On Hopf and L_{∞}-algebras

Larisa Jonke

Division of Theoretical Physics
Rudjer Bošković Institute, Zagreb

work in progress with
Clay J. Grewcoe, Toni Kodžoman, Georgios Manolakos

Horizon Europe Weeks meeting
'Noncommutative Geometry and Physics: Quantum Spacetimes'
Krakow, November 30, 2021
-M. HrZZ
Croatian Scie
Foundation

Personal perspective

Noncommutative geometry:

- replace the space by generalised structure living on that would-be space (e.g. noncommutative algebra of functions over a manifold).
- analyse the consequences in field-theoretical models, both kinematical and dynamical

Personal perspective

Noncommutative geometry:

- replace the space by generalised structure living on that would-be space (e.g. noncommutative algebra of functions over a manifold).
- analyse the consequences in field-theoretical models, both kinematical and dynamical

Generalised symmetries:

- noncommutative star-gauge symmetry, twisted-gauge symmetry
- string theory dualities

Personal perspective

Noncommutative geometry:

- replace the space by generalised structure living on that would-be space (e.g. noncommutative algebra of functions over a manifold).
- analyse the consequences in field-theoretical models, both kinematical and dynamical

Generalised symmetries:

- noncommutative star-gauge symmetry, twisted-gauge symmetry
- string theory dualities
\rightsquigarrow higher homotopy structures $A_{\infty}, L_{\infty}, \ldots$ Stasheff '63, Stasheff, Schlesinger '77

Motivation

L_{∞}-algebra \rightsquigarrow useful for understanding quantization of field theory and gravity.

Motivation

L_{∞}-algebra \rightsquigarrow useful for understanding quantization of field theory and gravity.

- Quantization
- BV formalism $\sim \mathrm{L}_{\infty}$-algebra Zwiebach '92, cf. Richard's talk
- Deformation quantization: formality thm $\sim \mathrm{L}_{\infty}$ quasi-isomorphism Kontsevich '97;

Poisson sigma model quantization Cattaneo, Felder, '99

Motivation

L_{∞}-algebra \rightsquigarrow useful for understanding quantization of field theory and gravity.

- Quantization \rightsquigarrow BV-BRST, deformation quantization
- Geometry
- Graded geometry: L_{∞}-algebra (cyclic) $\equiv \mathrm{Q}(\mathrm{P})$ manifolds AKSZ '95, cf. Peter's talk
- Generalized geometry of Courant, double field theory and exceptional algebroids Roytenberg, Weinstein '98; Deser, Saemann '16, LJ, Grewcoe '20; Cederwall, Palmkvist '18

Motivation

L_{∞}-algebra \rightsquigarrow useful for understanding quantization of field theory and gravity.

- Quantization \rightsquigarrow BV-BRST, deformation quantization
- Graded and generalized geometry
- NC/NA field theory and gravity
- *-product: bootstraping nc gauge theories using L_{∞} Blumenhagen et al '18, cf. Patrizia's talk
- Drinfel'd twist and braided L_{∞} Dimitrijević Ćirić et al '21, Nguyen, Schenkel, Szabo '21
- HS in unfolded formalism Vasiliev, cf. Harold's talk

In this talk

GOAL
Argue that (curved) L_{∞}-algebra is (graded) Hopf algebra with codifferential.

PLAN

- L_{∞}-algebra - coalgebra formulation
- Hopf algebra in brief
- Drinfel'd twist of L_{∞}-algebra
- Outlook

There is one-to-one correspondence between an L_{∞} structure on a differential graded vector space $X=\bigoplus_{d \in \mathbb{Z}} X_{d}$ and a degree 1 coderivation on the coalgebra generated by the suspension of \mathbf{X}. Lada, Stasheff '92, Lada, Markl ' 94

Suspension \uparrow or shift isomorphism s

$$
s: X \rightarrow X[1] \text { s.t. }(X[1])_{d}=X_{d+1}
$$

induces isomorphism of graded algebras

$$
s^{\otimes i}: x_{1} \wedge \cdots \wedge x_{i} \rightarrow(-1)^{\sum_{j=1}^{i-1}(i-j)} s x_{1} \vee \cdots \vee s x_{i}
$$

and décalage isomorphism of brackets

$$
I_{i}=(-1)^{\frac{1}{2} i(i-1)+1} s^{-1} \circ b_{i} \circ s^{\otimes i}
$$

Start with graded symmetric tensor algebra

$$
S(X):=\bigoplus_{n=0}^{\infty} S^{n} X
$$

and X graded vector space $X=\bigoplus_{d \in \mathbb{Z}} X_{d}$ over field $K=: S^{0} X$.
The tensor products are graded symmetric,

$$
x_{1} \vee x_{2}=(-1)^{\left|x_{1}\right| x_{2} \mid} x_{2} \vee x_{1}, x_{1}, x_{2} \in X,
$$

and the coproduct is

$$
\Delta\left(x_{1} \vee \ldots \vee x_{m}\right)=\sum_{p=0}^{m} \sum_{\sigma \in \operatorname{Sh}(p, m-p)} \epsilon(\sigma ; x)\left(x_{\sigma(1)} \vee \ldots \vee x_{\sigma(p)}\right) \otimes\left(x_{\sigma(p+1)} \vee \ldots \vee x_{\sigma(m)}\right)
$$

where $\operatorname{Sh}(\mathrm{p}, \mathrm{m}-\mathrm{p}) \in S_{m}$ denotes set of ordered permutations s.t. $\sigma(1)<\cdots<\sigma(p)$ and $\sigma(p+1)<\cdots<\sigma(m)$, and empty product is unit.

Start with graded symmetric tensor algebra

$$
S(X):=\bigoplus_{n=0}^{\infty} S^{n} X
$$

and X graded vector space $X=\bigoplus_{d \in \mathbb{Z}} X_{d}$ over field $K=: S^{0} X$.
The tensor products are graded symmetric,

$$
x_{1} \vee x_{2}=(-1)^{\left|x_{1}\right|\left|x_{2}\right|} x_{2} \vee x_{1}, x_{1}, x_{2} \in X,
$$

and the coproduct is

$$
\Delta\left(x_{1} \vee \ldots \vee x_{m}\right)=\sum_{p=0}^{m} \sum_{\sigma \in S h(p, m-p)} \epsilon(\sigma ; x)\left(x_{\sigma(1)} \vee \ldots \vee x_{\sigma(p)}\right) \otimes\left(x_{\sigma(p+1)} \vee \ldots \vee x_{\sigma(m)}\right)
$$

Note: We include field K , ie., $\Delta(1)=1 \otimes 1$, and $\Delta(x)=1 \otimes x+x \otimes 1$.

As a map $\Delta: \mathrm{S}(X) \rightarrow \mathrm{S}(X) \otimes \mathrm{S}(X)$ this reads:

$$
\Delta \circ \mathrm{id}^{\vee m}=\sum_{p=0}^{m} \sum_{\sigma \in \operatorname{Sh}(p, m-p)}\left(\mathrm{id}^{\vee p} \otimes \mathrm{id}^{\vee(m-p)}\right) \circ \tau^{\sigma}, p, m \geq 0,
$$

where τ^{σ} denotes action of permutations e.g. the non-identity permutation of two elements is

$$
\tau^{\sigma}\left(x_{1} \vee x_{2}\right)=(-1)^{\left|x_{1}\right|\left|x_{2}\right|} x_{2} \vee x_{1},
$$

and includes the Koszul sign.
Introduce degree 1 coderivation $D: S(X) \rightarrow S(X)$ of degree 1 such that:

$$
\Delta \circ D=(1 \otimes D+D \otimes 1) \circ \Delta,
$$

the co-Leibniz property is satisfied.

L_{∞} - coalgebra formulation

The coderivation is

$$
D=\sum_{i=0}^{\infty} b_{i}
$$

with graded multilinear maps b_{i} of degree 1 . The b_{i} act on full tensor algebra as coderivation:

$$
\begin{gathered}
b_{i}: S^{j} X \rightarrow S^{j-i+1} X \\
b_{i}\left(x_{1} \vee \ldots \vee x_{j}\right)=\sum_{\sigma \in \operatorname{Sh}(i, j-i)} \epsilon(\sigma ; x) b_{i}\left(x_{\sigma(1)}, \ldots, x_{\sigma(i)}\right) \vee x_{\sigma(i+1)} \vee \ldots \vee x_{\sigma(j)}, j \geq i \\
b_{i}\left(\mathrm{id}^{\vee j}\right)=\sum_{\sigma \in \operatorname{Sh}(i, j-i)}\left(b_{i} \vee \mathrm{id}^{\vee(j-i)}\right) \circ \tau^{\sigma}, j \geq i
\end{gathered}
$$

map τ^{σ} the action of transposition of elements $x_{l} \rightarrow \epsilon(\sigma ; x) x_{\sigma(I)}$.

L_{∞} - coalgebra formulation

The coderivation is

$$
D=\sum_{i=0}^{\infty} b_{i}
$$

with graded multilinear maps b_{i} of degree 1 . The b_{i} act on full tensor algebra as coderivation:

$$
\begin{gathered}
b_{i}: S^{j} X \rightarrow S^{j-i+1} X \\
b_{i}\left(x_{1} \vee \ldots \vee x_{j}\right)=\sum_{\sigma \in \operatorname{Sh}(i, j-i)} \epsilon(\sigma ; x) b_{i}\left(x_{\sigma(1)}, \ldots, x_{\sigma(i)}\right) \vee x_{\sigma(i+1)} \vee \ldots \vee x_{\sigma(j)}, j \geq i \\
b_{i}\left(\mathrm{id}^{\vee j}\right)=\sum_{\sigma \in \operatorname{Sh}(i, j-i)}\left(b_{i} \vee \mathrm{id}^{\vee(j-i)}\right) \circ \tau^{\sigma}, j \geq i
\end{gathered}
$$

map τ^{σ} the action of transposition of elements $x_{l} \rightarrow \epsilon(\sigma ; x) x_{\sigma(I)}$.
Note: We include $b_{0} \rightsquigarrow$ curved L_{∞}-algebra.

Homotopy relations from $D^{2}=0$, e.g.,

$$
\begin{aligned}
& D^{2}\left(x_{1} \vee x_{2}\right)=\sum_{i=0}^{\infty} b_{i} \sum_{j=0}^{2} b_{j}\left(x_{1} \vee x_{2}\right)= \\
& =\sum_{i=0}^{3} b_{i}\left(b_{0} \vee x_{1} \vee x_{2}+b_{1}\left(x_{1}\right) \vee x_{2}+(-1)^{\left|x_{1}\right|\left|x_{2}\right|} b_{1}\left(x_{2}\right) \vee x_{1}+b_{2}\left(x_{1}, x_{2}\right)\right)=\ldots
\end{aligned}
$$

This vanishes for

$$
\begin{aligned}
& b_{1} b_{0}=0 \\
& b_{2} b_{0}+b_{1}^{2}=0 \\
& b_{3} b_{0}+b_{2} b_{1}+b_{1} b_{2}=0
\end{aligned}
$$

Homotopy relations from $D^{2}=0$, e.g.,

$$
\begin{aligned}
& D^{2}\left(x_{1} \vee x_{2}\right)=\sum_{i=0}^{\infty} b_{i} \sum_{j=0}^{2} b_{j}\left(x_{1} \vee x_{2}\right)= \\
& =\sum_{i=0}^{3} b_{i}\left(b_{0} \vee x_{1} \vee x_{2}+b_{1}\left(x_{1}\right) \vee x_{2}+(-1)^{\left|x_{1}\right|\left|x_{2}\right|} b_{1}\left(x_{2}\right) \vee x_{1}+b_{2}\left(x_{1}, x_{2}\right)\right)=\ldots
\end{aligned}
$$

This vanishes for

$$
\begin{aligned}
& b_{1} b_{0}=0 \\
& b_{2} b_{0}+b_{1}^{2}=0 \\
& b_{3} b_{0}+b_{2} b_{1}+b_{1} b_{2}=0
\end{aligned}
$$

Def: An L_{∞}-algebra is a coalgebra $(\mathrm{S}(X), \Delta)$ with coderivation $D: S(X) \rightarrow \mathrm{S}(X)$ of degree 1 s.t. $\Delta \circ D=(\mathrm{id} \otimes D+D \otimes \mathrm{id}) \circ \Delta$ and $D^{2}=0$.

Example cdgla

Curved dgla: Graded Lie algebra \mathfrak{g}, derivation d with degree 1 , and curvature R of degree 2 s.t. $\forall x \in \mathfrak{g}$

$$
d R=0, \quad d^{2} x=[R, x]
$$

the bracket satisfies graded Leibniz identity and MC element a of degree 1 is

$$
R+d a+\frac{1}{2}[a, a]=0
$$

L_{∞}-coalgebra: Shifted graded vector space X with maps $R \rightsquigarrow-b_{0}, d \rightsquigarrow-b_{1}$, the graded Lie bracket $\rightsquigarrow b_{2}$, satisfying the homotopy relations

$$
b_{1} b_{0}=0, \quad b_{1}\left(b_{1}(x)\right)+b_{2}\left(b_{0}, x\right)=0, x \in X
$$

and MC element a of degree 0 satisfies

$$
b_{0}+b_{1}(a)+\frac{1}{2} b_{2}(a, a)=0
$$

Hopf algebra

Hopf algebra is a bialgebra that admits antipode.

Start from an algebra A viewed as a vectors space over field K with multiplication $\mu: A \otimes A \rightarrow A$ and unit $\eta: K \rightarrow A$. If one can define comultiplication $\Delta: A \rightarrow A \otimes A$ and counit $\epsilon: A \rightarrow K$ such that either of two (thus both) hold

- Δ and ϵ are algebra homomorphisms
- μ and η are coalgebra homomorphisms
we have bialgebra.
If there exist antipode $S: A \rightarrow A$ such

$$
\mu \circ(i d \otimes S) \circ \Delta=\mu \circ(S \otimes i d) \circ \Delta=\eta \epsilon
$$

we have Hopf algebra.

Hopf algebra

Standard example - tensor algebra (and symmetric and exterior).

A tensor algebra $T(V)$, where V is a vector space over field K

$$
\begin{aligned}
& \Delta(v)=v \otimes 1+1 \otimes v, \Delta(1)=1 \otimes 1, v \in V \\
& \epsilon(v)=0, \epsilon(1)=1 \\
& S(v)=-v, S(1)=1
\end{aligned}
$$

is Hopf algebra. In full algebra,

$$
\begin{aligned}
& S\left(v_{1} \cdot \ldots \cdot v_{m}\right)=(-1)^{m} v_{m} \cdot \ldots \cdot v_{1}, \\
& \Delta\left(v_{1} \cdot \ldots \cdot v_{m}\right)=\sum_{p=0}^{m} \sum_{\sigma \in \operatorname{Sh}(\mathrm{p}, \mathrm{~m}-\mathrm{p})}\left(v_{\sigma(1)} \cdot \ldots \cdot v_{\sigma(p)}\right) \otimes\left(v_{\sigma(p+1)} \cdot \ldots \cdot v_{\sigma(m)}\right),
\end{aligned}
$$

where $\operatorname{Sh}(\mathrm{p}, \mathrm{m}-\mathrm{p}) \in S_{m}$ denotes set of ordered permutations s.t. $\sigma(1)<\cdots<\sigma(p)$ and $\sigma(p+1)<\cdots<\sigma(m)$, and empty product is unit.

```
L
    cf. Schupp '93
```


Theorem

A graded Hopf algebra with a compatible codifferential is an L_{∞}-algebra. In particular, an L_{∞}-algebra is a bialgebra $(\mathrm{S}(X), \Delta)$ with coderivation $D: \mathrm{S}(X) \rightarrow \mathrm{S}(X)$ of degree 1 s.t. the co-Leibniz property is satisfied

$$
\Delta \circ D=(1 \otimes D+D \otimes 1) \circ \Delta
$$

and $D^{2}=0$. It naturally inherits the structure of a Hopf algebra from graded symmetric tensor algebra, with

$$
S \circ D=\widetilde{D} \circ S \& \epsilon \circ D=D \circ \epsilon
$$

where the codifferential \widetilde{D}

$$
\widetilde{D}=\sum_{i=0}^{\infty}(-1)^{1-i} b_{i}
$$

induces the same homotopy relations as D.

Drinfel'd twist

L_{∞} is cocommutative and coassociative Hopf algebra $H \rightsquigarrow$ introduce non-(co)commutative deformation using Drinfel'd twist.

Using invertible twist element $\mathcal{F}=: f^{k} \otimes f_{k} \in H \otimes H$

$$
\begin{aligned}
& (\mathcal{F} \otimes 1)(\Delta \otimes i d) \mathcal{F}=(1 \otimes \mathcal{F})(i d \otimes \Delta) \mathcal{F} \\
& (\epsilon \otimes i d) \mathcal{F}=1 \otimes 1=(i d \otimes \epsilon) \mathcal{F}
\end{aligned}
$$

we obtain $\left(H^{\mathcal{F}}, \vee, \Delta^{\mathcal{F}}, S^{\mathcal{F}}, \epsilon\right)$, where $H^{\mathcal{F}}$ is the same as H as vector spaces and:

$$
\Delta^{\mathcal{F}}(h)=\mathcal{F} \Delta(h) \mathcal{F}^{-1}, h \in H
$$

and $S^{\mathcal{F}}=S$ for Abelian twist.

Drinfel'd twist

L_{∞} is cocommutative and coassociative Hopf algebra $H \rightsquigarrow$ introduce non-(co)commutative deformation using Drinfel'd twist.

Using invertible twist element $\mathcal{F}=: f^{k} \otimes f_{k} \in H \otimes H$

$$
\begin{aligned}
& (\mathcal{F} \otimes 1)(\Delta \otimes i d) \mathcal{F}=(1 \otimes \mathcal{F})(i d \otimes \Delta) \mathcal{F} \\
& (\epsilon \otimes i d) \mathcal{F}=1 \otimes 1=(i d \otimes \epsilon) \mathcal{F}
\end{aligned}
$$

we obtain $\left(H^{\mathcal{F}}, \vee, \Delta^{\mathcal{F}}, S^{\mathcal{F}}, \epsilon\right)$, where $H^{\mathcal{F}}$ is the same as H as vector spaces and:

$$
\Delta^{\mathcal{F}}(h)=\mathcal{F} \Delta(h) \mathcal{F}^{-1}, h \in H
$$

and $S^{\mathcal{F}}=S$ for Abelian twist.
\rightsquigarrow twisted L_{∞} or $\left(L_{\infty}^{\mathcal{F}}, \vee, \Delta^{\mathcal{F}}, S, \epsilon\right)$

Drinfel'd twist

In the spirit of deformation quantisation, while twisting Hopf algebra we simultaneously twist its modules. Taking Hopf algebra L_{∞} as its own module $\rightsquigarrow\left(L_{\infty}^{\star}, \vee_{\star}, \Delta_{\star}, S_{\star}, \epsilon\right)$:

$$
\begin{aligned}
& x_{1} \vee_{\star} x_{2}=\bar{f}^{k}\left(x_{1}\right) \vee \bar{f}_{k}\left(x_{2}\right), \\
& \Delta_{\star}(x)=x \otimes 1+\bar{R}^{k} \otimes \bar{R}_{k}(x), \\
& S_{\star}(x)=-\bar{R}^{k}(x) \bar{R}_{k}
\end{aligned}
$$

The \mathcal{R}-matrix $\mathcal{R} \in \mathrm{S}(X) \otimes \mathrm{S}(X)$ is an invertible matrix induced by the twist

$$
\mathcal{R}=\mathcal{F}_{21} \mathcal{F}^{-1}=: R^{\alpha} \otimes R_{\alpha}, \mathcal{F}_{21}=f_{\alpha} \otimes f^{\alpha}
$$

In the case of an Abelian twist \mathcal{R} it triangular $R_{\alpha} \otimes R^{\alpha}=\bar{R}^{\alpha} \otimes \bar{R}_{\alpha}$, and $\mathcal{R}=\mathcal{F}^{-2}$.
The inverse \mathcal{R}-matrix controls noncommutativity of the \vee_{\star}-product and provides the representation of permutation group, e.g.,

$$
\tau_{\mathcal{R}}^{\sigma}\left(x_{1} \vee_{\star} x_{2}\right)=(-1)^{\left|x_{1}\right|\left|x_{2}\right|} \bar{R}^{\alpha}\left(x_{2}\right) \vee_{\star} \bar{R}_{\alpha}\left(x_{1}\right)
$$

Braided L_{∞}-algebra

Extend the coproduct to whole tensor algebra:

$$
\Delta_{\star}\left(\mathrm{id}^{\vee \star m}\right)=\sum_{\sigma \in \operatorname{Sh}(p, m-p)}\left(\mathrm{id}^{\vee \star p} \otimes \mathrm{id}^{\vee}(m-p)\right) \circ \tau_{\mathcal{R}}^{\sigma}, p, m \geq 0
$$

The compatible coderivation $D_{\star}=\sum_{i=0}^{\infty} b_{i}^{\star}$ is defined in terms of braided graded symmetric maps b_{i}^{\star}

$$
\begin{aligned}
& b_{i}^{\star}\left(\mathrm{id}^{\vee}{ }_{\star}\right)=\sum_{\sigma \in \operatorname{Sh}(i, j-i)}\left(b_{i}^{\star} \vee_{\star} \mathrm{id}^{\vee}{ }_{\star}(j-i)\right) \circ \tau_{\mathcal{R}}^{\sigma}, j \geq i, \\
& b_{i}^{\star}\left(x_{1}, \ldots, x_{m}, x_{m+1}, \ldots, x_{i}\right)=(-1)^{\left|x_{m}\right|\left|x_{m+1}\right|} b_{i}^{\star}\left(x_{1}, \ldots, \bar{R}^{\alpha}\left(x_{m+1}\right), \bar{R}_{\alpha}\left(x_{m}\right), \ldots, x_{i}\right),
\end{aligned}
$$

and the condition $D_{\star}^{2}=0$ reproduces the deformed homotopy relations.
\rightsquigarrow braided L_{∞}-algebra obtained in Dimitrijevićććrić et al '21.

$$
L_{\infty}^{\star} \text { vs. } L_{\infty}^{\mathcal{F}}
$$

As Hopf algebras L_{∞}^{\star} and $L_{\infty}^{\mathcal{F}}$ are isomorphic Aschieri et al '05, Schenkel '12 $\exists \operatorname{map} \varphi: L_{\infty}^{\star} \rightarrow L_{\infty}^{\mathcal{F}}$ such that

$$
\begin{aligned}
& \varphi\left(x_{1} \vee_{\star} x_{2}\right)=\varphi\left(x_{1}\right) \vee \varphi\left(x_{2}\right), \\
& \Delta_{\star}=\left(\varphi^{-1} \otimes \varphi^{-1}\right) \circ \Delta^{\mathcal{F}} \circ \varphi, \\
& S_{\star}=\varphi^{-1} \circ S^{\mathcal{F}} \circ \varphi .
\end{aligned}
$$

$$
L_{\infty}^{\star} \text { vs. } L_{\infty}^{\mathcal{F}}
$$

As Hopf algebras L_{∞}^{\star} and $L_{\infty}^{\mathcal{F}}$ are isomorphic Aschieri et al '05, Schenkel '12
$\exists \operatorname{map} \varphi: L_{\infty}^{\star} \rightarrow L_{\infty}^{\mathcal{F}}$ such that

$$
\begin{aligned}
& \varphi\left(x_{1} \vee_{\star} x_{2}\right)=\varphi\left(x_{1}\right) \vee \varphi\left(x_{2}\right), \\
& \Delta_{\star}=\left(\varphi^{-1} \otimes \varphi^{-1}\right) \circ \Delta^{\mathcal{F}} \circ \varphi, \\
& S_{\star}=\varphi^{-1} \circ S^{\mathcal{F}} \circ \varphi
\end{aligned}
$$

On the other hand, we take L_{∞}^{\star}-algebra as a module of $L_{\infty}^{\mathcal{F}}$ with an L_{∞}-action on an L_{∞}-algebra given by a curved L_{∞}-morphism Mehta, Zambon '12. Thus we obtain

$$
D_{\star}=\varphi^{-1} D_{\mathcal{F}} \varphi
$$

Outlook

In the field theory context (reviewed in Hohm, Zwiebach '17, Jurčo et al. '18, '20)

- L_{∞} for field theory $\rightsquigarrow \mathrm{MC}$ equations as eoms plus compatible bilinear \rightsquigarrow cyclic L_{∞}

Outlook

In the field theory context (reviewed in Hohm, Zwiebach '17, Jurčo et al. '18, '20)

- L_{∞} for field theory $\rightsquigarrow \mathrm{MC}$ equations as eoms plus compatible bilinear \rightsquigarrow cyclic L_{∞}
- $Q=D^{*} \rightsquigarrow$ BRST operator

Evaluate b_{i} on basis of $X \rightsquigarrow$ structure constants of L_{∞}-algebra:

$$
b_{i}\left(\tau_{\alpha_{1}}, \ldots, \tau_{\alpha_{i}}\right)=C_{\alpha_{1} \ldots \alpha_{i}}^{\beta} \tau_{\beta}
$$

Use to define cohomological vector Q of degree 1

$$
Q=\sum_{i=0}^{\infty} \frac{1}{i!} C_{\alpha_{1} \ldots \alpha_{i}}^{\beta} z^{\alpha_{1}} \cdots z^{\alpha_{i}} \frac{\partial}{\partial z^{\beta}}
$$

with $z^{\alpha_{i}}$ basis of X^{\star}.
In infinite dimensional case one either restricts X^{\star} to the space spanned by z^{α}, or consider continuous duals in infinite-dim topological vector space. Arvanitakis et al ' 20

In Batalin-Vilkovisky formalism Q becomes BRST operator and $z^{\alpha_{i}}$ physical fields.

Outlook

In the field theory context (reviewed in Hohm, Zwiebach '17, Jurčo et al. '18, '20)

- L_{∞} for field theory \rightsquigarrow cyclic L_{∞}
- $Q=D^{*}$ becomes BRST operator
- L_{∞} quasi-isomorphisms \rightsquigarrow equivalent physical theories
- If 0-bracket vanishes, 1 -bracket is a differential \rightsquigarrow cochain complex
- L_{∞} quasi-isomorphisms induces isomorphisms of cohomologies of respective L_{∞}-algebras \rightsquigarrow homotopy transfer Arvanitakis et. al. '21
- For curved L_{∞} ? Fukaya '03, Costello '11

THANK YOU!

