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Section #1 Ambiguity of quantization and preferred observables

With > 100 years of General Relativity and > 90 years of Quantum
Mechanics it is becoming increasingly embarassing the fact that
there is not a fully consistent theory of Quantum Gravity.
The candidates to succeed as e.g. String Theory, Loop Quantum
Gravity, Causal Dynamical Triangulations, Group Field Theory
continue facing conceptual and technical problems.
One of the problems one is faced with and the one we will address
today is that of nonuniqueness of quantization of a classical
system.
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Section #1 Ambiguity of quantization and preferred observables

The dream of the founders of quantum mechanics was to have
quantization as a well defined process assigning a quantum system
to every classical system and satisfying the correspondence principle

Quantization Functor (?) : (M, ω) 7→ Qℏ(M, ω) ℏ→07→ (M, ω)

It was soon realized that this can never be the case even for the
simplest systems.
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Section #1 Ambiguity of quantization and preferred observables

Particle in the line (1 dof)

Classical - (M, ω) = (R2, dp ∧ dq,H = 1
2p2 + V (q)):

f ⇝ Xf = ∂f
∂p

∂

∂q − ∂f
∂q

∂

∂p XH = p ∂

∂q − V ′(q) ∂
∂p
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Section #1 Ambiguity of quantization and preferred observables

Quantum - QSch
ℏ (R2, dp ∧ dq,H):

HQ
Sch = L2(R, dq)

q 7→ QSch
ℏ (q) = q̂ = q

p 7→ QSch
ℏ (p) = p̂ = iℏ ∂

∂q
f (q, p) 7→ ??

H = 1
2p2 + V (q) 7→ QSch

ℏ (H) = Ĥ = −ℏ2

2
∂

∂q2 + V (q)

HQ
Sch = HQ

q
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Section #1 Ambiguity of quantization and preferred observables

Groenewold (1946) – van Hove (1951) no go Thm:
It is impossible, even for systems with one degree of freedom, to quantize
all observables exactly as Dirac hoped

Qℏ(f ) = f̂
[Qℏ(f ),Qℏ(h)] = iℏQℏ({f , g})

and satisfy natural additional requirements like irreducibility of the
quantization.
In order to quantize one needs to add additional data to the classical
system. eg choose a (sufficiently big but not too big ...) (Lie) subalgebra
of the algebra of all observables

A = SpanC{1, q, p}

Then we have to study the dependence of the quantum theory on the
additional data.
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Section #2 Geometric Quantization comes to the rescue

Fortunately Geometric Quantization allows to put an order in the
apparent mess of this infinite dimensional family of different
quantizations.
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Section #2 Geometric Quantization comes to the rescue

1. GQ allows to parametrize the space of quantizations T(M,ω) of
a system with phase space (M, ω) with (a closure of) a open
subset of C∞(M):

T(M,ω) = U = {k}

U =
{

k ∈ C∞(M) : ω + i ∂I∂Ik > 0
}

⊂ C∞(M) ,

where (ω, I) is a Kähler pair.
2. The “group” HamC of complex canonical transformations

acts transitively in the space of quantizations T(M,ω).
3. The action of HamC can frequently be lifted to an action on

the quantum bundle via Coherent State Transforms.
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Section #2 Geometric Quantization comes to the rescue

Geometric quantization is mathematically perhaps the best defined
quantization

(M, ω), 1
2πℏ [ω] ∈ H2(M,Z)

Prequantum data: (L,∇, h), L → M,F∇ = ω
ℏ

Pre-quantum Hilbert space:

HprQ = ΓL2(M, L) =
{

s ∈ Γ∞(M, L) : ||s||2 =
∫

M
h(s, s) ω

n

n! < ∞
}

Pre-quantum observables:

f̂ = QprQ
ℏ (f ) = f̂ prQ = iℏ∇Xf + f

This almost works! But the Hilbert space is too large, the representation
is reducible.
We need a smaller Hilbert space: Prequantization ⇒ Quantization
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Section #2 Geometric Quantization comes to the rescue

Additional Data in Geometric Quantization
Generalizing what is done in the Schrödinger representation, for
systems with one degree of freedom, to fix a quantization one
chooses (locally) a preferred observable – F (q, p)1 – and then
works with wave functions of the form

HprQ ⇝ HQ
F =

{
Ψ ∈ HprQ : ∇XF Ψ = 0, ||Ψ|| < ∞

}
=

=
{

Ψ(q, p) = ψ(F ) e− k(q,p), ||Ψ|| < ∞
}

⊂ HprQ

on which the preferred observable F and functions of it u(F ) act
diagonally

QF
ℏ (u(F )) = û(F )

prQ
|HQ

F
= u(F ).

1for systems with n degrees of freedom one chooses (locally) n independent
observables in involution F1, . . . , Fn, {Fj , Fk} = 0. The distribution
P =< XFj , j = 1, . . . n > is called polarization associated with this choice.
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Section #2 Geometric Quantization comes to the rescue

(Non–)Equivalence of different Quantizations

Are all these quantizations (for different choices of F ) physically
equivalent?
NO!
Consider the observable: Hλ = p2

2 + q2

2 + λq4

4 , λ ≥ 0
and let SpSch(Hλ) denote the (discrete) spectrum of Hλ in the
Schrödinger quantization, i.e. the spectrum of the operator

QSch
ℏ (Hλ) = −ℏ2

2
∂2

∂q2 + q2

2 + λ
q4

4

acting on HQ
Sch = L2(R, dq).
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Section #2 Geometric Quantization comes to the rescue

Now consider the 1–parameter family of quantizations with Hilbert
spaces HQ

Hλ
for which the role of preferred observable is played by

Hλ. Then, one finds that

HQ
Hλ

=
{

Ψ(q, p) : ∇XHλ
Ψ = 0

}
=

=
{

Ψ(q, p) = ψ(Hλ) ei Gλ(q,p)
}

=

=
{ ∞∑

n=0
ψn δ(Hλ − Eλ

n ) eiGλ(q,p)
}
, (1)

where Eλ
n are defined by the Bohr-Sommerfeld conditions∮

Hλ=Eλ
n

pdq = ℏ(n + 1
2). (2)
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Section #2 Geometric Quantization comes to the rescue

Since Hλ acts diagonally on this quantization we conclude from (1)
that its spectrum in this quantization is given by (2)

SpHλ(Hλ) = {Eλ
n , n ∈ N0}

It is known that on one hand SpSch(H0) = SpH0(H0) but on the
other hand SpSch(Hλ) ̸= SpHλ(Hλ) for all λ > 0 so that the two
quantizations QSch

ℏ and QXHλ
ℏ are physically inequivalent if λ > 0!

Wins QSch
ℏ !
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Section #3 Ashtekar-Barbero quantization and reality conditions

LQG is facing a similar problem with the Ashtekar–Barbero
connection as preferred observable

Aβ = Γ(E ) + β K ⇒ Ψβ(E ,K ) = ψ(Aβ) eiGβ(E ,K).

Are the quantizations based on the choice of connections with
different (Immirzi) parameters equivalent? No, because they lead
to different spectra of the area operator.
Here it is less obvious which one is the "correct" one. Studies of
the black hole entropy formula seemed to indicate the value

β = ln(3)/
√

8π ??
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Section #3 Ashtekar-Barbero quantization and reality conditions

Other, recent studies (e.g. Pranzetti, Sahlmann, Phys Lett 2015,
Ben Achour, Livine, arXiv:1705.03772) however seem to point
back to β =

√
−1. This corresponds to the Ashtekar connection

A√
−1 = Γ +

√
−1K

The study of quantizations based on compex valued observables
like this has been the focus of most of our recent work.
It turns out that for some choices of complex observables
quantization is in fact mathematically better defined then
quantization based on real observables and this may help
addressing some of the technical issues faced by LQG.
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Section #3 Ashtekar-Barbero quantization and reality conditions

Complex observables and reality conditions: rescued by the power
of complex analysis

Let us illustrate the general situation with a one degree of freedom
system.
Consider the quantum observable

zf = q + if (p) , dzf ∧ dzf = −2if ′(p) dq ∧ dp .

It turns out that if f ′(p) > 0 then several remarkable simplifying
facts occur:
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Section #3 Ashtekar-Barbero quantization and reality conditions

Ff = zf = q + if (p)

1. Complex Structure: There is a unique complex structure Jf on
R2 for which zf is a global holomorphic coordinate.

2. Kähler Metric: The symplectic form together with the
complex structure Jf define on R2 a Kähler metric

γf = 1
f ′(p) dq2 + f ′(p) dp2

R(γf ) = −
( 1

f ′(p)

)′′
.
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Section #3 Ashtekar-Barbero quantization and reality conditions

3. Quantum Hilbert space much better defined than in the case
of quantizations based on real observables:

HQ
Xzf

=
{

Ψ(q, p) = ψ(zf ) e−kf (p), ||Ψ|| < ∞
}

where ψ is a Jf –holomorphic function and
kf (p) = pf (p) −

∫
f (p)dp is a Kähler potential.

4. The inner product is not ambiguous and it fixes the reality
conditions:

< Ψ1,Ψ2 >=
∫
R2
ψ1(zf )ψ2(zf ) e−2kf (p) dqdp .
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Section #4 Geometry in the space of Kähler potentials and its applications

The main applications so far:

1. Donaldson–Tian theory of stability of Kähler manifolds
Extend Kempf–Ness to the "action" of HamC(M, ω) on T .

2. Quantization

3. Geometry dependence of Fractional Quantum Hall trial states

4. Representation theory

We will concentrate on the application 2 to Quantum Theory.



22/33

Section #5 CSTs as liftings of complex canonical transfs to the quantum bundle

Let T be the space of polarizations. In T we have the space of
Kähler polarizations – TKah – and in its boundary real and mixed
polarizations.
Geometric quantization gives us the quantum Hilbert bundle

HQ −→ T ⊃ TKah = {k}

and the tools to study the dependence of quantization on the
choice of the complex structure or, more generaly, on the choice of
polarization.



23/33

Section #5 CSTs as liftings of complex canonical transfs to the quantum bundle

Integral transforms relating different quantizations

Step 1 Given two polarizations P1 and P2 we can hope to link them with a
geodesic on T , i.e. that there exists an Hamiltonian H ∈ Cω(M)
such that

P2 = e it LXH |t=1 P1 = e it LXH |t=1 < XF1 , . . . ,XFn >=
= < XeiXH (F1), . . . ,XeiXH (Fn) > (3)

Step 2 Then geometric quantization gives us a way of lifting the geodesics
to the quantum bundle and thus construct construct an integral
transform

C iH
P1P2 : HQ

P1 −→ HQ
P2
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Section #5 CSTs as liftings of complex canonical transfs to the quantum bundle

Imaginary time: why??
It is precisely to study the dependence of Qℏ on the choice of
preferred complex observables that evolution in imaginary time
enters the scene.

H =
∫

f (p)dp ⇝ XH = f (p) ∂
∂q : q 7→ q+t f (p) t⇝

√
−1s7→ q+

√
−1s f (p)

Imaginary time evolution is not new in quantum mechanics. Many
amplitudes can be obtained by making the famous (but misterious)
Wick rotation: t ⇝ is – e.g. semiclassical probabilites of
tunneling given by imaginary time evolution.
What we are studying is a new way of looking at imaginary (or
complex) time evolution in (some situations in) quantum
mechanics and in geometry.
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Section #5 CSTs as liftings of complex canonical transfs to the quantum bundle

In Kähler geometry imaginary time evolution leads to geodesics in
the (infinite dimensional) space of Kähler potentials (⊂
quantizations) in a given cohomology class, and is used to study
the stability of polarized varieties [Semmes, Donaldson, Tian].
In loop quantum gravity complex time Hamiltonian evolution was
proposed by Thiemann in ’96 in order to transform the spin
connection into the Ashtekar connection.

Γ 7→ Ai = Γ + iK .
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Section #5 CSTs as liftings of complex canonical transfs to the quantum bundle

On the way we will see how geometric quantization explains the
misterious factors in the Segal–Bargmann-Hall coherent state
transforms.
In 1994 Brian Hall constructed an unitary transform for Lie groups
of compact type G

U : L2(G , dx) −→ HL2(GC, dν(g))
U = C ◦ e

∆
2

where GC is the unique complexification of G , HL2 means
holomorphic L2 functions and ν is the averaged heat kernel
measure on GC.
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Section #5 CSTs as liftings of complex canonical transfs to the quantum bundle

Let us show how geometric quantization reveals the intimate
relation of the two factors in the rhs of (4).
For simplicity we restrict ourselves to the case G = R,GC = C but
the argument is valid for any Lie group of compact type.
Then (4) reads

U : L2(R, dq) −→ HL2(C, e−p2dpdq)
U = C ◦ e

∆
2

ψ(q) 7→ (e
∆
2 ψ)(q) 7→ (e

∆
2 ψ)(q +

√
−1p) .

Notice that, for H = p2

2 , XH = p ∂
∂q and therefore

eτXH (q)|τ=i = (q + τp)|τ=i = q + ip = z
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Section #5 CSTs as liftings of complex canonical transfs to the quantum bundle

We see therefore that, for H = p2

2 ,

C = eiXH

and since ĤprQ = iXH − p2

2 , we conclude that

e−iτ ĤprQ |τ=i = eĤprQ = C ◦ e− p2
2 .

On the other hand, since, p̂Sch = −i ∂
∂q , we have also

e
∆
2 = e−ĤSch = e−iτ ĤSch |τ=−i ,
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Section #5 CSTs as liftings of complex canonical transfs to the quantum bundle

We see therefore that the Hall CST transform in (4) is equivalent
to the follwing transform lifting the complex canonical
transformation, eτXH |τ=i = eip ∂

∂q :

HQ
Sch = HQ

q
V H

i−→ HQ
z = HQ

Fock (4)

V H
i = e−iτ ĤprQ |τ=i ◦ e−iτ ĤSch |τ=−i =

= e+ĤprQ ◦ e−ĤSch

with the (extra bonus of the) averaged heat kernel measure being
absorbed into the prequantization of the complexified canonical
transformation.
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Section #5 CSTs as liftings of complex canonical transfs to the quantum bundle

Representation Theoretic meaning of the factors in the CST
Notice that the prequantization of the observables q, p preserve
both Hilbert spaces HQ

Sch and HQ
Fock so that there is a

∗–representation of the complexified Heisenberg algebra on both.
One can check that the first factor to act in (4) maps the
self-adjoint q̂Sch to the non self-adjoint q̂ − ip

Sch
and the second

factor to act maps q̂Sch to q̂ + ip
Fock

and therefore V H
i maps q̂Sch

to q̂Fock.
Then V H

i intertwines q̂Sch and p̂Sch with q̂Fock and p̂Fock

respectively which makes its projective unitarity a consequence of
Schur’s lemma.
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Section #6 Some of our papers on this subject

Some of our works on this topic
▶ T. Baier, J. Hilgert, O. Kaya, J.Mourão and J.P. Nunes, Partial

Bohr–Sommerfeld leaves and infinite µ–convex geodesics in the
space of Kähler metrics, to appear soon.

▶ G.Matos, B.Mera, J.Mourão and P.Mourão and J.P. Nunes,
Laughlin states change under large geometry deformations and
imaginary time Hamiltonian dynamics, arXiv:2107.11360.

▶ W. Kirwin, J.Mourão, J.P. Nunes and T. Thiemann,
Segal-Bargmann transforms from hyperbolic Hamiltonians, Jour.
Math. Analysis and App. (2021) Vol. 500 125146.

▶ J.Mourão, J.P. Nunes and M. Pereira, Partial coherent state
transforms, G × T-invariant Kahler structures and geometric
quantization of cotangent bundles of compact Lie groups, Advances
in Mathematics (2020) Vol. 368 107139.

▶ J.Mourão, J.P. Nunes and T. Reis, A new approximation method for
geodesics on the space of Kahler metrics using complexified
symplectomorphisms and Grobner Lie series, Analysis and
Mathematical Physics (2019) Vol. 9, 1927-1939
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Section #6 Some of our papers on this subject
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▶ W. Kirwin, J.Mourão and J.P. Nunes, Degeneration of
Kaehler structures and half-form quantization of toric
varieties, Journ. Sympl. Geom. 11 (2013) 603–643.

▶ T. Baier, J.Mourão and J.P. Nunes, Toric Kahler Metrics Seen
from Infinity, Quantization and Compact Tropical Amoebas,
Journ. Differ. Geometry 89 (2011) 411–454 .
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