Spectral action for the Standard Model without fermion doubling

Arkadiusz Bochniak

joint work with Andrzej Sitarz and Paweł Zalecki

Institute of Theoretical Physics, Jagiellonian University

1.12.2021

The Standard Model from the spectral perspective

1 Spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D})$:

- *-algebra \mathcal{A} represented on a Hilbert space \mathcal{H} ,
- (essentially) self-adjoint operator \mathcal{D} on \mathcal{H} ,
- other "decorations": $\gamma, \mathcal{J}, \ldots$:
 - $\blacksquare \ \mathbb{Z}/2\mathbb{Z}\text{-}\mathsf{grading} \ \gamma \ \mathsf{on} \ \mathcal{H} \ \mathsf{s.th.} \ [\gamma,\mathcal{A}] = \mathsf{0},$
 - \blacksquare real structure: antilinear isometry ${\cal J}$
- compact resolvent, domains, relations (0th-, 1st-order), ...

The Standard Model from the spectral perspective

1 Spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D})$:

- *-algebra \mathcal{A} represented on a Hilbert space \mathcal{H} ,
- (essentially) self-adjoint operator \mathcal{D} on \mathcal{H} ,
- other "decorations": $\gamma, \mathcal{J}, \ldots$:
 - $\blacksquare \ \mathbb{Z}/2\mathbb{Z}\text{-}\mathsf{grading} \ \gamma \ \mathsf{on} \ \mathcal{H} \ \mathsf{s.th.} \ [\gamma,\mathcal{A}] = \mathsf{0},$
 - \blacksquare real structure: antilinear isometry ${\cal J}$
- compact resolvent, domains, relations (0th-, 1st-order), ...
- 2 Spectral action principle:
 - To get an effective classical Lagrangian.
 - To compare obtained predictions with experiments.

• Which axioms are crucial and which can be modified/omitted?

How to choose the spectral triple?

• Which axioms are crucial and which can be modified/omitted?

What can be read from experiments? What the physics tells us?

How to choose the spectral triple?

- Which axioms are crucial and which can be modified/omitted?
- What can be read from experiments?
 What the physics tells us?
- Can the model be formulated without having too many *decorations*?

How to choose the spectral triple?

- Which axioms are crucial and which can be modified/omitted?
- What can be read from experiments?
 What the physics tells us?
- Can the model be formulated without having too many decorations?
- The standard choice: almost-commutative product geometries

$$(C^{\infty}(M)\otimes \mathcal{A}_{F}, L^{2}(M)\otimes \mathcal{H}_{F}, \mathcal{D}, J, \gamma)$$

with $\mathcal{D} = \mathcal{D} \otimes 1 + \gamma_5 \otimes \mathcal{D}_F$ and $\mathcal{A}_F = \mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C})$.

How to rigorously pass from Euclidean to Lorentzian formulation? Is there any chance to have purely Lorentzian model?

- How to rigorously pass from Euclidean to Lorentzian formulation? Is there any chance to have purely Lorentzian model?
- There are too many fermions one need to implement some projection. Is this really necessary?

- How to rigorously pass from Euclidean to Lorentzian formulation? Is there any chance to have purely Lorentzian model?
- There are too many fermions one need to implement some projection. Is this really necessary?
- Possibility of SU(3)-symmetry breaking: usual minimal axioms do not fully eliminate unphysical models.

- How to rigorously pass from Euclidean to Lorentzian formulation? Is there any chance to have purely Lorentzian model?
- There are too many fermions one need to implement some projection. Is this really necessary?
- Possibility of SU(3)-symmetry breaking: usual minimal axioms do not fully eliminate unphysical models.
- Some *predictions* do not fully agree with experiments, e.g. the value of the Higgs mass.

Go slightly beyond the usual almost-commutative framework.

Go slightly beyond the usual almost-commutative framework.
 In particular, the Dirac operator does not need to be of the product type.

- Go slightly beyond the usual almost-commutative framework.
 In particular, the Dirac operator does not need to be of the product type.
- Use reverse engineering:

- Go slightly beyond the usual almost-commutative framework.
 In particular, the Dirac operator does not need to be of the product type.
- Use *reverse engineering*: try to deduce the appropriate geometric formulation by looking at the **physical** Standard Model.

- Go slightly beyond the usual almost-commutative framework.
 In particular, the Dirac operator does not need to be of the product type.
- Use reverse engineering: try to deduce the appropriate geometric formulation by looking at the physical Standard Model.
- Try to keep the information about the Lorentzian structure as long as possible.

- Go slightly beyond the usual almost-commutative framework.
 In particular, the Dirac operator does not need to be of the product type.
- Use reverse engineering: try to deduce the appropriate geometric formulation by looking at the physical Standard Model.
- Try to keep the information about the Lorentzian structure as long as possible.
- Compute the spectral action and check if the model makes sense.

Dirac operator for (1,3)-Minkowski space: $\mathcal{D} = i\gamma^{\mu}\partial_{\mu}$.

- Dirac operator for (1,3)-Minkowski space: $\mathcal{D} = i\gamma^{\mu}\partial_{\mu}$.
- Fermionic action: $\int \overline{\psi} \mathcal{D}\psi = \int \psi^{\dagger} \widetilde{\mathcal{D}}\psi$, where $\overline{\psi} = \psi^{\dagger} \gamma^{0}$; $\widetilde{\mathcal{D}} = \gamma^{0} \mathcal{D}$ - the Krein shift of \mathcal{D} .

- Dirac operator for (1,3)-Minkowski space: $\mathcal{D} = i\gamma^{\mu}\partial_{\mu}$.
- Fermionic action: $\int \overline{\psi} \mathcal{D}\psi = \int \psi^{\dagger} \widetilde{\mathcal{D}}\psi$, where $\overline{\psi} = \psi^{\dagger}\gamma^{0}$; $\widetilde{\mathcal{D}} = \gamma^{0}\mathcal{D}$ the Krein shift of \mathcal{D} .
- $\widetilde{\mathcal{D}}$ symmetric $\Leftrightarrow \mathcal{D}$ Krein-self-adjoint: $\mathcal{D} = \gamma^0 \mathcal{D} \gamma^0$

- Dirac operator for (1,3)-Minkowski space: $\mathcal{D} = i\gamma^{\mu}\partial_{\mu}$.
- Fermionic action: $\int \overline{\psi} \mathcal{D}\psi = \int \psi^{\dagger} \widetilde{\mathcal{D}}\psi$, where $\overline{\psi} = \psi^{\dagger}\gamma^{0}$; $\widetilde{\mathcal{D}} = \gamma^{0}\mathcal{D}$ the Krein shift of \mathcal{D} .

• $\widetilde{\mathcal{D}}$ - symmetric $\Leftrightarrow \mathcal{D}$ - Krein-self-adjoint: $\mathcal{D} = \gamma^0 \mathcal{D} \gamma^0$

$$\mathcal{D}\gamma = -\gamma \mathcal{D}, \ \mathcal{D}\mathcal{J} = \mathcal{J}\mathcal{D}.$$
$$\mathcal{\widetilde{D}}\gamma = \gamma \mathcal{\widetilde{D}}, \ \mathcal{\widetilde{D}}\mathcal{J} = -\mathcal{J}\mathcal{\widetilde{D}}.$$

. . . .

Finite Riemannian spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D}, \pi_L, \pi_R)$

- \mathcal{A} finite dimensional algebra
- \blacksquare ${\mathcal H}$ finite dimensional Hilbert space
- π_L representation of \mathcal{A} on \mathcal{H}

•
$$\pi_{R}$$
 - representation of $\mathcal{A}^{\mathrm{op}}$ on \mathcal{H}

- $[\pi_L(a), \pi_R(b)] = 0$ (0th order condition)
- $[[\mathcal{D}, \pi_L(a)], \pi_R(b)] = 0$ (1st order condition)

- spin_c type geometry: $(Cl_{\mathcal{D}}(\pi_L(\mathcal{A})))' = \pi_R(\mathcal{A}).$
- Hodge condition: $(Cl_{\mathcal{D}}(\pi_L(\mathcal{A})))' = Cl_{\mathcal{D}}(\pi_R(\mathcal{A})),$

where $CL_{\mathcal{D}}(\pi_L(\mathcal{A}))$ is the algebra generated by $\pi_L(\mathcal{A})$ and $[\mathcal{D}, \pi_L(\mathcal{A})].$

[Dąbrowski– D'Andrea, 2016], [Dąbrowski– D'Andrea– Sitarz, 2018], [Dąbrowski– Sitarz, 2019]

Rephrase the universally accepted form of the **physical** Standard Model Lagrangian in the language of spectral triples being as close as possible to the Lorentzian structure. • The particle content for one generation:

$$\Psi = egin{pmatrix}
u_R & u_R^1 & u_R^2 & u_R^3 \\
e_R & d_R^1 & d_R^2 & d_R^3 \\
u_L & u_L^1 & u_L^2 & u_L^3 \\
e_L & d_L^1 & d_L^2 & d_L^3 \end{pmatrix} \in M_4(H_W)$$

The particle content for one generation:

$$\Psi = egin{pmatrix}
u_R & u_R^1 & u_R^2 & u_R^3 \\
e_R & d_R^1 & d_R^2 & d_R^3 \\
u_L & u_L^1 & u_L^2 & u_L^3 \\
e_L & d_L^1 & d_L^2 & d_L^3 \end{pmatrix} \in M_4(H_W)$$

• As an algebra \mathcal{A} we take $\mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C})$ -valued smooth functions on the spacetime, with representations:

$$\pi_L(\lambda, q, m) \Psi = egin{pmatrix} \lambda & & \ & \overline{\lambda} & \ & & q \end{pmatrix} \Psi, \quad \pi_R(\lambda, q, m) \Psi = \Psi egin{pmatrix} \overline{\lambda} & & \ & & m^\dagger \end{pmatrix}$$

Dirac operator

- At every point of the Minkowski space, linear operators on the space of particles can be encoded as a matrix from M₄(ℂ) ⊗ M₂(ℂ) ⊗ M₄(ℂ).
- Dirac operator: $\mathcal{D}_{SM}\Psi = \mathcal{D}\Psi + \mathcal{D}_F\Psi$, where

$$\mathcal{D} = \begin{pmatrix} & i \widetilde{\sigma}^{\mu} \partial_{\mu} & & \\ & & i \widetilde{\sigma}^{\mu} \partial_{\mu} \\ & & & i \sigma^{\mu} \partial_{\mu} & & \end{pmatrix},$$

and \mathcal{D}_F is a finite endomorphism of $M_4(H_W)$. Here $\tilde{\sigma}^0 = \sigma^0 = 1_2$ and $\tilde{\sigma}^j = -\sigma^j$ for j = 1, 2, 3.

The Lorentz invariance of the full Dirac operator implies that \mathcal{D}_F has to be in $M_4(\mathbb{C}) \otimes 1_2 \otimes M_4(\mathbb{C})$.

- The Lorentz invariance of the full Dirac operator implies that \mathcal{D}_F has to be in $M_4(\mathbb{C}) \otimes 1_2 \otimes M_4(\mathbb{C})$.
- As a result, \mathcal{D}_F commutes with the chirality $\Gamma = \pi_L(1, -1, 1)$.

- The Lorentz invariance of the full Dirac operator implies that \mathcal{D}_F has to be in $M_4(\mathbb{C}) \otimes 1_2 \otimes M_4(\mathbb{C})$.
- As a result, \mathcal{D}_F commutes with the chirality $\Gamma = \pi_L(1, -1, 1)$.
- Therefore, $\mathcal{D}_{SM} = \mathcal{D} + \mathcal{D}_F$ with $\{\mathcal{D}, \Gamma\} = 0$ and $[\mathcal{D}_F, \Gamma] = 0$.
- Krein-shifted operators behave in the opposite way.

Theorem

With the above assumptions,

• Requiring \hat{D}_{SM} to satisfy the first order condition implies

$$\widetilde{\mathcal{D}_F} = \begin{pmatrix} M_l \ M_l^{\dagger} \end{pmatrix} \otimes \mathbb{1}_2 \otimes e_{11} + \begin{pmatrix} M_q \ M_q^{\dagger} \end{pmatrix} \otimes \mathbb{1}_2 \otimes (\mathbb{1}_4 - e_{11}),$$

where $M_l, M_q \in M_2(\mathbb{C})$.

if M_I, M_q are nondegenerate then D_{SM} satisfies the spin_c condition.

- Hilbert space: $M_4(H_W) \otimes \mathbb{C}^3$.
- Representation enlarged diagonally.
- $M_I, M_q \in M_2(\mathbb{C}) \otimes M_3(\mathbb{C})$:

$$M_l = \begin{pmatrix} \Upsilon_{\nu} & \\ & \Upsilon_e \end{pmatrix}, \qquad M_q = \begin{pmatrix} \Upsilon_u & \\ & \Upsilon_d \end{pmatrix},$$

with Υ_e, Υ_u - diagonal, $\Upsilon_\nu = U \widetilde{\Upsilon_\nu} U^{\dagger}$, $\Upsilon_d = V \widetilde{\Upsilon_d} V^{\dagger}$, *U*- Pontecorvo-Maki-Nakagawa-Sakata matrix, *V*- Cabibbo-Kobayashi-Maskawa matrix.

Theorem

The spin-c condition holds provided that for both pairs of matrices $(\Upsilon_{\nu}, \Upsilon_{e})$ and $(\Upsilon_{u}, \Upsilon_{d})$ their eigenvalues are pairwise different.

This is the same condition as for Hodge duality [Dąbrowski-Sitarz, 2019]

Theorem

The spin-c condition holds provided that for both pairs of matrices $(\Upsilon_{\nu}, \Upsilon_{e})$ and $(\Upsilon_{u}, \Upsilon_{d})$ their eigenvalues are pairwise different.

- This is the same condition as for Hodge duality [Dąbrowski-Sitarz, 2019]
- This condition is satisfied for physical Standard Model provided that there is no massless neutrino [Dąbrowski-Sitarz, 2019]

Theorem

The spin-c condition holds provided that for both pairs of matrices $(\Upsilon_{\nu}, \Upsilon_{e})$ and $(\Upsilon_{u}, \Upsilon_{d})$ their eigenvalues are pairwise different.

- This is the same condition as for Hodge duality [Dąbrowski-Sitarz, 2019]
- This condition is satisfied for physical Standard Model provided that there is no massless neutrino [Dąbrowski-Sitarz, 2019]
- The model can be doubled: the resulting spectral triple satisfies the Hodge duality and is the finite part of the one studied in the almost-commutative framework.

The usual 0th order condition is not implemented by *J*, but its milder version is: π_R(A) ⊆ *J*π_L(A)*J*⁻¹.

- The usual 0th order condition is not implemented by *J*, but its milder version is: π_R(A) ⊆ *J*π_L(A)*J*⁻¹.
- The presence of the real structure implies the reality of M₁ and M_q.

- The usual 0th order condition is not implemented by *J*, but its milder version is: π_R(A) ⊆ *J*π_L(A)*J*⁻¹.
- The presence of the real structure implies the reality of M_l and M_q.
- One generation: fermion masses are real.

- The usual 0th order condition is not implemented by *J*, but its milder version is: π_R(A) ⊆ *J*π_L(A)*J*⁻¹.
- The presence of the real structure implies the reality of M_l and M_q.
- One generation: fermion masses are real.
- Three generations: both the Wolfenstein parameter η
 and the
 CP-violating phase δ^ν_{CP} have to vanish.

- The usual 0th order condition is not implemented by *J*, but its milder version is: π_R(A) ⊆ *J*π_L(A)*J*⁻¹.
- The presence of the real structure implies the reality of M_l and M_q.
- One generation: fermion masses are real.
- Three generations: both the Wolfenstein parameter η
 and the
 CP-violating phase δ^ν_{CP} have to vanish.
- **CP-violation** ⇔ shadow of the *J*-symmetry violation in the non-doubled spectral triple.

Relation with twisted spectral triples

- $\widetilde{\mathcal{D}_{SM}}$ satisfies the order one condition,
- \mathcal{D}_{SM} satisfies its twisted version:

$$\left[\left[\mathcal{D}_{SM},\pi_{L}(a)\right]_{\beta},\pi_{R}(b)\right]_{\beta}=0,$$

where $[x, y]_{\beta} = xy - \beta y \beta^{-1} x$.

- (1) Describe gauge transformations
- (2) Find fluctuated Dirac operator
- (3) Compute the spectral action

Gauge transformations

- $U_{LR} := \pi_L(U)\pi_R(U)$ for $U = (u_1, u_2, u_3) \in U(\mathcal{A})$.
- They form a group $(U(1) \times SU(2) \times U(3))/(\mathbb{Z}/2\mathbb{Z})$.

Gauge transformations

- $U_{LR} := \pi_L(U)\pi_R(U)$ for $U = (u_1, u_2, u_3) \in U(\mathcal{A})$.
- They form a group $(U(1) \times SU(2) \times U(3))/(\mathbb{Z}/2\mathbb{Z})$.
- To have SU(3) rather than U(3) one could impose unimodularity condition.

Gauge transformations

- $U_{LR} := \pi_L(U)\pi_R(U)$ for $U = (u_1, u_2, u_3) \in \mathcal{U}(\mathcal{A})$.
- They form a group $(U(1) \times SU(2) \times U(3))/(\mathbb{Z}/2\mathbb{Z})$.
- To have SU(3) rather than U(3) one could impose unimodularity condition.
- The left action is already unimodular.
- The unimodularity for the right action could be be imposed either on each fundamental component or in the full representation.

Unimodularity

- In the first case: u₁ det u₃ = 1 and the gauge group of the Standard Model (U(1) × SU(2) × SU(3)) /(ℤ/6ℤ)
- In the second case: $(u_1 \det u_3)^{12} = 1$ and the group differs by a finite factor.

Fluctuated Dirac operator

•
$$\widetilde{\mathcal{D}_{SM}}^{\omega} = \widetilde{\mathcal{D}_{SM}} + \omega$$
 with

$$\omega = A_{\mu}e_{11} \otimes \sigma^{\mu} \otimes (1_4 - e_{11}) - 2A_{\mu}e_{22} \otimes \sigma^{\mu} \otimes e_{11}$$

$$- A_{\mu}e_{22} \otimes \sigma^{\mu} \otimes (1_4 - e_{11}) - A_{\mu}(e_{33} + e_{44}) \otimes \widetilde{\sigma}^{\mu} \otimes e_{11}$$

$$+ \begin{pmatrix} 0_2 \\ W_{\mu} \end{pmatrix} \otimes \widetilde{\sigma}^{\mu} \otimes 1_4 + \begin{pmatrix} 1_2 \\ 0_2 \end{pmatrix} \otimes \sigma^{\mu} \otimes \begin{pmatrix} 0_1 \\ G_{\mu} \end{pmatrix}$$

$$+ \begin{pmatrix} 0_2 \\ 1_2 \end{pmatrix} \otimes \widetilde{\sigma}^{\mu} \otimes \begin{pmatrix} 0_1 \\ G_{\mu} \end{pmatrix} + \begin{pmatrix} M_I \Phi \\ \Phi^{\dagger} M_I^{\dagger} \end{pmatrix} \otimes 1_2 \otimes e_{11}$$

$$+ \begin{pmatrix} M_q \Phi \\ \Phi^{\dagger} M_q^{\dagger} \end{pmatrix} \otimes 1_2 \otimes (1_4 - e_{11}).$$

Physical parametrization (for one generation)

Since
$$\Phi \in \mathbb{H}$$
 we can write $\Phi = \begin{pmatrix} \phi_1 & \phi_2 \\ -\overline{\phi_2} & \overline{\phi_1} \end{pmatrix}$.
Define $\Phi_x := M_x(1_2 + \Phi)$, for $x = l, q$.
The Higgs dublet $H := \begin{pmatrix} 1 + \phi_1 \\ \phi_2 \end{pmatrix}$

We consider two simplified versions of the full model:

- Static and spatial model,
- Wick rotated model.

We consider time-independent and spatial part of the Dirac operator.

$$\begin{split} \widetilde{\mathcal{D}_L} &= i \begin{pmatrix} \mathbf{1}_2 \\ -\mathbf{1}_2 \end{pmatrix} \otimes \sigma^j \partial_j + \begin{pmatrix} \mathbf{\Phi}_l \\ \mathbf{\Phi}_l^{\dagger} \end{pmatrix} \otimes \mathbf{1}_2 \\ &+ A_j \begin{pmatrix} \sigma^3 - \mathbf{1}_2 \\ & \mathbf{1}_2 \end{pmatrix} \otimes \sigma^j - \begin{pmatrix} \mathbf{0}_2 \\ & W_j \end{pmatrix} \otimes \sigma^j . \\ \widetilde{\mathcal{D}_Q} &= i \begin{pmatrix} \mathbf{1}_2 \\ & -\mathbf{1}_2 \end{pmatrix} \otimes \sigma^j \partial_j \otimes \mathbf{1}_3 + \begin{pmatrix} \mathbf{\Phi}_q \\ \mathbf{\Phi}_q^{\dagger} \end{pmatrix} \otimes \mathbf{1}_2 \otimes \mathbf{1}_3 \\ &+ A_j \begin{pmatrix} \sigma^3 + \frac{1}{3}\mathbf{1}_2 \\ & -\frac{1}{3}\mathbf{1}_2 \end{pmatrix} \otimes \sigma^j \otimes \mathbf{1}_3 \\ &- \begin{pmatrix} \mathbf{0}_2 \\ & W_j \end{pmatrix} \otimes \sigma^j \otimes \mathbf{1}_3 + \begin{pmatrix} \mathbf{1}_2 \\ & -\mathbf{1}_2 \end{pmatrix} \otimes \sigma^j \otimes \mathcal{G}_j. \end{split}$$

The physical values of hypercharges are reproduced (in quark sector: because of the unimodularity condition).

Static and spatial model

- The physical values of hypercharges are reproduced (in quark sector: because of the unimodularity condition).
- Gilkey-Seeley-DeWitt coefficients for three generations:

$$a_2 = -rac{1}{4\pi^2} a \int d^4 x \, |H|^2,$$

$$a_{4} = \frac{1}{8\pi^{2}} \int d^{4}x \left[b|H|^{4} + a \mathrm{Tr}|D_{j}H|^{2} + \frac{20}{3}F^{2} + 2 \mathrm{Tr}W^{2} + 2 \mathrm{Tr}G^{2} \right].$$

where

$$\begin{split} a &= \operatorname{Tr}(\Upsilon_{\nu}^{\dagger}\Upsilon_{\nu}) + \operatorname{Tr}(\Upsilon_{e}^{\dagger}\Upsilon_{e}) + 3\operatorname{Tr}(\Upsilon_{u}^{\dagger}\Upsilon_{u}) + 3\operatorname{Tr}(\Upsilon_{d}^{\dagger}\Upsilon_{d}), \\ b &= \operatorname{Tr}(\Upsilon_{\nu}^{\dagger}\Upsilon_{\nu})^{2} + \operatorname{Tr}(\Upsilon_{e}^{\dagger}\Upsilon_{e})^{2} + 3\operatorname{Tr}(\Upsilon_{u}^{\dagger}\Upsilon_{u})^{2} + 3\operatorname{Tr}(\Upsilon_{d}^{\dagger}\Upsilon_{d})^{2}. \end{split}$$

Static and spatial model

 \blacksquare Effective Lagrangian: $\mathcal{L} = \mathcal{L}_{\mathsf{Higgs}} + \mathcal{L}_{\mathsf{gauge}},$ where

$$\begin{split} \mathcal{L}_{\text{Higgs}} &= \frac{bf(0)}{2\pi^2} |H|^4 - \frac{2f_2\Lambda^2 a}{\pi^2} |H|^2 + \frac{af(0)}{2\pi^2} \text{Tr} |D_j H|^2, \\ \mathcal{L}_{\text{gauge}} &= \frac{f(0)}{\pi^2} \left(\frac{10}{3} F^2 + \text{Tr} W^2 + \text{Tr} G^2 \right). \end{split}$$

- This result is consistent with taking the static part of the Lorentzian Lagrangian for the Standard Model.
- All the relations between the coefficients of the model are exactly the same as in the usual almost-commutative Euclidean formulation. Therefore, the measurable quantities will have the same values.

Wick rotated model - leptonic sector

We take the Lorentzian Dirac operator:

$$\begin{split} \mathcal{D}_{L} &= i \begin{pmatrix} 1_{2} \otimes \widetilde{\sigma}^{\mu} \\ 1_{2} \otimes \sigma^{\mu} \end{pmatrix} \partial_{\mu} + \mathcal{A}_{\mu} \begin{pmatrix} & -1_{2} \otimes \widetilde{\sigma}^{\mu} \\ (\sigma^{3} - 1_{2}) \otimes \sigma^{\mu} \end{pmatrix} \\ &+ \begin{pmatrix} W_{\mu} \otimes \widetilde{\sigma}^{\mu} \\ 0_{4} \end{pmatrix} + \begin{pmatrix} \Phi_{l}^{\dagger} \\ & \Phi_{l} \end{pmatrix} \otimes 1_{2}. \end{split}$$

and Wick rotate it $(\sigma^j \rightarrow i\sigma^j)$:

$$\begin{split} \mathcal{D}_{L,w} = & i \begin{pmatrix} 1_2 \\ 1_2 \end{pmatrix} \otimes 1_2 \partial_0 + i \begin{pmatrix} -i1_2 \\ i1_2 \end{pmatrix} \otimes \sigma^j \partial_j \\ & + A_0 \begin{pmatrix} -1_2 \\ (\sigma^3 - 1_2) \end{pmatrix} \otimes 1_2 + A_j \begin{pmatrix} i1_2 \\ i(\sigma^3 - 1_2) \end{pmatrix} \otimes \sigma^j \\ & + \begin{pmatrix} W_0 \\ 0_2 \end{pmatrix} \otimes 1_2 - \begin{pmatrix} iW_j \\ 0_2 \end{pmatrix} \otimes \sigma^j + \begin{pmatrix} \Phi_l^{\dagger} \\ \Phi_l \end{pmatrix} \otimes 1_2 \end{split}$$

- We repeat this procedure for the quark sector.
- Next, we compute D[†]_wD_w for the full Wick rotated Dirac operator.
- The Gilkey-Seeley-DeWitt coefficients:

$$a_2=\frac{3}{4\pi^2}a\int d^4x|H|^2,$$

$$\begin{aligned} a_4 &= \frac{1}{8\pi^2} \int d^4 x \left[b |H|^4 - a \mathrm{Tr} |D_{\mu}|^2 + \frac{20}{3} F^2 + 2 \mathrm{Tr}(W^2) + 2 \mathrm{Tr}(G^2) \right. \\ &\left. + 12 \varepsilon^{jkl} F_{jk} F_{0l} - 6 \varepsilon^{jkl} \mathrm{Tr}(W_{jk} W_{0l}) \right] \end{aligned}$$

The resulting Euclidean action reads:

$$\begin{split} \mathcal{L}_{\text{gauge}} &= \frac{f(0)}{\pi^2} \left(\frac{10}{3} F^2 + \text{Tr}(W^2) + \text{Tr}(G^2) \right. \\ &+ 6 \varepsilon^{jkl} F_{jk} F_{0l} - 3 \varepsilon^{jkl} \text{Tr}(W_{jk} W_{0l}) \right), \\ \mathcal{L}_H &= \frac{bf(0)}{2\pi^2} |H|^4 + \frac{6f_2 \Lambda^2}{\pi^2} a |H|^2 - \frac{af(0)}{2\pi^2} \text{Tr} |D_\mu H|^2 \end{split}$$

The resulting Euclidean action reads:

$$\begin{split} \mathcal{L}_{\text{gauge}} &= \frac{f(0)}{\pi^2} \left(\frac{10}{3} F^2 + \text{Tr}(W^2) + \text{Tr}(G^2) \right. \\ &+ 6 \varepsilon^{jkl} F_{jk} F_{0l} - 3 \varepsilon^{jkl} \text{Tr}(W_{jk} W_{0l}) \right), \\ \mathcal{L}_H &= \frac{b f(0)}{2\pi^2} |H|^4 + \frac{6 f_2 \Lambda^2}{\pi^2} a |H|^2 - \frac{a f(0)}{2\pi^2} \text{Tr} |D_\mu H|^2 \end{split}$$

 Spectral action reproduces the action of the Lorentzian Standard Model with an additional electroweak "θ-term". The resulting Euclidean action reads:

$$\begin{split} \mathcal{L}_{\text{gauge}} &= \frac{f(0)}{\pi^2} \left(\frac{10}{3} F^2 + \text{Tr}(W^2) + \text{Tr}(G^2) \right. \\ &+ 6 \varepsilon^{jkl} F_{jk} F_{0l} - 3 \varepsilon^{jkl} \text{Tr}(W_{jk} W_{0l}) \right), \\ \mathcal{L}_H &= \frac{bf(0)}{2\pi^2} |H|^4 + \frac{6f_2 \Lambda^2}{\pi^2} a |H|^2 - \frac{af(0)}{2\pi^2} \text{Tr} |D_\mu H|^2 \end{split}$$

- Spectral action reproduces the action of the Lorentzian Standard Model with an additional electroweak "θ-term".
- Potentially different coefficients do not finally affect the numerical values of the measurable parameters.

- No fermion doubling.
- No SU(3) breaking.
- Order-one condition holds.
- Lack of real structure \rightarrow **CP violation**.
- Spectral triple obeys the Morita condition of spin_c geometry.
- The potentially interesting topological terms appears.

Thank you for your attention!