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Personal perspective

Noncommutative geometry:

replace the space by generalised structure living on that would-be space (e.g.
noncommutative algebra of functions over a manifold).

analyse the consequences in field-theoretical models, both kinematical and dynamical

Generalised symmetries:

noncommutative star-gauge symmetry, twisted-gauge symmetry

string theory dualities

 higher homotopy structures A∞, L∞, ... Stasheff ’63, Stasheff, Schlesinger ’77
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Motivation

L∞-algebra  useful for understanding quantization of field theory and gravity.

Quantization
I BV formalism ∼ L∞-algebra Zwiebach ‘92, cf. Richard’s talk
I Deformation quantization: formality thm ∼ L∞ quasi-isomorphism Kontsevich ‘97;

Poisson sigma model quantization Cattaneo, Felder, ‘99
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Motivation

L∞-algebra  useful for understanding quantization of field theory and gravity.

Quantization  BV-BRST, deformation quantization

Geometry
I Graded geometry: L∞-algebra (cyclic) ≡ Q(P) manifolds AKSZ ‘95, cf. Peter’s talk
I Generalized geometry of Courant, double field theory and exceptional algebroids

Roytenberg, Weinstein ‘98; Deser, Saemann ‘16, LJ, Grewcoe ‘20; Cederwall, Palmkvist ’18



Motivation

L∞-algebra  useful for understanding quantization of field theory and gravity.

Quantization  BV-BRST, deformation quantization

Graded and generalized geometry

NC/NA field theory and gravity
I ?-product: bootstraping nc gauge theories using L∞ Blumenhagen et al ‘18, cf. Patrizia’s talk
I Drinfel’d twist and braided L∞ Dimitrijević Ćirić et al ‘21, Nguyen, Schenkel, Szabo ‘21
I HS in unfolded formalism Vasiliev, cf. Harold’s talk



In this talk

GOAL

Argue that (curved) L∞-algebra is (graded) Hopf algebra with codifferential.

PLAN

L∞-algebra - coalgebra formulation

Hopf algebra in brief

Drinfel’d twist of L∞-algebra

Outlook



L∞ - coalgebra formulation

There is one-to-one correspondence between an L∞ structure on a differential graded
vector space X =

⊕
d∈Z Xd and a degree 1 coderivation on the coalgebra generated by

the suspension of X. Lada, Stasheff ’92, Lada, Markl ’94

Suspension ↑ or shift isomorphism s

s : X → X [1] s.t. (X [1])d = Xd+1 ,

induces isomorphism of graded algebras

s⊗i : x1 ∧ · · · ∧ xi → (−1)
∑i−1

j=1 (i−j)sx1 ∨ · · · ∨ sxi ,

and décalage isomorphism of brackets

li = (−1)
1
2
i(i−1)+1s−1 ◦ bi ◦ s⊗i .



L∞ - coalgebra formulation

Start with graded symmetric tensor algebra

S(X ) :=
∞⊕
n=0

SnX ,

and X graded vector space X =
⊕

d∈Z Xd over field K =: S0X .

The tensor products are graded symmetric,

x1 ∨ x2 = (−1)|x1|x2|x2 ∨ x1, x1, x2 ∈ X ,

and the coproduct is

∆(x1 ∨ . . . ∨ xm) =
m∑

p=0

∑
σ∈Sh(p,m−p)

ε(σ; x)(xσ(1) ∨ . . . ∨ xσ(p))⊗ (xσ(p+1) ∨ . . . ∨ xσ(m)) ,

where Sh(p,m− p) ∈ Sm denotes set of ordered permutations s.t. σ(1) < · · · < σ(p)
and σ(p + 1) < · · · < σ(m), and empty product is unit.
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L∞ - coalgebra formulation

As a map ∆ : S(X )→ S(X )⊗ S(X ) this reads:

∆ ◦ id∨m =
m∑

p=0

∑
σ∈Sh(p,m−p)

(id∨p ⊗ id∨(m−p)) ◦ τσ , p,m ≥ 0 ,

where τσ denotes action of permutations e.g. the non-identity permutation of two
elements is

τσ(x1 ∨ x2) = (−1)|x1||x2|x2 ∨ x1 ,

and includes the Koszul sign.

Introduce degree 1 coderivation D : S(X )→ S(X ) of degree 1 such that:

∆ ◦ D = (1⊗ D + D ⊗ 1) ◦∆ ,

the co-Leibniz property is satisfied.



L∞ - coalgebra formulation

The coderivation is

D =
∞∑
i=0

bi ,

with graded multilinear maps bi of degree 1. The bi act on full tensor algebra as
coderivation:

bi : S jX → S j−i+1X ,

bi (x1 ∨ . . . ∨ xj) =
∑

σ∈Sh(i,j−i)

ε(σ; x)bi (xσ(1), . . . , xσ(i)) ∨ xσ(i+1) ∨ . . . ∨ xσ(j), j ≥ i .

bi (id
∨j) =

∑
σ∈Sh(i,j−i)

(bi ∨ id∨(j−i)) ◦ τσ , j ≥ i ,

map τσ the action of transposition of elements xI → ε(σ; x)xσ(I ).

Note: We include b0  curved L∞-algebra.
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L∞ - coalgebra formulation

Homotopy relations from D2 = 0, e.g.,

D2(x1 ∨ x2) =
∞∑
i=0

bi

2∑
j=0

bj(x1 ∨ x2) =

=
3∑

i=0

bi (b0 ∨ x1 ∨ x2 + b1(x1) ∨ x2 + (−1)|x1||x2|b1(x2) ∨ x1 + b2(x1, x2)) = ...

This vanishes for

b1b0 = 0

b2b0 + b2
1 = 0

b3b0 + b2b1 + b1b2 = 0

Def: An L∞-algebra is a coalgebra (S(X ),∆) with coderivation D : S(X )→ S(X ) of
degree 1 s.t. ∆ ◦ D = (id⊗ D + D ⊗ id) ◦∆ and D2 = 0.
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Example cdgla
Getzler ’18

Curved dgla: Graded Lie algebra g, derivation d with degree 1, and curvature R of degree
2 s.t. ∀x ∈ g

dR = 0 , d2x = [R, x ] ,

the bracket satisfies graded Leibniz identity and MC element a of degree 1 is

R + da + 1
2
[a, a] = 0 .

L∞-coalgebra: Shifted graded vector space X with maps R  −b0, d  −b1, the graded
Lie bracket  b2, satisfying the homotopy relations

b1b0 = 0 , b1(b1(x)) + b2(b0, x) = 0, x ∈ X ,

and MC element a of degree 0 satisfies

b0 + b1(a) + 1
2
b2(a, a) = 0 .



Hopf algebra

Hopf algebra is a bialgebra that admits antipode.

Start from an algebra A viewed as a vectors space over field K with multiplication
µ : A⊗ A→ A and unit η : K → A. If one can define comultiplication ∆ : A→ A⊗ A
and counit ε : A→ K such that either of two (thus both) hold

∆ and ε are algebra homomorphisms

µ and η are coalgebra homomorphisms

we have bialgebra.

If there exist antipode S : A→ A such

µ ◦ (id ⊗ S) ◦∆ = µ ◦ (S ⊗ id) ◦∆ = ηε

we have Hopf algebra.



Hopf algebra

Standard example - tensor algebra (and symmetric and exterior).

A tensor algebra T (V ), where V is a vector space over field K

∆(v) = v ⊗ 1 + 1⊗ v , ∆(1) = 1⊗ 1, v ∈ V

ε(v) = 0, ε(1) = 1 ,

S(v) = −v , S(1) = 1

is Hopf algebra. In full algebra,

S(v1 · . . . · vm) = (−1)mvm · . . . · v1 ,

∆(v1 · . . . · vm) =
m∑

p=0

∑
σ∈Sh(p,m−p)

(vσ(1) · . . . · vσ(p))⊗ (vσ(p+1) · . . . · vσ(m)) ,

where Sh(p,m− p) ∈ Sm denotes set of ordered permutations s.t. σ(1) < · · · < σ(p)
and σ(p + 1) < · · · < σ(m), and empty product is unit.



L∞ ∼ Hopf+D
cf. Schupp ’93

Theorem

A graded Hopf algebra with a compatible codifferential is an L∞-algebra. In particular,
an L∞-algebra is a bialgebra (S(X ),∆) with coderivation D : S(X )→ S(X ) of degree 1
s.t. the co-Leibniz property is satisfied

∆ ◦ D = (1⊗ D + D ⊗ 1) ◦∆

and D2 = 0. It naturally inherits the structure of a Hopf algebra from graded symmetric
tensor algebra, with

S ◦ D = D̃ ◦ S & ε ◦ D = D ◦ ε .

where the codifferential D̃

D̃ =
∞∑
i=0

(−1)1−i bi ,

induces the same homotopy relations as D.



Drinfel’d twist

L∞ is cocommutative and coassociative Hopf algebra H  introduce
non-(co)commutative deformation using Drinfel’d twist.

Using invertible twist element F =: f k ⊗ fk ∈ H ⊗ H

(F ⊗ 1)(∆⊗ id)F = (1⊗F)(id ⊗∆)F ,

(ε⊗ id)F = 1⊗ 1 = (id ⊗ ε)F ,

we obtain (HF ,∨,∆F ,SF , ε), where HF is the same as H as vector spaces and:

∆F (h) = F∆(h)F−1, h ∈ H ,

and SF = S for Abelian twist.

 twisted L∞ or (LF∞,∨,∆F , S , ε)
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Drinfel’d twist

In the spirit of deformation quantisation, while twisting Hopf algebra we simultaneously
twist its modules. Taking Hopf algebra L∞ as its own module
 (L?∞,∨?,∆?, S?, ε):

x1 ∨? x2 = f̄ k(x1) ∨ f̄k(x2) ,

∆?(x) = x ⊗ 1 + R̄k ⊗ R̄k(x) ,

S?(x) = −R̄k(x)R̄k .

The R-matrix R ∈ S(X )⊗ S(X ) is an invertible matrix induced by the twist

R = F21F−1 =: Rα ⊗ Rα ,F21 = fα ⊗ f α ,

In the case of an Abelian twist R it triangular Rα ⊗ Rα = R̄α ⊗ R̄α, and R = F−2.

The inverse R-matrix controls noncommutativity of the ∨?-product and provides the
representation of permutation group, e.g.,

τσR(x1 ∨? x2) = (−1)|x1||x2|R̄α(x2) ∨? R̄α(x1) ,



Braided L∞-algebra

Extend the coproduct to whole tensor algebra:

∆?(id∨?m) =
∑

σ∈Sh(p,m−p)

(id∨?p ⊗ id∨?(m−p)) ◦ τσR , p,m ≥ 0 .

The compatible coderivation D? =
∑∞

i=0 b
?
i is defined in terms of braided graded

symmetric maps b?i

b?i (id∨?j) =
∑

σ∈Sh(i,j−i)

(b?i ∨? id∨?(j−i)) ◦ τσR , j ≥ i ,

b?i (x1, . . . , xm, xm+1, . . . , xi ) = (−1)|xm||xm+1|b?i (x1, . . . , R̄
α(xm+1), R̄α(xm), . . . , xi ) ,

and the condition D2
? = 0 reproduces the deformed homotopy relations.

 braided L∞-algebra obtained in Dimitrijević Ćirić et al ‘21.



L?∞ vs. LF∞

As Hopf algebras L?∞ and LF∞ are isomorphic Aschieri et al ’05, Schenkel ’12

∃ map ϕ : L?∞ → LF∞ such that

ϕ(x1 ∨? x2) = ϕ(x1) ∨ ϕ(x2) ,

∆? = (ϕ−1 ⊗ ϕ−1) ◦∆F ◦ ϕ ,

S? = ϕ−1 ◦ SF ◦ ϕ .

On the other hand, we take L?∞-algebra as a module of LF∞ with an L∞-action on an
L∞-algebra given by a curved L∞-morphism Mehta, Zambon ’12. Thus we obtain

D? = ϕ−1DFϕ .
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Outlook

In the field theory context (reviewed in Hohm, Zwiebach ‘17, Jurčo et al. ‘18, ‘20)

L∞ for field theory  MC equations as eoms plus compatible bilinear  cyclic L∞

Q = D∗  BRST operator

Evaluate bi on basis of X  structure constants of L∞-algebra:

bi (τα1 , ..., ταi ) = Cβα1...αi
τβ

Use to define cohomological vector Q of degree 1

Q =
∞∑
i=0

1

i !
Cβα1...αi

zα1 · · · zαi
∂

∂zβ

with zαi basis of X?.

In infinite dimensional case one either restricts X? to the space spanned by zα, or
consider continuous duals in infinite-dim topological vector space. Arvanitakis et al ‘20

In Batalin-Vilkovisky formalism Q becomes BRST operator and zαi physical fields.



Outlook

In the field theory context (reviewed in Hohm, Zwiebach ‘17, Jurčo et al. ‘18, ‘20)
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Outlook

In the field theory context (reviewed in Hohm, Zwiebach ‘17, Jurčo et al. ‘18, ‘20)

L∞ for field theory  cyclic L∞

Q = D∗ becomes BRST operator

L∞ quasi-isomorphisms  equivalent physical theories

I If 0-bracket vanishes, 1-bracket is a differential  cochain complex

I L∞ quasi-isomorphisms induces isomorphisms of cohomologies of respective
L∞-algebras  homotopy transfer Arvanitakis et. al. ’21

I For curved L∞? Fukaya ’03, Costello ’11



THANK YOU!


