtd3xFµνF

µν

Dimensional reduction on T3 gives 3-matrix model with a
gauge-field A0 → A

Path Integral Quantization in a Thermal Bath

Z =

∫
[dX ][dA]e−

∫ β
0 dτ Tr( 1

2
(DτX a)2− 1

4
[X a,X b]2)

One can evaluate observables with the path integral by standard
techniques.

Multi-matrix Trace relations and Hagedorn Transitions



Hamiltonian Quantization

The residual gauge field A is not dynamical and appears only in

DτX
a = ∂τX

a − i [A,X a].

It leads to a constraint on the dynamics.

Gauss law constraint

A is a Lagrange multiplier field that leads to the Gauss Law
constraint and implies a projection onto physical states.

From the action we can obtain the Hamiltonian and once we have
the Hamiltonian H we can equally consider thermal ensembles
whose partition function is given by

Z = Tr
Phys

(e−βH)

where the physical constraint means the states are SU(N)
invariant.
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Introducing an Auxiliary Field

Expanding the reduced action gives

S [X ,A] =

∫ β

0
dτ Tr

(
1

2
(DτX

a)2

)
− 1

4
λABCD

∫ β

0
dt X a

AX
a
B X b

CX
b
C .

Next (with µABCD the inverse of λABCD) add to the action

∆S =
1

4
µABCD

β∫
0

dt
(
kAB + λABEFX a

EX
a
F

)(
kCD + λCDGHX a

GX
a
H

)
,

the action S [X ,A, k] = S [X ,A] + ∆S [X , k] then becomes:

S [X ,A, k] =
1

2

∫ β

0
dτ

{
Tr(DτX

a)2 + kABX a
AX

a
B +

1

4
µABCDk

ABkCD
}
.

This addition is trivial since
∫

[dk] e−∆S = const.
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Gauge Gaussian Model

The auxiliary field kAB ' m2δAB so

S [X ,A, k] =
1

2

∫ β

0
dτ

{
Tr(DτX

a)2 + kABX a
AX

a
B +

1

4
µABCDk

ABkCD
}
.

becomes:

A Gauge Gaussian Model

SGG [X ,A] =
1

2

∫ β

0
dτ Tr

{
(DτX

a)2 + m2X aX a
}

with m2 approximately the lowest glueball mass times the toroidal
volume.
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Similar models e.g. the large µ BMN model

The massive deformation of the BFSS model gives the BMN model

S [X , ψ] =

∫ β

0
dτ Tr

[
1

2
DτX

iDτX
i − 1

4

(
[X r ,X s ] +

iµ

3
εrstXt

)2

− 1

2
[X r ,Xm]2 − 1

4
[Xm,X n]2 +

1

2

(µ
6

)2
X 2
m

+
1

2
ψTC

(
Dτ−

iµ

4
γ567

)
ψ − 1

2
ψTCγ i [X i , ψ]

]

Taking µ to infinity gives a supersymmetric gauge Gaussian model.

Multi-matrix Trace relations and Hagedorn Transitions



Connection to other models

These matrix models are dimensional reductions of higher
dimensional Yang-Mills models.

The bosonic membrane in flat 3 + 1 spacetime is a toroidal
compactification of SU(N) Yang-Mills.

The Bosonic model on a pp-wave background is is a reduction
of Yang-Mills on S3— also studied in

A. P. Balachandran, S. Vaidya and A. R. de Queiroz, Mod. Phys.
Lett. A 30 (2015) no.16, 1550080[] and
Nirmalendu Acharyya, A. P. Balachandran, Mahul Pandey,
Sambuddha Sanyal, Sachindeo Vaidya, IJMP A Vol. 33, No. 13
(2018) 1850073 [arXiv:1606.08711].
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The BFSS model is a toroidal compactification of 9 + 1 dim
N = 1 Susy on a 9-torus or 3 + 1 N = 4 susy on a 3-torus.

The BFSS model is a compactification of N = 4 susy on S3.

The BD model is a compactification of 5 + 1 N = 1 on a
5-torus or 3 + 1 N = 2 on a 3-torus.

One could continue!

These compactifications give hints of the physics to expect.
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Analysing the gauge Gaussian model.

Gauge Gaussian models e.g.

SGG [X ] = N

∫ β

0
dτ

D∑
a=1

1

2
Tr

[
DτX

aDτX
a + m2X aX a

]

are the simplest model of this type we can study and can be
analysed in great detail.

The Hamiltonian formulation involves a system of harmonic
oscillators with a Gauss law constraint which insists on SU(N)
singlets.
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Analysing gauge Gaussian models

Integrating out the X a gives the effective action

SGG (θ) =
D(N2 − 1)

2
βm +

D

2

N∑
i ,j=1

ln |1− e−βm+i(θi−θj )|2

−D ln(1− e−βm)− 1

2

N∑
i 6=j=1

ln |1− ei(θi−θj )| .

The θi are eigenvalues of βA in static gauge.
Expanding the logarithms and with un = 1

N

∑n
i=1 e

inθi gives

SGG (θ) =
D(N2 − 1)

2
βm + N2

∞∑
n=1

{1− De−nmβ

n
|un|2 −

1

nN
}

In large N the un are moments of the eigenvalue distribution ρ(θ).
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The Hagedorn transition

Examining

SGG (θ) =
D(N2 − 1)

2
βm + N2

∞∑
n=1

{1− De−nmβ

n
|un|2 −

1

nN
}

At low temperature (large β) all un have a minimum at 0 and the
free energy is given by the zero point energy term. As the
temperature is increased u1 becomes unstable first.

The Hagedorn temperature

For D > 1 there is a large N phase transition at:

βH =
lnD

m
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A Hagedorn Transition

A Hagedorn transition is characterised by exponential growth in
the degeneracy of energy levels at large energy .

Degeneracy growth

Ω(E ) ∼ eβHE

as the energy increases.

A transition occurs at β = βH

Such exponential growth seems unphysical so we expect a phase
transition from a low temperature to a high temperature phase.

The Hagedorn/Deconfinement Phase Transition in Weakly Coupled
Large N Gauge Theories — Aharony, Marsano, Minwalla,
Papadodimas and Van Raamsdonk, arXiv:hep-th/0310285
argued that weakly coupled gauge theories on spheres typically
undergo such a phase transition.
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The large N limit

In the large N limit the free energy per matrix element is

βF (ρ) =
Dmβ

2
+

D

2

∫
ρ(α)

∫
ρ(α′) ln |1− e−βm+i(α−α′)|2dαdβ

−1

2
P

∫
ρ(α)ρ(α′) ln |1− ei(α−α′)|dαdα′ .

For low temperatures including the transition expanding in e−mβ

and only retaining the leading exponential is sufficient and
equivalent to solving the model

Za1 =

∫
[dU]ea1Tr(U)Tr(U−1) with a1 = De−mβ

resulting in

βFa1 = −a1|u1|2 −
1

2
P

∫
ρ(α)ρ(α′) ln |1− ei(α−α′)|dαdα′ .
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The eigenvalue distribution is given by (see Aharony et al
[hep-th/0310285])

ρ(θ) =

{
1

2π for β > βH
1
πs2

√
s2 − sin2( θ2 ) cos( θ2 ) for β < βH

with

s2 ≡ sin2(
θ0

2
) = 1−

√
1− 1

a1
= 1−

√
1− e−m(β−βH) .

and

βFGG =

{
Dmβ

2 for β > βH
Dmβ

2 + 1
2 −

1
2s2 − 1

2 ln s2 for β < βH

Near the transition we have

βFGG =

{
Dmβ

2 for β > βH
Dmβ

2 + m(β−βH)
4 − m3/2

3 (βH − β)3/2 + · · · for β < βH
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The eigenvalue distribution is given by (see Aharony et al
[hep-th/0310285])

ρ(θ) =

{
1

2π for β > βH
1
πs2

√
s2 − sin2( θ2 ) cos( θ2 ) for β < βH

with

s2 ≡ sin2(
θ0

2
) = 1−

√
1− 1

a1
= 1−

√
1− e−m(β−βH) .

and

βFGG =

{
Dmβ

2 for β > βH
Dmβ

2 + 1
2 −

1
2s2 − 1

2 ln s2 for β < βH

Near the transition we have

βFGG =

{
Dmβ

2 for β > βH
Dmβ

2 + m(β−βH)
4 − m3/2

3 (βH − β)3/2 + · · · for β < βH
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The Energy and Specific Heat

The energy near the Hagedorn temperature is

E =
∂(βF )

∂β
=

{
Dm

2 for β > βH
Dm

2 + m
4 + m3/2

2

√
βH − β + · · · for β < βH .

We can furthermore obtain that the specific heat

Cv = −β2∂
2(βF )

∂β2
=

{
0 for β > βH

β2
H

m3/2

4
√
βH−β

+ · · · for β < βH .

Divergent fluctuations

The specific heat of the gauge Gaussian model is predicted to
diverge with a square root singularity as the Hagedorn temperature
is approached from the deconfined high temperature side of the
transition!

Multi-matrix Trace relations and Hagedorn Transitions



3/2-order phase transition

The transition is NOT to in fact first order.

The transition has a divergent specific heat on either side of the
transition. The stronger divergence appears to be on the low
temperature side, but this is coming from subdominant
contributions as the limit is approached.

0.0 0.5 1.0 1.5 2.0
T

1.0

1.2

1.4

1.6

E

Energy with N=∞, m=1, D=2

0.5 1.0 1.5 2.0
T

1

2

3

4

Cv

Cv with N=∞, m=1, D=2

For other examples of 3/2 order phase-transitions see:
Bhattacharjee, Nagle, Huse and Fisher J.Stat.Phys. 32 (1983) 361.
Nash and O’Connor J.Phys. A 42 (2009) 012002 [arXiv:0809.2960]
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Divergent 1/N corrections

When the leading 1/N corrections in the large N limit are taken
into account the partition function in the confined phase becomes

ZConf
GG = e−D(N2−1)mβ/2

∞∏
n=1

1

1− e−nm(β−βH)

which is well approximated by the n = 1 term i.e.

ZConf
GG ' e−D(N2−1)mβ/2 1

1− e−m(β−βH)

Multi-matrix Trace relations and Hagedorn Transitions



Near the Hagedorn temperature

βF =
Dmβ

2
+

1

N2
ln (m(β − βH)) + · · ·

E =
Dm

2
+

1

N2

1

β − βH
+ · · · (1)

The 1/N2 corrections diverge as the Hagedorn temperature

is approached. For T ' TH −
2T 2

H
N2mD

the 1/N2 corrections can
compete with the leading ground state energy contribution.

N.B. Fluctuations are large!

One needs more care in taking the limit in the vicinity of the
transition.
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A micorcanonical analysis

The entropy (over N2) in a microcanonical ensemble is given by

S =
ln Ω

N2

Low temperatures

S(t,D) =
∞∏
k=1

1

1− Dtk
∼
∞∑
n=1

en lnD−nβm

We can read off the entropy

S− =
n

N2
lnD =

E

m
lnD
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High temperature

We can solve E (β) for β(E ) then note:

dS
dE

= β(E )

Integrating back and supplying a boundary condition gives S(E ).

We should match βH where E
m = 1

4 .
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The Microcanonical Boltzmann Entropy

S− = x lnD x ≤ 1

4

S+ = −1

4
+ x + x ln(

16Dx

(1 + 4x)2
) +

1

2
ln(

2

(1 + 4x)
) x ≥ 1

4

x = E
m = n

N2 .

0.5 1.0 1.5 2.0
x

0.5
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3.0

3.5

Entropy

Gauge Gaussian Entropy with D=9
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Conclusions

We have seen gauge Gaussian models have Hagedorn
transitions and potentially divergent 1/N corrections.

The transitions are 3/2 order rather than 1st order.

Analytic studies of small N are instructive.

For large N trace relations become dominant for strings of
length N2

4 .
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Thank you for your attention
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