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Noncommutative geometry:

o replace the space by generalised structure living on that would-be space (e.g.
noncommutative algebra of functions over a manifold).

@ analyse the consequences in field-theoretical models, both kinematical and dynamical
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Noncommutative geometry:

o replace the space by generalised structure living on that would-be space (e.g.
noncommutative algebra of functions over a manifold).

@ analyse the consequences in field-theoretical models, both kinematical and dynamical
Generalised symmetries:

@ noncommutative star-gauge symmetry, twisted-gauge symmetry

@ string theory dualities

~> higher homotopy structures Ao, Loo, ... Stasheff '63, Stasheff, Schlesinger '77
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Motivation

Loo-algebra ~~ useful for understanding quantization of field theory and gravity.

@ Quantization ~ BV-BRST, deformation quantization
o Geometry

> Graded geometry: Loo-algebra (cyclic) = Q(P) manifolds AKSZ ‘95, cf. Peter's talk
> Generalized geometry of Courant, double field theory and exceptional algebroids
Roytenberg, Weinstein ‘98; Deser, Saemann ‘16, LJ, Grewcoe ‘20; Cederwall, Palmkvist '18



Motivation

Lo-algebra ~~ useful for understanding quantization of field theory and gravity.

@ Quantization ~» BV-BRST, deformation quantization

@ Graded and generalized geometry

o NC/NA field theory and gravity
> x-product: bootstraping nc gauge theories using Loc Blumenhagen et al ‘18, cf. Patrizia’s talk
> Drinfel'd twist and braided Lo Dimitrijevi¢ Ciri¢ et al ‘21, Nguyen, Schenkel, Szabo ‘21
» HS in unfolded formalism Vasiliev, cf. Harold's talk



In this talk

GOAL

Argue that (curved) L.o-algebra is (graded) Hopf algebra with codifferential.
PLAN

o L.-algebra - coalgebra formulation

o Hopf algebra in brief

@ Drinfel'd twist of L..-algebra

@ Outlook



Lo - coalgebra formulation

There is one-to-one correspondence between an L, structure on a differential graded
vector space X = @dez Xq4 and a degree 1 coderivation on the coalgebra generated by
the suspension of X. Lada, Stasheff ‘92, Lada, Markl '94

Suspension 1 or shift isomorphism s
s: X = X[1] s.t. (X[1])a = Xa41 ,
induces isomorphism of graded algebras
SN AX = (_1)2};1(/—1')9(1 V- Vosxi,
and décalage isomorphism of brackets

i = (—1)%"("71)“571 o bjo 9



Lo - coalgebra formulation

Start with graded symmetric tensor algebra

s(X):=ps"x,

and X graded vector space X = @, Xy over field K =: S°x.

The tensor products are graded symmetric,
x1V Xxp = (—1)‘X1|X2‘X2 Voxi, xi,x € X,

and the coproduct is
A(X1 V...V Xm) = Z E(O';X)(Xo(l) V...V Xa(p)) [024] (Xo(p+1) V...V Xa(m)) ,

where Sh(p, m — p) € Sy, denotes set of ordered permutations s.t. o(1) < --- < o(p)
and o(p+1) < --- < o(m), and empty product is unit.



Lo - coalgebra formulation

Start with graded symmetric tensor algebra

and X graded vector space X = @, Xy over field K =: s°X.

The tensor products are graded symmetric,
x1V xp = (—1)‘X1HX2‘X2 Voxi, xi,x € X,

and the coproduct is

A(X1 V...V Xm) = Z Z E(O';X)(Xg(l) V...V Xa(p)) ® (Xg(p+1) \Y
p=0 oc€Sh(p,m—p)

Note: We include field K, ie., A(1)=1®1, and A(x) =1®x+x® 1.

...\/Xg(m)) ,



Lo - coalgebra formulation

As a map A : S(X) — S(X) ® S(X) this reads:
Aocidm=>" > (id"®id" " P)or”, pm>0,
p=0 oc€Sh(p,m—p)

where 77 denotes action of permutations e.g. the non-identity permutation of two
elements is
T7(x1Vx2) = (—1)‘X1HX2‘X2 VX,

and includes the Koszul sign.
Introduce degree 1 coderivation D : S(X) — S(X) of degree 1 such that:
AoD=(1®D+D®1)o A,

the co-Leibniz property is satisfied.



Lo - coalgebra formulation

The coderivation is -
D=3
=0

with graded multilinear maps b; of degree 1. The b; act on full tensor algebra as
coderivation:

bi: X — §TX

b,'(Xl\/...\/Xj) = Z E(Cl';X)b,'(XC,(l),...,X(,(,-))V)((.,(,-H)\/...VXC,(J-)7 j>i.
o ESh(i j—i)

bi(idV)y= > (bividVU ) orT j>i,

o ESh(ij—i)

map 77 the action of transposition of elements x; — €(0; x)Xy(1)-
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bi(idV)y= > (bividVU ) orT j>i,

o ESh(ij—i)

map 77 the action of transposition of elements x; — €(0; x)Xy(1)-

Note: We include by ~» curved L.-algebra.



Lo - coalgebra formulation

Homotopy relations from D? =0, e.g.,

e} 2

D2(X1 Vx) = Z bi Z bi(x1V x) =

3
i=0

This vanishes for
bibp =0
byby 4+ b; =0
bsbo + b2by + bibo =0

bi(bo V x1 V x2 + bi(xa) Vo + (=1)" 12 b (50) Vixi 4 ba(x1,0)) = ...



Lo - coalgebra formulation

Homotopy relations from D? =0, e.g.,

¢S] 2
D2(X1 Vx) = Z bi Z bi(x1V x) =
=0 j=0

3
b,'(bo Vx1Vx + b1(X1) V x2 + (71)‘X1“X2‘b1(X2) V x1 + b2(X1,X2)) = ...
i=0

This vanishes for
bibp =0
byby 4+ b; =0
bsbo + b2by + bibo =0

Def: An L..-algebra is a coalgebra (S(X), A) with coderivation D : S(X) — S(X) of
degree 1st. AoD = (id® D+ D ®id) o A and D* = 0.



Example cdgla

Getzler '18

Curved dgla: Graded Lie algebra g, derivation d with degree 1, and curvature R of degree
2st. Vxeg

dR=0, d’°x=[R,x],
the bracket satisfies graded Leibniz identity and MC element a of degree 1 is
R+ da+ %[a,a] =0.

Loo-coalgebra: Shifted graded vector space X with maps R ~» —bg, d ~» —by, the graded
Lie bracket ~~ by, satisfying the homotopy relations

bibo =0, bi(bi(x)) + b2(bo,x) =0, x € X,
and MC element a of degree 0 satisfies

bo + bi(a) + 1b2(a,a) =0 .



Hopf algebra

Hopf algebra is a bialgebra that admits antipode.

Start from an algebra A viewed as a vectors space over field K with multiplication
pw:A®A— Aandunit n: K — A. If one can define comultiplication A: A —- A® A
and counit € : A — K such that either of two (thus both) hold

@ A and e are algebra homomorphisms
@ 4 and n are coalgebra homomorphisms
we have bialgebra.
If there exist antipode S : A — A such

po(id®S)oA=po(S®id)o A =ne

we have Hopf algebra.



Hopf algebra

Standard example - tensor algebra (and symmetric and exterior).

A tensor algebra T(V), where V is a vector space over field K

Av)=vR14+1Qv, A(1)=1®1, veV
e(v)=0, ¢(1)=1,
S(v)=-v,5(1) =1

is Hopf algebra. In full algebra,

S(vieeei V) =(=1)"Vin-oova,

Alvic... vm) = Z (Vo) =+ Vo(p) @ (Vo(pt1) - - - -

p=0 o€Sh(p,m—p)

where Sh(p, m — p) € Sp denotes set of ordered permutations s.t. o(1) < ---

and o(p+1) < --- < o(m), and empty product is unit.



Lo ~ Hopf+D

cf. Schupp '93

Theorem

A graded Hopf algebra with a compatible codifferential is an L-algebra. In particular,
an L..-algebra is a bialgebra (S(X), A) with coderivation D : S(X) — S(X) of degree 1
s.t. the co-Leibniz property is satisfied

AoD=(1®D+D®1)o A

and D? = 0. It naturally inherits the structure of a Hopf algebra from graded symmetric
tensor algebra, with

SoD=DoS & eoD=Doce.
where the codifferential D

D= i(—l)“" bi ,
i=0

induces the same homotopy relations as D.




Drinfel’d twist

Lo is cocommutative and coassociative Hopf algebra H ~~ introduce
non-(co)commutative deformation using Drinfel'd twist.

Using invertible twist element F =: f*@ fc H@ H

(Fol)(A®Iid)F =1 F)(id®A)F,
(e®id)F=1®1=(id®e)F,

we obtain (H]:,V,A]:7 Sf,e), where H” is the same as H as vector spaces and:
AT (k)= FA)F ', heH,

and S¥ = S for Abelian twist.



Drinfel’d twist

Lo is cocommutative and coassociative Hopf algebra H ~~ introduce
non-(co)commutative deformation using Drinfel'd twist.

Using invertible twist element F =: f*@ fc H@ H

(Fol)(A®Iid)F =1 F)(id®A)F,
(e®id)F=1®1=(id®e)F,

we obtain (H]:,V,A]:7 Sf,e), where H” is the same as H as vector spaces and:
AT (k)= FA)F ', heH,
and S* = S for Abelian twist.

~~ twisted Lo, or (LL,,V, A7, S, ¢)



Drinfel’d twist

In the spirit of deformation quantisation, while twisting Hopf algebra we simultaneously
twist its modules. Taking Hopf algebra Lo as its own module
~ (L;o, \/*7 A*7 5*7 E):

X1 Vi Xo = Fk(Xl) V f_}<(X2) ,
A (x) =x® 1+ R® Ri(x) ,
Se(x) = —R*(x)Rx .

The R-matrix R € S(X) ® S(X) is an invertible matrix induced by the twist
R=FnF '= R @R ,Fa=fa@f",

In the case of an Abelian twist R it triangular Ry ® R® = R* ® R, and R = F~2.

The inverse R-matrix controls noncommutativity of the V.-product and provides the
representation of permutation group, e.g.,

%20 Vi x2) = (=) R (%) v, Ru(xa)



Braided L..-algebra

Extend the coproduct to whole tensor algebra:

AGd ™) = Y (P eid ") org  pm>0.

#€Sh(p,m—p)

The compatible coderivation D, = >~ b/ is defined in terms of braided graded
symmetric maps b

br(d )= > (bfveid V) orz i,
o €Sh(i,j—i)

B (X1, - - oy Xy Xt -5 xi) = (=1)PmlPmel g R (xme1)y R (Xm)s - -+, i)

and the condition D? = 0 reproduces the deformed homotopy relations.

~~ braided Loc-algebra obtained in Dimitrijevi¢ Ciri¢ et al ‘21.



*
LDO

vs. LT

As Hopf algebras L%, and LZ are isomorphic Aschieri et al 05, Schenkel 12
I map ¢ : L%, — LZ such that

(xa Ve x2) = p(x1) V p(x) ,
A=(p'@p HoA oy,
S.=¢ptoS"0p.



*
LDO

vs. LT

As Hopf algebras L%, and LZ are isomorphic Aschieri et al 05, Schenkel 12
I map ¢ : L%, — LZ such that

o(x1 Vi x2) = o(x1) V o(x2) ,
A= '@p oA  op,
S.=¢ptoS"0p.

On the other hand, we take L% -algebra as a module of L, with an L..-action on an
Loo-algebra given by a curved Loo-morphism Mehta, Zambon '12. Thus we obtain

D, = ¢ 'Dryp .
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Outlook

In the field theory context (reviewed in Hohm, Zwiebach ‘17, Jurco et al. ‘18, 20)
@ L for field theory ~~ MC equations as eoms plus compatible bilinear ~~ cyclic L

e Q = D* ~ BRST operator

Evaluate b; on basis of X ~ structure constants of L..-algebra:
b )=
i Ta17“-77-a,' al.“a,'Tﬁ

Use to define cohomological vector Q of degree 1

0= 5 el
= - ,| ..o 826

with z% basis of X*.

In infinite dimensional case one either restricts X* to the space spanned by z%, or
consider continuous duals in infinite-dim topological vector space. Arvanitakis et al ‘20

In Batalin-Vilkovisky formalism @ becomes BRST operator and z% physical fields.



Outlook

In the field theory context (reviewed in Hohm, Zwiebach ‘17, Juréo et al. ‘18, ‘20)
@ Lo for field theory ~~ cyclic Lo
@ Q = D* becomes BRST operator

@ Lo quasi-isomorphisms ~~ equivalent physical theories

> If O-bracket vanishes, 1-bracket is a differential ~~ cochain complex

> L quasi-isomorphisms induces isomorphisms of cohomologies of respective
L~o-algebras ~~ homotopy transfer Arvanitakis et. al. 21

> For curved Loo? Fukaya '03, Costello '11



THANK YOU!



