Spectral action for the Standard Model without fermion doubling

Arkadiusz Bochniak

joint work with Andrzej Sitarz and Paweł Zalecki

Institute of Theoretical Physics, Jagiellonian University
1.12.2021

The Standard Model from the spectral perspective

1 Spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D})$:

- *-algebra \mathcal{A} represented on a Hilbert space \mathcal{H},
- (essentially) self-adjoint operator \mathcal{D} on \mathcal{H},

■ other "decorations": $\gamma, \mathcal{J}, \ldots$:
■ $\mathbb{Z} / 2 \mathbb{Z}$-grading γ on \mathcal{H} s.th. $[\gamma, \mathcal{A}]=0$,

- real structure: antilinear isometry \mathcal{J}
- compact resolvent, domains, relations (0th-, 1st-order), ...

The Standard Model from the spectral perspective

1 Spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D})$:

- *-algebra \mathcal{A} represented on a Hilbert space \mathcal{H},
- (essentially) self-adjoint operator \mathcal{D} on \mathcal{H},

■ other "decorations": $\gamma, \mathcal{J}, \ldots$:
■ $\mathbb{Z} / 2 \mathbb{Z}$-grading γ on \mathcal{H} s.th. $[\gamma, \mathcal{A}]=0$,

- real structure: antilinear isometry \mathcal{J}
- compact resolvent, domains, relations (0th-, 1st-order), ...

2 Spectral action principle:

- To get an effective classical Lagrangian.
- To compare obtained predictions with experiments.

How to choose the spectral triple?

- Which axioms are crucial and which can be modified/omitted?

How to choose the spectral triple?

- Which axioms are crucial and which can be modified/omitted?
- What can be read from experiments?

What the physics tells us?

How to choose the spectral triple?

- Which axioms are crucial and which can be modified/omitted?
- What can be read from experiments?

What the physics tells us?

- Can the model be formulated without having too many decorations?

How to choose the spectral triple?

- Which axioms are crucial and which can be modified/omitted?
- What can be read from experiments?

What the physics tells us?

- Can the model be formulated without having too many decorations?
- The standard choice: almost-commutative product geometries

$$
\left(C^{\infty}(M) \otimes \mathcal{A}_{F}, L^{2}(M) \otimes \mathcal{H}_{F}, \mathcal{D}, J, \gamma\right)
$$

with $\mathcal{D}=\not D \otimes 1+\gamma_{5} \otimes \mathcal{D}_{F}$ and $\mathcal{A}_{F}=\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C})$.

Is this picture really complete?

■ How to rigorously pass from Euclidean to Lorentzian formulation? Is there any chance to have purely Lorentzian model?

Is this picture really complete?

■ How to rigorously pass from Euclidean to Lorentzian formulation? Is there any chance to have purely Lorentzian model?

- There are too many fermions - one need to implement some projection. Is this really necessary?

Is this picture really complete?

■ How to rigorously pass from Euclidean to Lorentzian formulation? Is there any chance to have purely Lorentzian model?

- There are too many fermions - one need to implement some projection. Is this really necessary?

■ Possibility of SU(3)-symmetry breaking: usual minimal axioms do not fully eliminate unphysical models.

Is this picture really complete?

- How to rigorously pass from Euclidean to Lorentzian formulation? Is there any chance to have purely Lorentzian model?
- There are too many fermions - one need to implement some projection. Is this really necessary?
- Possibility of SU(3)-symmetry breaking: usual minimal axioms do not fully eliminate unphysical models.
- Some predictions do not fully agree with experiments, e.g. the value of the Higgs mass.

Our approach

■ Go slightly beyond the usual almost-commutative framework.

Our approach

- Go slightly beyond the usual almost-commutative framework. In particular, the Dirac operator does not need to be of the product type.

Our approach

- Go slightly beyond the usual almost-commutative framework. In particular, the Dirac operator does not need to be of the product type.
- Use reverse engineering:

Our approach

■ Go slightly beyond the usual almost-commutative framework. In particular, the Dirac operator does not need to be of the product type.

- Use reverse engineering: try to deduce the appropriate geometric formulation by looking at the physical Standard Model.

Our approach

■ Go slightly beyond the usual almost-commutative framework. In particular, the Dirac operator does not need to be of the product type.

- Use reverse engineering: try to deduce the appropriate geometric formulation by looking at the physical Standard Model.
- Try to keep the information about the Lorentzian structure as long as possible.

Our approach

■ Go slightly beyond the usual almost-commutative framework. In particular, the Dirac operator does not need to be of the product type.

- Use reverse engineering: try to deduce the appropriate geometric formulation by looking at the physical Standard Model.
- Try to keep the information about the Lorentzian structure as long as possible.
- Compute the spectral action and check if the model makes sense.

Krein-shifted geometry

- Dirac operator for (1,3)-Minkowski space: $\mathcal{D}=i \gamma^{\mu} \partial_{\mu}$.

Krein-shifted geometry

- Dirac operator for (1,3)-Minkowski space: $\mathcal{D}=i \gamma^{\mu} \partial_{\mu}$.
- Fermionic action: $\int \bar{\psi} \mathcal{D} \psi=\int \psi^{\dagger} \widetilde{\mathcal{D}} \psi$, where $\bar{\psi}=\psi^{\dagger} \gamma^{0}$;
$\widetilde{\mathcal{D}}=\gamma^{0} \mathcal{D}$ - the Krein shift of \mathcal{D}.

Krein-shifted geometry

- Dirac operator for (1,3)-Minkowski space: $\mathcal{D}=i \gamma^{\mu} \partial_{\mu}$.
- Fermionic action: $\int \bar{\psi} \mathcal{D} \psi=\int \psi^{\dagger} \widetilde{\mathcal{D}} \psi$, where $\bar{\psi}=\psi^{\dagger} \gamma^{0}$;
$\widetilde{\mathcal{D}}=\gamma^{0} \mathcal{D}$ - the Krein shift of \mathcal{D}.
■ $\widetilde{\mathcal{D}}$ - symmetric $\Leftrightarrow \mathcal{D}$ - Krein-self-adjoint: $\mathcal{D}=\gamma^{0} \mathcal{D} \gamma^{0}$

Krein-shifted geometry

- Dirac operator for (1,3)-Minkowski space: $\mathcal{D}=i \gamma^{\mu} \partial_{\mu}$.
- Fermionic action: $\int \bar{\psi} \mathcal{D} \psi=\int \psi^{\dagger} \widetilde{\mathcal{D}} \psi$, where $\bar{\psi}=\psi^{\dagger} \gamma^{0}$;
$\widetilde{\mathcal{D}}=\gamma^{0} \mathcal{D}$ - the Krein shift of \mathcal{D}.
■ $\widetilde{\mathcal{D}}$ - symmetric $\Leftrightarrow \mathcal{D}$ - Krein-self-adjoint: $\mathcal{D}=\gamma^{0} \mathcal{D} \gamma^{0}$
■ $\mathcal{D} \gamma=-\gamma \mathcal{D}, \mathcal{D} \mathcal{J}=\mathcal{J} \mathcal{D}$.
- $\widetilde{\mathcal{D}} \gamma=\gamma \widetilde{\mathcal{D}}, \widetilde{\mathcal{D}} \mathcal{J}=-\mathcal{J} \widetilde{\mathcal{D}}$.

Finite Riemannian spectral triple $\left(\mathcal{A}, \mathcal{H}, \mathcal{D}, \pi_{L}, \pi_{R}\right)$

- \mathcal{A} - finite dimensional algebra
- \mathcal{H} - finite dimensional Hilbert space
- π_{L} - representation of \mathcal{A} on \mathcal{H}

■ π_{R} - representation of $\mathcal{A}^{\mathrm{op}}$ on \mathcal{H}
$■\left[\pi_{L}(a), \pi_{R}(b)\right]=0-(0 t h$ order condition)
■ $\left[\left[\mathcal{D}, \pi_{L}(a)\right], \pi_{R}(b)\right]=0-(1$ st order condition)

Additional conditions

- spin $_{c}$ type geometry: $\left(C_{\mathcal{D}}\left(\pi_{L}(\mathcal{A})\right)\right)^{\prime}=\pi_{R}(\mathcal{A})$.

■ Hodge condition: $\left(\operatorname{Cl}_{\mathcal{D}}\left(\pi_{L}(\mathcal{A})\right)\right)^{\prime}=\operatorname{Cl}_{\mathcal{D}}\left(\pi_{R}(\mathcal{A})\right)$,
where $C L_{\mathcal{D}}\left(\pi_{L}(\mathcal{A})\right)$ is the algebra generated by $\pi_{L}(\mathcal{A})$ and $\left[\mathcal{D}, \pi_{L}(\mathcal{A})\right]$.
[Dąbrowski- D'Andrea, 2016], [Dąbrowski- D'Andrea- Sitarz, 2018], [Dąbrowski- Sitarz, 2019]

Application for the Standard Model

Rephrase the universally accepted form of the physical Standard Model Lagrangian in the language of spectral triples being as close as possible to the Lorentzian structure.

Application for the Standard Model

- The particle content for one generation:

$$
\Psi=\left(\begin{array}{llll}
\nu_{R} & u_{R}^{1} & u_{R}^{2} & u_{R}^{3} \\
e_{R} & d_{R}^{1} & d_{R}^{2} & d_{R}^{3} \\
\nu_{L} & u_{L}^{1} & u_{L}^{2} & u_{L}^{3} \\
e_{L} & d_{L}^{1} & d_{L}^{2} & d_{L}^{3}
\end{array}\right) \in M_{4}\left(H_{W}\right)
$$

Application for the Standard Model

- The particle content for one generation:

$$
\Psi=\left(\begin{array}{llll}
\nu_{R} & u_{R}^{1} & u_{R}^{2} & u_{R}^{3} \\
e_{R} & d_{R}^{1} & d_{R}^{2} & d_{R}^{3} \\
\nu_{L} & u_{L}^{1} & u_{L}^{2} & u_{L}^{3} \\
e_{L} & d_{L}^{1} & d_{L}^{2} & d_{L}^{3}
\end{array}\right) \in M_{4}\left(H_{W}\right)
$$

- As an algebra \mathcal{A} we take $\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C})$-valued smooth functions on the spacetime, with representations:

$$
\pi_{L}(\lambda, q, m) \Psi=\left(\begin{array}{ccc}
\lambda & & \\
& \bar{\lambda} & \\
& & q
\end{array}\right) \Psi, \quad \pi_{R}(\lambda, q, m) \Psi=\Psi\left(\begin{array}{ll}
\bar{\lambda} & \\
& m^{\dagger}
\end{array}\right)
$$

Dirac operator

- At every point of the Minkowski space, linear operators on the space of particles can be encoded as a matrix from $M_{4}(\mathbb{C}) \otimes M_{2}(\mathbb{C}) \otimes M_{4}(\mathbb{C})$.

■ Dirac operator: $\mathcal{D}_{S M} \Psi=\mathcal{D} \Psi+\mathcal{D}_{F} \Psi$, where

$$
\mathcal{D}=\left(\begin{array}{cccc}
& & & i \widetilde{\sigma}^{\mu} \partial_{\mu} \\
& & & \\
& & \\
& & \\
& & \\
i \sigma^{\mu} \partial_{\mu} & & & \\
& i \sigma^{\mu} \partial_{\mu} & &
\end{array}\right)
$$

and \mathcal{D}_{F} is a finite endomorphism of $M_{4}\left(H_{W}\right)$. Here $\tilde{\sigma}^{0}=\sigma^{0}=1_{2}$ and $\tilde{\sigma}^{j}=-\sigma^{j}$ for $j=1,2,3$.

Dirac operator

- The Lorentz invariance of the full Dirac operator implies that \mathcal{D}_{F} has to be in $M_{4}(\mathbb{C}) \otimes 1_{2} \otimes M_{4}(\mathbb{C})$.

Dirac operator

- The Lorentz invariance of the full Dirac operator implies that \mathcal{D}_{F} has to be in $M_{4}(\mathbb{C}) \otimes 1_{2} \otimes M_{4}(\mathbb{C})$.
- As a result, \mathcal{D}_{F} commutes with the chirality $\Gamma=\pi_{L}(1,-1,1)$.

Dirac operator

- The Lorentz invariance of the full Dirac operator implies that \mathcal{D}_{F} has to be in $M_{4}(\mathbb{C}) \otimes 1_{2} \otimes M_{4}(\mathbb{C})$.
- As a result, \mathcal{D}_{F} commutes with the chirality $\Gamma=\pi_{L}(1,-1,1)$.

■ Therefore, $\mathcal{D}_{S M}=\mathcal{D}+\mathcal{D}_{F}$ with $\{\mathcal{D}, \Gamma\}=0$ and $\left[\mathcal{D}_{F}, \Gamma\right]=0$.
■ Krein-shifted operators behave in the opposite way.

Possible Dirac operators

Theorem

With the above assumptions,

- Requiring $\widetilde{\mathcal{D}_{S M}}$ to satisfy the first order condition implies

$$
\widetilde{\mathcal{D}_{F}}=\left(\begin{array}{ll}
& M_{l} \\
M_{l}^{\dagger} &
\end{array}\right) \otimes 1_{2} \otimes e_{11}+\left(\begin{array}{ll}
& M_{q} \\
M_{q}^{\dagger} &
\end{array}\right) \otimes 1_{2} \otimes\left(1_{4}-e_{11}\right)
$$

where $M_{l}, M_{q} \in M_{2}(\mathbb{C})$.

- if M_{l}, M_{q} are nondegenerate then $\widetilde{\mathcal{D}_{S M}}$ satisfies the spin $_{c}$ condition.

The Standard Model with three generations of particles

- Hilbert space: $M_{4}\left(H_{W}\right) \otimes \mathbb{C}^{3}$.
- Representation enlarged diagonally.
- $M_{l}, M_{q} \in M_{2}(\mathbb{C}) \otimes M_{3}(\mathbb{C}):$

$$
M_{I}=\left(\begin{array}{cc}
\Upsilon_{\nu} & \\
& \Upsilon_{e}
\end{array}\right), \quad M_{q}=\left(\begin{array}{ll}
\Upsilon_{u} & \\
& \Upsilon_{d}
\end{array}\right)
$$

with $\Upsilon_{e}, \Upsilon_{u}$ - diagonal, $\Upsilon_{\nu}=U \widetilde{\Upsilon_{\nu}} U^{\dagger}, \Upsilon_{d}=V \widetilde{\Upsilon_{d}} V^{\dagger}$,
U- Pontecorvo-Maki-Nakagawa-Sakata matrix,
V-Cabibbo-Kobayashi-Maskawa matrix.

The Standard Model with three generations of particles

Theorem

The spin-c condition holds provided that for both pairs of matrices $\left(\Upsilon_{\nu}, \Upsilon_{e}\right)$ and $\left(\Upsilon_{u}, \Upsilon_{d}\right)$ their eigenvalues are pairwise different.

- This is the same condition as for Hodge duality [Dąbrowski-Sitarz, 2019]

The Standard Model with three generations of particles

Theorem

The spin-c condition holds provided that for both pairs of matrices $\left(\Upsilon_{\nu}, \Upsilon_{e}\right)$ and $\left(\Upsilon_{u}, \Upsilon_{d}\right)$ their eigenvalues are pairwise different.

- This is the same condition as for Hodge duality [Dąbrowski-Sitarz, 2019]
- This condition is satisfied for physical Standard Model provided that there is no massless neutrino [Dabbowski-Sitarz, 2019]

The Standard Model with three generations of particles

Theorem

The spin-c condition holds provided that for both pairs of matrices $\left(\Upsilon_{\nu}, \Upsilon_{e}\right)$ and $\left(\Upsilon_{u}, \Upsilon_{d}\right)$ their eigenvalues are pairwise different.

- This is the same condition as for Hodge duality [Dąbrowski-Sitarz, 2019]
- This condition is satisfied for physical Standard Model provided that there is no massless neutrino [Dabrowski-Sitarz, 2019]
- The model can be doubled: the resulting spectral triple satisfies the Hodge duality and is the finite part of the one studied in the almost-commutative framework.

CP violation and reality of the spectral triple

- The usual 0 th order condition is not implemented by \mathcal{J}, but its milder version is: $\pi_{R}(\mathcal{A}) \subseteq \mathcal{J} \pi_{L}(\mathcal{A}) \mathcal{J}^{-1}$.

CP violation and reality of the spectral triple

- The usual 0 th order condition is not implemented by \mathcal{J}, but its milder version is: $\pi_{R}(\mathcal{A}) \subseteq \mathcal{J} \pi_{L}(\mathcal{A}) \mathcal{J}^{-1}$.
- The presence of the real structure implies the reality of M_{l} and M_{q}.

CP violation and reality of the spectral triple

■ The usual 0 th order condition is not implemented by \mathcal{J}, but its milder version is: $\pi_{R}(\mathcal{A}) \subseteq \mathcal{J} \pi_{L}(\mathcal{A}) \mathcal{J}^{-1}$.

- The presence of the real structure implies the reality of M_{l} and M_{q}.

■ One generation: fermion masses are real.

CP violation and reality of the spectral triple

- The usual 0 th order condition is not implemented by \mathcal{J}, but its milder version is: $\pi_{R}(\mathcal{A}) \subseteq \mathcal{J} \pi_{L}(\mathcal{A}) \mathcal{J}^{-1}$.
- The presence of the real structure implies the reality of M_{l} and M_{q}.

■ One generation: fermion masses are real.

- Three generations: both the Wolfenstein parameter $\bar{\eta}$ and the CP-violating phase $\delta_{C P}^{\nu}$ have to vanish.

CP violation and reality of the spectral triple

- The usual 0 th order condition is not implemented by \mathcal{J}, but its milder version is: $\pi_{R}(\mathcal{A}) \subseteq \mathcal{J} \pi_{L}(\mathcal{A}) \mathcal{J}^{-1}$.
- The presence of the real structure implies the reality of M_{l} and M_{q}.

■ One generation: fermion masses are real.

- Three generations: both the Wolfenstein parameter $\bar{\eta}$ and the CP-violating phase $\delta_{C P}^{\nu}$ have to vanish.

■ CP-violation \Leftrightarrow shadow of the \mathcal{J}-symmetry violation in the non-doubled spectral triple.

Relation with twisted spectral triples

- $\widetilde{\mathcal{D}_{S M}}$ satisfies the order one condition,

■ $\mathcal{D}_{S M}$ satisfies its twisted version:

$$
\left[\left[\mathcal{D}_{S M}, \pi_{L}(a)\right]_{\beta}, \pi_{R}(b)\right]_{\beta}=0
$$

where $[x, y]_{\beta}=x y-\beta y \beta^{-1} x$.

The next goal: spectral action

(1) Describe gauge transformations
(2) Find fluctuated Dirac operator
(3) Compute the spectral action

Gauge transformations

- $U_{L R}:=\pi_{L}(U) \pi_{R}(U)$ for $U=\left(u_{1}, u_{2}, u_{3}\right) \in \mathcal{U}(\mathcal{A})$.
- They form a group $(U(1) \times S U(2) \times U(3)) /(\mathbb{Z} / 2 \mathbb{Z})$.

Gauge transformations

- $U_{L R}:=\pi_{L}(U) \pi_{R}(U)$ for $U=\left(u_{1}, u_{2}, u_{3}\right) \in \mathcal{U}(\mathcal{A})$.
- They form a group $(U(1) \times S U(2) \times U(3)) /(\mathbb{Z} / 2 \mathbb{Z})$.
- To have $S U(3)$ rather than $U(3)$ one could impose unimodularity condition.

Gauge transformations

- $U_{L R}:=\pi_{L}(U) \pi_{R}(U)$ for $U=\left(u_{1}, u_{2}, u_{3}\right) \in \mathcal{U}(\mathcal{A})$.
- They form a group $(U(1) \times S U(2) \times U(3)) /(\mathbb{Z} / 2 \mathbb{Z})$.
- To have $S U(3)$ rather than $U(3)$ one could impose unimodularity condition.
- The left action is already unimodular.
- The unimodularity for the right action could be be imposed either on each fundamental component or in the full representation.

Unimodularity

■ In the first case: $u_{1} \operatorname{det} u_{3}=1$ and the gauge group of the Standard Model $(U(1) \times S U(2) \times S U(3)) /(\mathbb{Z} / 6 \mathbb{Z})$

- In the second case: $\left(u_{1} \operatorname{det} u_{3}\right)^{12}=1$ and the group differs by a finite factor.

Fluctuated Dirac operator

- $\widetilde{\mathcal{D}_{S M}}{ }^{\omega}=\widetilde{\mathcal{D}_{S M}}+\omega$ with

$$
\begin{aligned}
\omega & =A_{\mu} e_{11} \otimes \sigma^{\mu} \otimes\left(1_{4}-e_{11}\right)-2 A_{\mu} e_{22} \otimes \sigma^{\mu} \otimes e_{11} \\
& -A_{\mu} e_{22} \otimes \sigma^{\mu} \otimes\left(1_{4}-e_{11}\right)-A_{\mu}\left(e_{33}+e_{44}\right) \otimes \tilde{\sigma}^{\mu} \otimes e_{11} \\
& +\left(\begin{array}{ll}
0_{2} & \\
& W_{\mu}
\end{array}\right) \otimes \widetilde{\sigma}^{\mu} \otimes 1_{4}+\left(\begin{array}{ll}
1_{2} & \\
& \\
& 0_{2}
\end{array}\right) \otimes \sigma^{\mu} \otimes\left(\begin{array}{ll}
0_{1} & \\
& G_{\mu}
\end{array}\right) \\
& +\left(\begin{array}{ll}
0_{2} & \\
& \\
& 1_{2}
\end{array}\right) \otimes \widetilde{\sigma}^{\mu} \otimes\left(\begin{array}{ll}
0_{1} & \\
& G_{\mu}
\end{array}\right)+\left(\begin{array}{cc}
& M_{l} \Phi \\
\Phi^{\dagger} M_{l}^{\dagger}
\end{array}\right) \otimes 1_{2} \otimes e_{11} \\
& +\left(\begin{array}{cc}
& M_{q} \Phi \\
\Phi^{\dagger} M_{q}^{\dagger} &
\end{array}\right) \otimes 1_{2} \otimes\left(1_{4}-e_{11}\right) .
\end{aligned}
$$

Physical parametrization (for one generation)

- Since $\Phi \in \mathbb{H}$ we can write $\Phi=\left(\begin{array}{cc}\phi_{1} & \phi_{2} \\ -\overline{\phi_{2}} & \overline{\phi_{1}}\end{array}\right)$.

■ Define $\Phi_{x}:=M_{x}\left(1_{2}+\Phi\right)$, for $x=I, q$.

- The Higgs dublet $H:=\binom{1+\phi_{1}}{\phi_{2}}$

Simplified models

We consider two simplified versions of the full model:

- Static and spatial model,

■ Wick rotated model.

Static and spatial model

We consider time-independent and spatial part of the Dirac operator.

$$
\begin{aligned}
\widetilde{\mathcal{D}_{L}} & =i\left(\begin{array}{ll}
1_{2} & \\
& -1_{2}
\end{array}\right) \otimes \sigma^{j} \partial_{j}+\left(\begin{array}{ll}
& \Phi_{/} \\
\Phi_{l}^{\dagger} &
\end{array}\right) \otimes 1_{2} \\
& +A_{j}\left(\begin{array}{ll}
\sigma^{3}-1_{2} & \\
& \\
& 1_{2}
\end{array}\right) \otimes \sigma^{j}-\left(\begin{array}{ll}
0_{2} & \\
& W_{j}
\end{array}\right) \otimes \sigma^{j} . \\
\widetilde{\mathcal{D}_{Q}}= & \left(\begin{array}{ll}
1_{2} & \\
& -1_{2}
\end{array}\right) \otimes \sigma^{j} \partial_{j} \otimes 1_{3}+\left(\begin{array}{ll}
& \Phi_{q} \\
\Phi_{q}^{\dagger}
\end{array}\right) \otimes 1_{2} \otimes 1_{3} \\
& +A_{j}\left(\begin{array}{ll}
\sigma^{3}+\frac{1}{3} 1_{2} & \\
& -\left(\begin{array}{ll}
0_{2} & \\
& W_{j}
\end{array}\right) \otimes \sigma^{j} \otimes 1_{3}+\left(\begin{array}{ll}
1_{2} & \\
& -1_{2}
\end{array}\right) \otimes \sigma^{j}
\end{array}\right) \otimes \sigma^{j} \otimes G_{j} .
\end{aligned}
$$

Static and spatial model

- The physical values of hypercharges are reproduced (in quark sector: because of the unimodularity condition).

Static and spatial model

- The physical values of hypercharges are reproduced (in quark sector: because of the unimodularity condition).
- Gilkey-Seeley-DeWitt coefficients for three generations:

$$
a_{2}=-\frac{1}{4 \pi^{2}} a \int d^{4} x|H|^{2}
$$

$a_{4}=\frac{1}{8 \pi^{2}} \int d^{4} x\left[b|H|^{4}+a \operatorname{Tr}\left|D_{j} H\right|^{2}+\frac{20}{3} F^{2}+2 \operatorname{Tr} W^{2}+2 \operatorname{Tr} G^{2}\right]$, where

$$
\begin{aligned}
a & =\operatorname{Tr}\left(\Upsilon_{\nu}^{\dagger} \Upsilon_{\nu}\right)+\operatorname{Tr}\left(\Upsilon_{e}^{\dagger} \Upsilon_{e}\right)+3 \operatorname{Tr}\left(\Upsilon_{u}^{\dagger} \Upsilon_{u}\right)+3 \operatorname{Tr}\left(\Upsilon_{d}^{\dagger} \Upsilon_{d}\right) \\
b & =\operatorname{Tr}\left(\Upsilon_{\nu}^{\dagger} \Upsilon_{\nu}\right)^{2}+\operatorname{Tr}\left(\Upsilon_{e}^{\dagger} \Upsilon_{e}\right)^{2}+3 \operatorname{Tr}\left(\Upsilon_{u}^{\dagger} \Upsilon_{u}\right)^{2}+3 \operatorname{Tr}\left(\Upsilon_{d}^{\dagger} \Upsilon_{d}\right)^{2}
\end{aligned}
$$

Static and spatial model

■ Effective Lagrangian: $\mathcal{L}=\mathcal{L}_{\text {Higgs }}+\mathcal{L}_{\text {gauge }}$, where

$$
\begin{gathered}
\mathcal{L}_{\text {Higgs }}=\frac{b f(0)}{2 \pi^{2}}|H|^{4}-\frac{2 f_{2} \Lambda^{2} a}{\pi^{2}}|H|^{2}+\frac{a f(0)}{2 \pi^{2}} \operatorname{Tr}\left|D_{j} H\right|^{2} \\
\mathcal{L}_{\text {gauge }}=\frac{f(0)}{\pi^{2}}\left(\frac{10}{3} F^{2}+\operatorname{Tr} W^{2}+\operatorname{Tr} G^{2}\right)
\end{gathered}
$$

- This result is consistent with taking the static part of the Lorentzian Lagrangian for the Standard Model.
- All the relations between the coefficients of the model are exactly the same as in the usual almost-commutative Euclidean formulation. Therefore, the measurable quantities will have the same values.

Wick rotated model - leptonic sector

We take the Lorentzian Dirac operator:

$$
\begin{aligned}
\mathcal{D}_{L} & =i\left(\begin{array}{ll}
& 1_{2} \otimes \widetilde{\sigma}^{\mu} \\
1_{2} \otimes \sigma^{\mu} &
\end{array}\right) \partial_{\mu}+A_{\mu}\left(\begin{array}{ll}
& -1_{2} \otimes \widetilde{\sigma}^{\mu} \\
\left(\sigma^{3}-1_{2}\right) \otimes \sigma^{\mu} &
\end{array}\right. \\
& +\left(\begin{array}{ll}
& W_{\mu} \otimes \widetilde{\sigma}^{\mu} \\
0_{4} &
\end{array}\right)+\left(\begin{array}{ll}
\Phi_{l}^{\dagger} & \\
& \Phi_{l}
\end{array}\right) \otimes 1_{2} .
\end{aligned}
$$

and Wick rotate it $\left(\sigma^{j} \rightarrow i \sigma^{j}\right)$:

$$
\begin{aligned}
\mathcal{D}_{L, w}= & i\left(\begin{array}{ll}
1_{2} \\
1_{2} &
\end{array}\right) \otimes 1_{2} \partial_{0}+i\left(\begin{array}{ll}
i 1_{2} & -i 1_{2}
\end{array}\right) \otimes \sigma^{j} \partial_{j} \\
& +A_{0}\left(\begin{array}{ll}
& \\
\left(\sigma^{3}-1_{2}\right)
\end{array}\right) \otimes 1_{2}+A_{j}\left(\begin{array}{ll}
i\left(\sigma^{3}-1_{2}\right) &
\end{array}\right) \otimes \sigma^{j} \\
& +\left(\begin{array}{ll}
W_{0} \\
0_{2} &
\end{array}\right) \otimes 1_{2}-\left(\begin{array}{ll}
i W_{j} \\
0_{2} &
\end{array}\right) \otimes \sigma^{j}+\left(\begin{array}{ll}
\Phi_{l}^{\dagger} & \\
& \Phi_{l}
\end{array}\right) \otimes 1_{2}
\end{aligned}
$$

Wick rotated model: results

■ We repeat this procedure for the quark sector.

- Next, we compute $\mathcal{D}_{w}^{\dagger} \mathcal{D}_{w}$ for the full Wick rotated Dirac operator.

■ The Gilkey-Seeley-DeWitt coefficients:

$$
\begin{gathered}
a_{2}=\frac{3}{4 \pi^{2}} a \int d^{4} x|H|^{2}, \\
a_{4}=\frac{1}{8 \pi^{2}} \int d^{4} x\left[b|H|^{4}-a \operatorname{Tr}\left|D_{\mu}\right|^{2}+\frac{20}{3} F^{2}+2 \operatorname{Tr}\left(W^{2}\right)+2 \operatorname{Tr}\left(G^{2}\right)\right. \\
\left.+12 \varepsilon^{j k l} F_{j k} F_{0 I}-6 \varepsilon^{j k l} \operatorname{Tr}\left(W_{j k} W_{0 I}\right)\right]
\end{gathered}
$$

Wick rotated model: results

- The resulting Euclidean action reads:

$$
\begin{gathered}
\mathcal{L}_{\text {gauge }}=\frac{f(0)}{\pi^{2}}\left(\frac{10}{3} F^{2}+\operatorname{Tr}\left(W^{2}\right)+\operatorname{Tr}\left(G^{2}\right)\right. \\
\left.+6 \varepsilon^{j k l} F_{j k} F_{0 I}-3 \varepsilon^{j k l} \operatorname{Tr}\left(W_{j k} W_{0 \prime}\right)\right), \\
\mathcal{L}_{H}=\frac{b f(0)}{2 \pi^{2}}|H|^{4}+\frac{6 f_{2} \Lambda^{2}}{\pi^{2}} a|H|^{2}-\frac{a f(0)}{2 \pi^{2}} \operatorname{Tr}\left|D_{\mu} H\right|^{2}
\end{gathered}
$$

Wick rotated model: results

- The resulting Euclidean action reads:

$$
\begin{gathered}
\mathcal{L}_{\text {gauge }}=\frac{f(0)}{\pi^{2}}\left(\frac{10}{3} F^{2}+\operatorname{Tr}\left(W^{2}\right)+\operatorname{Tr}\left(G^{2}\right)\right. \\
\left.+6 \varepsilon^{j k l} F_{j k} F_{0 \prime}-3 \varepsilon^{j k l} \operatorname{Tr}\left(W_{j k} W_{0 \prime}\right)\right), \\
\mathcal{L}_{H}=\frac{b f(0)}{2 \pi^{2}}|H|^{4}+\frac{6 f_{2} \Lambda^{2}}{\pi^{2}} a|H|^{2}-\frac{a f(0)}{2 \pi^{2}} \operatorname{Tr}\left|D_{\mu} H\right|^{2}
\end{gathered}
$$

- Spectral action reproduces the action of the Lorentzian Standard Model with an additional electroweak " θ-term".

Wick rotated model: results

- The resulting Euclidean action reads:

$$
\begin{gathered}
\mathcal{L}_{\text {gauge }}=\frac{f(0)}{\pi^{2}}\left(\frac{10}{3} F^{2}+\operatorname{Tr}\left(W^{2}\right)+\operatorname{Tr}\left(G^{2}\right)\right. \\
\left.+6 \varepsilon^{j k l} F_{j k} F_{0 \prime}-3 \varepsilon^{j k l} \operatorname{Tr}\left(W_{j k} W_{0 \prime}\right)\right), \\
\mathcal{L}_{H}=\frac{b f(0)}{2 \pi^{2}}|H|^{4}+\frac{6 f_{2} \Lambda^{2}}{\pi^{2}} a|H|^{2}-\frac{a f(0)}{2 \pi^{2}} \operatorname{Tr}\left|D_{\mu} H\right|^{2}
\end{gathered}
$$

- Spectral action reproduces the action of the Lorentzian Standard Model with an additional electroweak " θ-term".
- Potentially different coefficients do not finally affect the numerical values of the measurable parameters.

Summary

■ No fermion doubling.

- No $S U(3)$ breaking.
- Order-one condition holds.
- Lack of real structure $\rightarrow \mathrm{CP}$ violation.

■ Spectral triple obeys the Morita condition of spin_{c} geometry.
■ The potentially interesting topological terms appears.

Thank you for your attention!

