On Hopf and L_∞ -algebras

Larisa Jonke

Division of Theoretical Physics Rudjer Bošković Institute, Zagreb

work in progress with

Clay J. Grewcoe, Toni Kodžoman, Georgios Manolakos

Horizon Europe Weeks meeting 'Noncommutative Geometry and Physics: Quantum Spacetimes' Krakow, November 30, 2021

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Personal perspective

Noncommutative geometry:

- replace the space by generalised structure living on that would-be space (e.g. noncommutative algebra of functions over a manifold).
- analyse the consequences in field-theoretical models, both kinematical and dynamical

(ロ)、(型)、(E)、(E)、 E) の(()

Personal perspective

Noncommutative geometry:

- replace the space by generalised structure living on that would-be space (e.g. noncommutative algebra of functions over a manifold).
- analyse the consequences in field-theoretical models, both kinematical and dynamical

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Generalised symmetries:

- noncommutative star-gauge symmetry, twisted-gauge symmetry
- string theory dualities

Personal perspective

Noncommutative geometry:

- replace the space by generalised structure living on that would-be space (e.g. noncommutative algebra of functions over a manifold).
- analyse the consequences in field-theoretical models, both kinematical and dynamical

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Generalised symmetries:

- noncommutative star-gauge symmetry, twisted-gauge symmetry
- string theory dualities

 \sim higher homotopy structures A_{∞} , L_{∞} , ... Stasheff '63, Stasheff, Schlesinger '77

・ロト・日本・ヨト・ヨー うへの

 L_{∞} -algebra \rightsquigarrow useful for understanding quantization of field theory and gravity.

 $L_\infty\text{-algebra} \rightsquigarrow$ useful for understanding quantization of field theory and gravity.

- Quantization
 - \blacktriangleright BV formalism $\sim L_\infty\text{-algebra}$ Zwiebach '92, cf. Richard's talk

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

 $L_\infty\text{-algebra} \rightsquigarrow$ useful for understanding quantization of field theory and gravity.

- Quantization \rightsquigarrow BV-BRST, deformation quantization
- Geometry
 - \blacktriangleright Graded geometry: L_{\infty}-algebra (cyclic) \equiv Q(P) manifolds AKSZ '95, cf. Peter's talk
 - Generalized geometry of Courant, double field theory and exceptional algebroids Roytenberg, Weinstein '98; Deser, Saemann '16, LJ, Grewcoe '20; Cederwall, Palmkvist '18

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

 L_{∞} -algebra \rightsquigarrow useful for understanding quantization of field theory and gravity.

- \bullet Quantization \rightsquigarrow BV-BRST, deformation quantization
- Graded and generalized geometry
- $\bullet~\text{NC/NA}$ field theory and gravity
 - *-product: bootstraping nc gauge theories using L_∞ Blumenhagen et al '18, cf. Patrizia's talk

- Drinfel'd twist and braided L_∞ Dimitrijević Ćirić et al '21, Nguyen, Schenkel, Szabo '21
- HS in unfolded formalism Vasiliev, cf. Harold's talk

In this talk

GOAL

Argue that (curved) L_{∞} -algebra is (graded) Hopf algebra with codifferential.

PLAN

- L_{∞} -algebra coalgebra formulation
- Hopf algebra in brief
- Drinfel'd twist of L_{∞} -algebra
- Outlook

L_{∞} - coalgebra formulation

There is one-to-one correspondence between an L_{∞} structure on a differential graded vector space $X = \bigoplus_{d \in \mathbb{Z}} X_d$ and a degree 1 coderivation on the coalgebra generated by the suspension of X. Lada, Stasheff '92, Lada, Markl '94

Suspension \uparrow or shift isomorphism *s*

$$s: X \rightarrow X[1]$$
 s.t. $(X[1])_d = X_{d+1}$,

induces isomorphism of graded algebras

$$s^{\otimes i}: x_1 \wedge \cdots \wedge x_i \to (-1)^{\sum_{j=1}^{i-1}(i-j)} sx_1 \vee \cdots \vee sx_i$$
,

and décalage isomorphism of brackets

$$I_i = (-1)^{\frac{1}{2}i(i-1)+1}s^{-1} \circ b_i \circ s^{\otimes i}$$
.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

L_{∞} - coalgebra formulation

Start with graded symmetric tensor algebra

$$\mathsf{S}(X) := \bigoplus_{n=0}^{\infty} S^n X ,$$

and X graded vector space $X = \bigoplus_{d \in \mathbb{Z}} X_d$ over field $K =: S^0 X$.

The tensor products are graded symmetric,

$$x_1 \lor x_2 = (-1)^{|x_1|x_2|} x_2 \lor x_1, \ x_1, x_2 \in X$$

and the coproduct is

$$\Delta(x_1 \vee \ldots \vee x_m) = \sum_{p=0}^m \sum_{\sigma \in Sh(p,m-p)} \epsilon(\sigma;x) (x_{\sigma(1)} \vee \ldots \vee x_{\sigma(p)}) \otimes (x_{\sigma(p+1)} \vee \ldots \vee x_{\sigma(m)}) ,$$

where $Sh(p, m - p) \in S_m$ denotes set of ordered permutations s.t. $\sigma(1) < \cdots < \sigma(p)$ and $\sigma(p+1) < \cdots < \sigma(m)$, and empty product is unit.

L_∞ - coalgebra formulation

Start with graded symmetric tensor algebra

$$\mathsf{S}(X) := \bigoplus_{n=0}^{\infty} S^n X$$
,

and X graded vector space $X = \bigoplus_{d \in \mathbb{Z}} X_d$ over field $K =: S^0 X$.

The tensor products are graded symmetric,

$$x_1 \lor x_2 = (-1)^{|x_1||x_2|} x_2 \lor x_1, \; x_1, x_2 \in X \; ,$$

and the coproduct is

$$\Delta(x_1 \vee \ldots \vee x_m) = \sum_{p=0}^m \sum_{\sigma \in Sh(p,m-p)} \epsilon(\sigma;x) (x_{\sigma(1)} \vee \ldots \vee x_{\sigma(p)}) \otimes (x_{\sigma(p+1)} \vee \ldots \vee x_{\sigma(m)}) ,$$

Note: We include field K, ie., $\Delta(1) = 1 \otimes 1$, and $\Delta(x) = 1 \otimes x + x \otimes 1$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

L_∞ - coalgebra formulation

As a map $\Delta : S(X) \rightarrow S(X) \otimes S(X)$ this reads:

$$\Delta \circ \mathrm{id}^{\vee m} = \sum_{\rho=0}^{m} \sum_{\sigma \in \mathrm{Sh}(\rho,m-\rho)} (\mathrm{id}^{\vee \rho} \otimes \mathrm{id}^{\vee (m-\rho)}) \circ \tau^{\sigma} \ , \ \rho,m \geq 0 \ ,$$

where τ^{σ} denotes action of permutations e.g. the non-identity permutation of two elements is

$$au^{\sigma}(x_1 \lor x_2) = (-1)^{|x_1||x_2|} x_2 \lor x_1 \; ,$$

and includes the Koszul sign.

Introduce degree 1 coderivation $D : S(X) \rightarrow S(X)$ of degree 1 such that:

$$\Delta \circ D = (1 \otimes D + D \otimes 1) \circ \Delta$$
,

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

the co-Leibniz property is satisfied.

L_{∞} - coalgebra formulation

The coderivation is

$$D=\sum_{i=0}^{\infty}b_i,$$

with graded multilinear maps b_i of degree 1. The b_i act on full tensor algebra as coderivation:

$$b_i: S^j X \to S^{j-i+1} X,$$

$$b_i(x_1 \vee \ldots \vee x_j) = \sum_{\sigma \in Sh(i,j-i)} \epsilon(\sigma; x) b_i(x_{\sigma(1)}, \ldots, x_{\sigma(i)}) \vee x_{\sigma(i+1)} \vee \ldots \vee x_{\sigma(j)}, j \ge i$$

(ロ)、(型)、(E)、(E)、 E) の(()

$$b_i(\mathrm{id}^{\vee j}) = \sum_{\sigma \in Sh(i,j-i)} (b_i \vee \mathrm{id}^{\vee (j-i)}) \circ \tau^{\sigma} \ , \ j \ge i \ ,$$

map τ^{σ} the action of transposition of elements $x_{l} \to \epsilon(\sigma; x) x_{\sigma(l)}$.

L_{∞} - coalgebra formulation

The coderivation is

$$D=\sum_{i=0}^{\infty}b_i,$$

with graded multilinear maps b_i of degree 1. The b_i act on full tensor algebra as coderivation:

$$b_i: S^j X \to S^{j-i+1} X,$$

$$b_i(x_1 \vee \ldots \vee x_j) = \sum_{\sigma \in Sh(i,j-i)} \epsilon(\sigma; x) b_i(x_{\sigma(1)}, \ldots, x_{\sigma(i)}) \vee x_{\sigma(i+1)} \vee \ldots \vee x_{\sigma(j)}, j \ge i$$

$$b_i(\mathrm{id}^{\vee j}) = \sum_{\sigma \in Sh(i,j-i)} (b_i \vee \mathrm{id}^{\vee (j-i)}) \circ \tau^{\sigma} \ , \ j \ge i \ ,$$

map τ^{σ} the action of transposition of elements $x_{I} \rightarrow \epsilon(\sigma; x) x_{\sigma(I)}$.

Note: We include $b_0 \rightsquigarrow$ curved L_∞ -algebra.

L_∞ - coalgebra formulation

Homotopy relations from $D^2 = 0$, e.g.,

$$\begin{split} D^2(x_1 \lor x_2) &= \sum_{i=0}^{\infty} b_i \sum_{j=0}^2 b_j (x_1 \lor x_2) = \\ &= \sum_{i=0}^3 b_i (b_0 \lor x_1 \lor x_2 + b_1 (x_1) \lor x_2 + (-1)^{|x_1| |x_2|} b_1 (x_2) \lor x_1 + b_2 (x_1, x_2)) = \ \dots \end{split}$$

This vanishes for

$$b_1 b_0 = 0$$

$$b_2 b_0 + b_1^2 = 0$$

$$b_3 b_0 + b_2 b_1 + b_1 b_2 = 0$$

・ロト・日本・ヨト・ヨー うへの

L_{∞} - coalgebra formulation

Homotopy relations from $D^2 = 0$, e.g.,

$$\begin{split} D^2(x_1 \lor x_2) &= \sum_{i=0}^{\infty} b_i \sum_{j=0}^2 b_j (x_1 \lor x_2) = \\ &= \sum_{i=0}^3 b_i (b_0 \lor x_1 \lor x_2 + b_1 (x_1) \lor x_2 + (-1)^{|x_1| |x_2|} b_1 (x_2) \lor x_1 + b_2 (x_1, x_2)) = \ \dots \end{split}$$

This vanishes for

$$b_1 b_0 = 0$$

$$b_2 b_0 + b_1^2 = 0$$

$$b_3 b_0 + b_2 b_1 + b_1 b_2 = 0$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Def: An L_{∞} -algebra is a coalgebra $(S(X), \Delta)$ with coderivation $D : S(X) \to S(X)$ of degree 1 s.t. $\Delta \circ D = (id \otimes D + D \otimes id) \circ \Delta$ and $D^2 = 0$.

Example cdgla Getzler '18

Curved dgla: Graded Lie algebra \mathfrak{g} , derivation d with degree 1, and curvature R of degree 2 s.t. $\forall x \in \mathfrak{g}$

$$dR = 0 , \quad d^2x = [R, x] ,$$

the bracket satisfies graded Leibniz identity and MC element a of degree 1 is

$$R+da+\tfrac{1}{2}[a,a]=0.$$

 L_{∞} -coalgebra: Shifted graded vector space X with maps $R \rightarrow -b_0$, $d \rightarrow -b_1$, the graded Lie bracket $\rightarrow b_2$, satisfying the homotopy relations

$$b_1b_0 = 0$$
, $b_1(b_1(x)) + b_2(b_0, x) = 0$, $x \in X$,

and MC element a of degree 0 satisfies

$$b_0 + b_1(a) + \frac{1}{2}b_2(a, a) = 0$$
.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Hopf algebra

Hopf algebra is a bialgebra that admits antipode.

Start from an algebra A viewed as a vectors space over field K with multiplication $\mu: A \otimes A \rightarrow A$ and unit $\eta: K \rightarrow A$. If one can define comultiplication $\Delta: A \rightarrow A \otimes A$ and counit $\epsilon: A \rightarrow K$ such that either of two (thus both) hold

- Δ and ϵ are algebra homomorphisms
- μ and η are coalgebra homomorphisms

we have bialgebra.

If there exist antipode $S : A \rightarrow A$ such

$$\mu \circ (\mathit{id} \otimes \mathit{S}) \circ \Delta = \mu \circ (\mathit{S} \otimes \mathit{id}) \circ \Delta = \eta \epsilon$$

we have Hopf algebra.

Hopf algebra

Standard example - tensor algebra (and symmetric and exterior).

A tensor algebra T(V), where V is a vector space over field K

$$\begin{split} &\Delta(v) = v \otimes 1 + 1 \otimes v, \ \Delta(1) = 1 \otimes 1, \ v \in V \\ &\epsilon(v) = 0, \ \epsilon(1) = 1 \ , \\ &S(v) = -v, S(1) = 1 \end{split}$$

is Hopf algebra. In full algebra,

$$\begin{split} S(v_1 \cdot \ldots \cdot v_m) &= (-1)^m v_m \cdot \ldots \cdot v_1 \ , \\ \Delta(v_1 \cdot \ldots \cdot v_m) &= \sum_{p=0}^m \sum_{\sigma \in \operatorname{Sh}(p,m-p)} (v_{\sigma(1)} \cdot \ldots \cdot v_{\sigma(p)}) \otimes (v_{\sigma(p+1)} \cdot \ldots \cdot v_{\sigma(m)}) \ , \end{split}$$

where $Sh(p, m - p) \in S_m$ denotes set of ordered permutations s.t. $\sigma(1) < \cdots < \sigma(p)$ and $\sigma(p+1) < \cdots < \sigma(m)$, and empty product is unit.

$L_\infty \sim \mathsf{Hopf+D}$

cf. Schupp '93

Theorem

A graded Hopf algebra with a compatible codifferential is an L_{∞} -algebra. In particular, an L_{∞} -algebra is a bialgebra (S(X), Δ) with coderivation $D : S(X) \rightarrow S(X)$ of degree 1 s.t. the co-Leibniz property is satisfied

 $\Delta \circ D = (1 \otimes D + D \otimes 1) \circ \Delta$

and $D^2 = 0$. It naturally inherits the structure of a Hopf algebra from graded symmetric tensor algebra, with

$$S \circ D = \widetilde{D} \circ S \& \epsilon \circ D = D \circ \epsilon$$
.

where the codifferential \widetilde{D}

$$\widetilde{D} = \sum_{i=0}^\infty (-1)^{1-i} b_i \;,$$

induces the same homotopy relations as D.

Drinfel'd twist

 L_{∞} is cocommutative and coassociative Hopf algebra $H \rightsquigarrow$ introduce non-(co)commutative deformation using Drinfel'd twist.

Using invertible twist element $\mathcal{F} =: f^k \otimes f_k \in H \otimes H$

$$(\mathcal{F} \otimes 1)(\Delta \otimes id)\mathcal{F} = (1 \otimes \mathcal{F})(id \otimes \Delta)\mathcal{F}$$
,
 $(\epsilon \otimes id)\mathcal{F} = 1 \otimes 1 = (id \otimes \epsilon)\mathcal{F}$,

we obtain $(H^{\mathcal{F}}, \lor, \Delta^{\mathcal{F}}, S^{\mathcal{F}}, \epsilon)$, where $H^{\mathcal{F}}$ is the same as H as vector spaces and:

$$\Delta^{\mathcal{F}}(h) = \mathcal{F}\Delta(h)\mathcal{F}^{-1}, \ h \in H$$
,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and $S^{\mathcal{F}} = S$ for Abelian twist.

Drinfel'd twist

 L_{∞} is cocommutative and coassociative Hopf algebra $H \rightsquigarrow$ introduce non-(co)commutative deformation using Drinfel'd twist.

Using invertible twist element $\mathcal{F} =: f^k \otimes f_k \in H \otimes H$

$$(\mathcal{F} \otimes 1)(\Delta \otimes id)\mathcal{F} = (1 \otimes \mathcal{F})(id \otimes \Delta)\mathcal{F}$$
,
 $(\epsilon \otimes id)\mathcal{F} = 1 \otimes 1 = (id \otimes \epsilon)\mathcal{F}$,

we obtain $(H^{\mathcal{F}}, \lor, \Delta^{\mathcal{F}}, S^{\mathcal{F}}, \epsilon)$, where $H^{\mathcal{F}}$ is the same as H as vector spaces and:

$$\Delta^{\mathcal{F}}(h) = \mathcal{F}\Delta(h)\mathcal{F}^{-1}, \ h \in H$$
,

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

and $S^{\mathcal{F}} = S$ for Abelian twist.

 \rightsquigarrow twisted L_{∞} or $(L_{\infty}^{\mathcal{F}}, \lor, \Delta^{\mathcal{F}}, S, \epsilon)$

Drinfel'd twist

In the spirit of deformation quantisation, while twisting Hopf algebra we simultaneously twist its modules. Taking Hopf algebra L_{∞} as its own module $\rightsquigarrow (L_{\infty}^{\star}, \lor_{\star}, \Delta_{\star}, S_{\star}, \epsilon)$:

$$egin{aligned} &x_1ee_\star x_2=ar{f}^k(x_1)ee ar{f}_k(x_2)\;,\ &\Delta_\star(x)=x\otimes 1+ar{R}^k\otimesar{R}_k(x)\;,\ &S_\star(x)=-ar{R}^k(x)ar{R}_k\;. \end{aligned}$$

The \mathcal{R} -matrix $\mathcal{R} \in S(X) \otimes S(X)$ is an invertible matrix induced by the twist

$$\mathcal{R} = \mathcal{F}_{21}\mathcal{F}^{-1} =: \mathcal{R}^{lpha} \otimes \mathcal{R}_{lpha} \ , \mathcal{F}_{21} = \mathcal{f}_{lpha} \otimes \mathcal{f}^{lpha} \ ,$$

In the case of an Abelian twist \mathcal{R} it triangular $R_{\alpha} \otimes R^{\alpha} = \bar{R}^{\alpha} \otimes \bar{R}_{\alpha}$, and $\mathcal{R} = \mathcal{F}^{-2}$.

The inverse \mathcal{R} -matrix controls noncommutativity of the \vee_* -product and provides the representation of permutation group, e.g.,

$$au^\sigma_{\mathcal{R}}(x_1 \lor_\star x_2) = (-1)^{|x_1||x_2|} ar{\mathcal{R}}^lpha(x_2) \lor_\star ar{\mathcal{R}}_lpha(x_1) \;,$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Braided L_{∞} -algebra

Extend the coproduct to whole tensor algebra:

$$\Delta_{\star}(\mathrm{id}^{\vee_{\star} m}) = \sum_{\sigma \in \mathrm{Sh}(p,m-p)} (\mathrm{id}^{\vee_{\star} p} \otimes \mathrm{id}^{\vee_{\star} (m-p)}) \circ \tau_{\mathcal{R}}^{\sigma} \ , \ p,m \geq 0 \ .$$

The compatible coderivation $D_{\star} = \sum_{i=0}^{\infty} b_i^{\star}$ is defined in terms of braided graded symmetric maps b_i^{\star}

$$\begin{split} b_i^*(\mathrm{id}^{\vee_\star j}) &= \sum_{\sigma \in \mathrm{Sh}(i,j-i)} (b_i^* \vee_\star \mathrm{id}^{\vee_\star (j-i)}) \circ \tau_{\mathcal{R}}^{\sigma} \ , \ j \geq i \ , \\ b_i^*(x_1,\ldots,x_m,x_{m+1},\ldots,x_i) &= (-1)^{|x_m||x_{m+1}|} b_i^*(x_1,\ldots,\bar{R}^{\alpha}(x_{m+1}),\bar{R}_{\alpha}(x_m),\ldots,x_i) \ , \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and the condition $D_{\star}^2 = 0$ reproduces the deformed homotopy relations.

 $\rightsquigarrow braided \ L_{\infty} \text{-algebra obtained in Dimitrijević Ćirić et al '21.}$

$$L^{\star}_{\infty}$$
 vs. $L^{\mathcal{F}}_{\infty}$

As Hopf algebras L_{∞}^{\star} and $L_{\infty}^{\mathcal{F}}$ are isomorphic Aschieri et al '05, Schenkel '12 $\exists \max \varphi : L_{\infty}^{\star} \to L_{\infty}^{\mathcal{F}}$ such that

$$\begin{split} \varphi(\mathbf{x}_1 \lor_{\star} \mathbf{x}_2) &= \varphi(\mathbf{x}_1) \lor \varphi(\mathbf{x}_2) \ , \\ \Delta_{\star} &= (\varphi^{-1} \otimes \varphi^{-1}) \circ \Delta^{\mathcal{F}} \circ \varphi \ , \\ S_{\star} &= \varphi^{-1} \circ S^{\mathcal{F}} \circ \varphi \ . \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$L^{\star}_{\infty}$$
 vs. $L^{\mathcal{F}}_{\infty}$

As Hopf algebras L_{∞}^{\star} and $L_{\infty}^{\mathcal{F}}$ are isomorphic Aschieri et al '05, Schenkel '12 $\exists \max \varphi : L_{\infty}^{\star} \to L_{\infty}^{\mathcal{F}}$ such that

$$\begin{split} \varphi(\mathbf{x}_1 \lor_{\star} \mathbf{x}_2) &= \varphi(\mathbf{x}_1) \lor \varphi(\mathbf{x}_2) ,\\ \Delta_{\star} &= (\varphi^{-1} \otimes \varphi^{-1}) \circ \Delta^{\mathcal{F}} \circ \varphi ,\\ S_{\star} &= \varphi^{-1} \circ S^{\mathcal{F}} \circ \varphi . \end{split}$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

On the other hand, we take L_{∞}^{\star} -algebra as a module of $L_{\infty}^{\mathcal{F}}$ with an L_{∞} -action on an L_{∞} -algebra given by a curved L_{∞} -morphism Mehta, Zambon '12. Thus we obtain

$$D_{\star} = \varphi^{-1} D_{\mathcal{F}} \varphi$$
.

Outlook

In the field theory context (reviewed in Hohm, Zwiebach '17, Jurčo et al. '18, '20)

• L_{∞} for field theory \rightsquigarrow MC equations as eoms plus compatible bilinear \rightsquigarrow cyclic L_{∞}

(ロ)、(型)、(E)、(E)、 E) の(()

Outlook

In the field theory context (reviewed in Hohm, Zwiebach '17, Jurčo et al. '18, '20)

- L_{∞} for field theory \rightsquigarrow MC equations as eoms plus compatible bilinear \rightsquigarrow cyclic L_{∞}
- $Q = D^* \rightsquigarrow \mathsf{BRST}$ operator

Evaluate b_i on basis of X \rightsquigarrow structure constants of L_{∞} -algebra:

$$b_i(au_{lpha_1},..., au_{lpha_i})=C^eta_{lpha_1...lpha_i} au_eta$$

Use to define cohomological vector Q of degree 1

$$Q = \sum_{i=0}^{\infty} \frac{1}{i!} C^{\beta}_{\alpha_1 \dots \alpha_i} z^{\alpha_1} \cdots z^{\alpha_i} \frac{\partial}{\partial z^{\beta_i}}$$

with z^{α_i} basis of X^{*}.

In infinite dimensional case one either restricts X^* to the space spanned by z^{α} , or consider continuous duals in infinite-dim topological vector space. Arvanitakis et al '20

In Batalin-Vilkovisky formalism Q becomes BRST operator and z^{α_i} physical fields.

Outlook

In the field theory context (reviewed in Hohm, Zwiebach '17, Jurčo et al. '18, '20)

- $\bullet~L_\infty$ for field theory \leadsto cyclic L_∞
- $Q = D^*$ becomes BRST operator
- L_{∞} quasi-isomorphisms \rightsquigarrow equivalent physical theories
 - ▶ If 0-bracket vanishes, 1-bracket is a differential ~→ cochain complex
 - L_{∞} quasi-isomorphisms induces isomorphisms of cohomologies of respective L_{∞} -algebras \rightsquigarrow homotopy transfer Arvanitakis et. al. '21

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

For curved L_{∞} ? Fukaya '03, Costello '11

THANK YOU!

