Horizon Europe Weeks meeting on

Noncommutative Geometry and Physics: Quantum Spacetimes
29.11-1.12 2021, Wieliczka (Kraków)

The Levi-Civita connection in noncommutative Riemannian geometry: braided symmetric algebras

Paolo Aschieri
Università del Piemonte Orientale, Alessandria, Italy
and INFN, Torino

Plan: present a canonical construction of Noncommutative Riemannian Geometry, including existence and uniqueness of the Levi-Civita connection, on a wide class of noncommutative algebras (e.g. algebras of coordinate functions on noncommutative manifolds).
[P.A. e-Print: 2006.02761]

Data:

- (H, R) triangular Hopf algebra, or quantun group
(a subalgebra of the UEA of infinitesimal quantum diffeomorphisms on the NC manifold).
We use the notation $R^{-1}=\bar{R}^{\alpha} \otimes \bar{R}_{\alpha} \in H \otimes H$
Triangularity: $R^{-1}=R_{21}$.
- A an H-module algebra
A carries a representation of (is symmetric under) the quantum group H.
- The product in A is braided commutative:

$$
a b=\left(\bar{R}^{\alpha} \triangleright b\right)\left(\bar{R}_{\alpha} \triangleright b\right)
$$

Easiest examples of NC spacetimes are

(I)	$\left[x^{i}, x^{j}\right]=i \theta^{i j}$	canonical
$($ II $)$	$\left[x^{i}, x^{j}\right]=i f_{k}^{i j} x^{k}$	Lie algebra
$($ III $)$	$x^{i} x^{j}-q x^{j} x^{i}=0$	quantum plane

(I) and (III) have a triangular Hopf algebra symmetry (with $H=\mathcal{O}\left(T^{d}\right)$). Some examples from (II), e.g. $x^{0} x^{i}-x^{i} x^{0}=\frac{i}{\kappa} x^{i}, x^{i} x^{j}-x^{j} x^{i}=0$, that is κ-Minkowski spacetime, have a triangular Hopf algebra symmetry.

Further examples:

- All NC algebras arising as Drinfeld twist (2-cocycle) deformations of commutative algebras are of this kind: e.g. NC-torus; Connes-Landi spheres, Connes-Dubois-Violette NC manifolds....
- Any cotriangular Hopf algebra, for example Sweedler Hopf algebra H_{4}.

The present work genralizes previous studies.

For the Moyal-Weyl NC plane, \mathbb{R}_{θ}^{n}, with relations $\left[x^{\mu}, x^{\nu}\right]=i \theta^{\mu \nu}$ the partial derivatives ∂_{μ} are derivations of the algebra. Easy differential calculus. Levi-Civita connection, Ricci tensor and scalar curvature were studied in [Wess et al. 2005].

The partial derivatives ∂_{μ} are derivations also of the NC torus algebra, hence the same expression for the Levi-Civita connection applies also to T_{θ}^{n}, cf. [Rosenberg 2013].

Further cases have been considered in [Arnlind et al. 2017], here too relying on the existence of a "big enough" set of derivations. See also [Bhowmick, Goswami, Landi 2020] and [P.A. Castellani 2010].

In the present study there is no assumption on the existence of derivations of the algebra, and no use of special coordinates. Indeed we use a global, coordinate independent, approach.

We retrive the results in [Wess et al. 2005] by considering coordinates x^{μ} and partial derivatives ∂_{μ}.

We complement the results in [Wess et al. 2006] where we used an arbitrary twist but we did not have an explicit formula for the Levi-Civita connection.

We consider a categorical approach that clarifies the requirements for the construction of NC Riemmanian geometry.

Triangular Hopf algebras and representations
(H, \mathcal{R}) a triangular Hopf algebra over a field $\mathbb{k}(\mathbb{C}$ or $\mathbb{C}[[\hbar]]$ power series in $\hbar)$
${ }^{H} \mathscr{M}$ category of left H-modules, objects in ${ }^{H} \mathscr{M}$ are H-modules V.
H is a bialgebra $\Rightarrow V \otimes W$ is still an H-module (${ }^{H} \mathscr{M}$ is a monoidal category).
(H, R) triangular $\Rightarrow V \otimes W$ isomorphic to $W \otimes V$:

$$
\begin{equation*}
\tau_{V, W}: V \otimes W \longrightarrow W \otimes V, \quad v \otimes w \longmapsto\left(\bar{R}^{\alpha} \triangleright w\right) \otimes\left(\bar{R}_{\alpha} \triangleright v\right) \tag{1}
\end{equation*}
$$

where $\mathcal{R}^{-1}=\bar{R}^{\alpha} \otimes \bar{R}_{\alpha}$. The category ${ }^{H} \mathscr{M}$ is braided symmetric $\tau^{2}=i d$.
H is a Hopf algebra $\Rightarrow \operatorname{hom}_{\mathbb{k}}(V, W)$ is in ${ }^{H} \mathscr{M}$; for all $L: V \rightarrow W$ and $h \in H$,

$$
\begin{equation*}
(h \triangleright L)(v)=h_{(1)} \triangleright\left(L\left(S\left(h_{(2)}\right) \triangleright v\right)\right), \tag{2}
\end{equation*}
$$

${ }^{H} \mathscr{M}$ is a braided closed monoidal category
Another H-action on linear maps $L: V \rightarrow W$

$$
\left(h \triangleright^{c o p} \tilde{L}\right)(v):=h_{(2)} \triangleright\left(\tilde{L}\left(S^{-1}\left(h_{(1)}\right) \triangleright v\right)\right)
$$

We have the H-module ${ }_{\mathbb{k}}$ hom (V, \cdot).

Summary:
$L \in \operatorname{hom}_{\mathbb{k}}(V, W), \tilde{L} \in \operatorname{hom}_{\mathbb{k}}(V, W)$.
(${ }^{H} \mathscr{M}, \otimes$, hom $_{k}$) and (${ }^{H} \mathscr{M}, \otimes,{ }_{k}$ hom) related via the braiding.

Tensor products

[Majid 1994]
Given linear maps $L \in \operatorname{hom}_{\mathbb{k}}(V, W), L^{\prime} \in \operatorname{hom}_{\mathbb{k}}\left(V^{\prime}, W^{\prime}\right)$

$$
L \otimes_{\mathcal{R}} L^{\prime}:=\left(L \circ \bar{R}^{\alpha} \triangleright\right) \otimes\left(\bar{R}_{\alpha} \triangleright L^{\prime}\right) \in \operatorname{hom}_{\mathbb{k}}(V \otimes W, \tilde{V} \otimes \widetilde{W}),
$$

In particular $L \otimes_{\mathcal{R}}$ id $=L \otimes \mathrm{id}, \quad$ id $\otimes_{\mathcal{R}} L^{\prime}=\bar{R}^{\alpha} \triangleright \otimes \bar{R}_{\alpha} \triangleright L^{\prime}$
Given linear maps $\tilde{L} \in{ }_{k} \operatorname{hom}(V, W), \tilde{L}^{\prime} \in{ }_{\mathbb{k}} \operatorname{hom}\left(V^{\prime}, W^{\prime}\right)$

$$
\tilde{L} \tilde{\otimes}_{\mathcal{R}} \tilde{L}^{\prime}:=\left(\bar{R}^{\alpha} \triangleright^{c o p} \tilde{L}\right) \otimes\left(\tilde{L}^{\prime} \circ \bar{R}_{\alpha} \triangleright\right) \in_{\mathbb{k}} \operatorname{hom}(V \otimes W, \tilde{V} \otimes \widetilde{W}),
$$

Consider now an H-module algebra A that is braided commutative:

$$
a b=\left(\bar{R}^{\alpha} \triangleright b\right)\left(\bar{R}_{\alpha} \triangleright a\right)
$$

Category ${ }_{A}^{H} \mathscr{M}_{A}^{\text {sym }}$ of H-modules A-bimodules that are braided symmetric:

$$
\text { for all } v \in V, \quad a v=\left(\bar{R}^{\alpha} \triangleright v\right)\left(\bar{R}_{\alpha} \triangleright a\right)
$$

$\left({ }_{A}^{H} \mathscr{M}_{A}^{\text {sym }}, \otimes_{A}\right)$ is a braided monoidal category.
Moreover, as for ${ }^{H} \mathscr{M}$, we have two closed monoidal structures

$$
\left({ }_{A}^{H} \mathscr{M}_{A}^{\mathrm{sym}}, \otimes_{A}, \operatorname{hom}_{A}\right),\left({ }_{A}^{H} \mathscr{M}_{A}^{\mathrm{sym}}, \otimes_{A},{ }_{A} \mathrm{hom}\right) .
$$

hom $_{A}(V, W)$ module of right A-linear maps $L(v a)=L(v) a$.
${ }_{A}$ hom (V, W) module of left A-linear maps: $\tilde{L}(a v)=\tilde{a} \tilde{L}(v)$.
Classical example: A-bimodule of 1 -forms or of vector fields on a manifold.

- We further consider only finitely generated and projective modules, hence every A-bimodule V has a dual A-bimodule ${ }^{*} V={ }_{A} \operatorname{hom}(V, A)$.
We thus work in a rigid braided symmetric monoidal category, i.e. compact closed category.

Differential and Cartan Calculus

[T. Weber 2019]
(twist deformation case in
[P.A, Dimitrievich, Meyer, Wess '06])
The module $\operatorname{Der}(A)$ in ${ }_{A}^{H} \mathscr{M}_{A}^{\text {sym }}$ of braided derivations.
$u \in \operatorname{Der}(A) \subset \operatorname{hom}_{\mathbb{k}}(A, A)$ with braided Leibniz rule

$$
u(a b)=u(a) b+\left(\bar{R}^{\alpha} \triangleright a\right)\left(\bar{R}_{\alpha} \triangleright u\right)(b) .
$$

$h \triangleright u$ and $a u(b):=a u(b)$ are again braided derivations.
The braided commutator

$$
[,]: \operatorname{Der}(A) \otimes \operatorname{Der}(A) \rightarrow \operatorname{Der}(A), u \otimes v \mapsto u v-\left(\bar{R}^{\alpha} \triangleright v\right)\left(\bar{R}_{\alpha} \triangleright u\right)
$$

structures $\operatorname{Der}(A)$ as a braided Lie algebra,

$$
\begin{gathered}
{[u, v]=-\left[\bar{R}^{\alpha} \triangleright v, \bar{R}_{\alpha} \triangleright u\right]} \\
{[u,[v, z]]=[[u, v], z]+\left[\bar{R}^{\alpha} \triangleright v,\left[\bar{R}_{\alpha} \triangleright u, z\right]\right] .}
\end{gathered}
$$

Braided derivations based differential calculus

Dual module of 1 -forms

$$
\Omega(A):={ }_{A} \operatorname{hom}(\operatorname{Der}(A), A)
$$

(left A-linear maps). Pairing:

$$
u \otimes \omega \mapsto\langle u, \omega\rangle
$$

Exterior derivative

$$
\langle u, \mathrm{~d} a\rangle=u(a)
$$

Contraction operator

$$
\begin{equation*}
\mathfrak{i}_{u}(\omega)=\langle u, \omega\rangle \tag{3}
\end{equation*}
$$

Generalize the pairing to the tensor algebra
$\left\langle\nu \otimes_{A} u, \omega_{1} \otimes_{A} \omega_{2} \ldots \omega_{p} \otimes_{A} v_{1} \otimes_{A} \ldots v_{q}\right\rangle=\left\langle\nu,\left\langle u_{1}, \omega_{1}\right\rangle \omega_{2} \ldots \otimes_{A} v_{1} \otimes_{A} v_{q}\right\rangle$.
Exterior product

$$
\begin{equation*}
\omega \wedge \omega^{\prime}:=\omega \otimes_{A} \omega^{\prime}-\bar{R}^{\alpha} \triangleright \omega^{\prime} \otimes_{A} \bar{R}_{\alpha} \triangleright \omega \tag{4}
\end{equation*}
$$

is braided antisymmetric.

Lie derivative

$$
\mathscr{L}_{u}(a):=u(a), \mathscr{L}_{u}(v):=[u, v]
$$

\mathscr{L} is H-equivariant. Extended to the tensor algebra via:

$$
\mathscr{L}_{u}\left(\nu \otimes_{A} \nu^{\prime}\right)=\mathscr{L}_{u}(\nu) \otimes_{A} \nu^{\prime}+\bar{R}^{\alpha} \triangleright \nu \otimes_{A} \mathscr{L}_{\bar{R}_{\alpha} \triangleright u}\left(\nu^{\prime}\right)
$$

and on contravariant tensor fields is canonically defined by duality,

$$
\begin{equation*}
\mathscr{L}_{u}\langle\nu, \theta\rangle=\left\langle\mathscr{L}_{u} \nu, \theta\right\rangle+\left\langle\bar{R}^{\alpha} \triangleright \nu, \mathscr{L}_{\bar{R}_{\alpha} \triangleright u} \theta\right\rangle \tag{5}
\end{equation*}
$$

Theorem (Braided Cartan calculus) [T. Weber]

$$
\begin{array}{rlrl}
{\left[\mathscr{L}_{u}, \mathscr{L}_{v}\right]} & =\mathscr{L}_{[u, v]_{\mathcal{R}}}, & {\left[\mathrm{i}_{u}, \mathrm{i}_{v}\right]=0} \\
{\left[\mathscr{L}_{u}, \mathrm{i}_{v}\right]} & =\mathrm{i}_{[u, v]_{\mathcal{R}}}, & & {\left[\mathrm{i}_{u}, \mathrm{~d}\right]=\mathscr{L}_{u},} \\
{\left[\mathscr{L}_{u}, \mathrm{~d}\right]} & =0, & & {[\mathrm{~d}, \mathrm{~d}]=0}
\end{array}
$$

where $\left[L, L^{\prime}\right]=L \circ L^{\prime}-(-1)^{|L|\left|L^{\prime}\right|} \bar{R}^{\alpha}\left(L^{\prime}\right) \circ \bar{R}_{\alpha}(L)$ is the graded braided commutator of \mathbb{k}-linear maps L, L^{\prime} on $\Omega^{\bullet}(A)$ of degree $|L|$ and $\left|L^{\prime}\right|$.

Connections and Cartan equation

Def. A right connection on a module Γ in ${ }_{A}^{H} \mathscr{M}_{A}^{\text {sym }}$ is a \mathbb{k}-linear map

$$
\begin{equation*}
\nabla: \Gamma \rightarrow \Gamma \otimes_{A} \Omega \tag{6}
\end{equation*}
$$

which satisfies the Leibniz rule, for all $s \in \Gamma, a \in A$,

$$
\begin{equation*}
\nabla(s a)=\nabla(s) a+s \otimes_{A} \mathrm{~d} a . \tag{7}
\end{equation*}
$$

A left connection on Γ is a \mathbb{k}-linear map

$$
\begin{equation*}
\nabla: \Gamma \rightarrow \Omega \otimes_{A} \Gamma \tag{8}
\end{equation*}
$$

which satisfies the Leibniz rule,

$$
\begin{equation*}
\nabla(a s)=\mathrm{d} a \otimes_{A} s+a \nabla(s) \tag{9}
\end{equation*}
$$

$\operatorname{Con}_{A}(\Gamma)=\{$ right connections $\},{ }_{A} \operatorname{Con}_{A}(\Gamma)=\{$ left connections $\}$

Since Γ is a braided commutative A-bimodule a right connection ∇ on Γ is also a braided left connection [P.A, Schenkel '14] (similarly a left connection ∇ on Γ is also a braided right connection):

$$
\nabla(a s)=\left(\bar{R}^{\alpha} \triangleright a\right)\left(\bar{R}_{\alpha} \triangleright \nabla\right)(s)+\bar{R}^{\alpha} \triangleright s \otimes_{A} \bar{R}_{\alpha} \triangleright \mathrm{d} a
$$

If ∇ is H-equivariant we recover the notion of connection on central A-bimodules studied in [Dubois-Violette, Michor].

Given connections $\nabla \in \operatorname{Con}_{A}(\Gamma), \hat{\nabla} \in \operatorname{Con}_{A}(\hat{\Gamma})$ on the modules Γ and $\hat{\Gamma}$ in ${ }_{A}^{H} \mathscr{M}_{A}^{\text {sym }}$ we consider the connection $\nabla \oplus \hat{\nabla} \in{ }_{A} \operatorname{Con}\left(\Gamma \otimes_{A} \hat{\Gamma}\right)$ well defined by

$$
\begin{aligned}
\nabla \oplus \hat{\nabla}: \Gamma \otimes_{A} \hat{\Gamma} & \longrightarrow \Gamma \otimes_{A} \hat{\Gamma} \otimes_{A} \Omega(A) \\
s \otimes_{A} \hat{s} & \longmapsto \tau_{23} \circ\left(\nabla(s) \otimes_{A} \hat{s}\right)+\left(\bar{R}^{\alpha} \triangleright s\right) \otimes_{A}\left(\bar{R}_{\beta} \triangleright \hat{\nabla}\right)(\widehat{s})
\end{aligned}
$$

where we have used the braiding isomorphism $\tau_{23}: \Gamma \otimes_{A} \Omega(A) \otimes_{A} \hat{\Gamma} \rightarrow$ $\Gamma \otimes_{A} \hat{\Gamma} \otimes \Omega(A)$.
(a similar formula holds for left connections).

Extend ∇ to

$$
\mathrm{d}_{\nabla}: \Gamma \otimes_{A} \Omega^{\bullet}(A) \longrightarrow \Gamma \otimes_{A} \Omega^{\bullet+1}(A),
$$

by

$$
\mathrm{d}_{\nabla}\left(s \otimes_{A} \theta\right)=\nabla(s) \otimes_{A} \theta+s \otimes_{A} \mathrm{~d} \theta,
$$

d_{∇} satisfies the unbraided Leibniz rule,

$$
\mathrm{d}_{\nabla}(\varsigma \wedge \vartheta)=\mathrm{d}_{\nabla} \varsigma \wedge \vartheta+(-1)^{k} \varsigma \wedge \mathrm{~d} \vartheta
$$

Curvature

The curvature of $\nabla \in{ }_{A} \operatorname{Con}(\Gamma)$ is

$$
d_{\nabla}^{2}=d_{\nabla} \circ d_{\nabla} .
$$

It is a left $\Omega^{\bullet}(A)$-linear map,

$$
\mathrm{d}_{\nabla}^{2} \in \Omega_{\Omega^{\bullet}(A)}^{\operatorname{hom}\left(\Omega^{\bullet}(A) \otimes_{A} \Gamma, \Omega^{\bullet+2} \otimes_{A} \Gamma\right) . . .}
$$

Torsion

For $\Gamma=\Omega(A)$,

$$
\theta \mapsto(\mathrm{d}+\wedge \circ \nabla) \theta .
$$

All other expression of curvature and torsion are equivalent due to Cartan structure equations.

Dual connections \& Cartan structure equation for curvature and torsion

Let ∇ now denote the connection dual to ∇, i.e.

$$
\mathrm{d}\langle u, \theta\rangle=\left\langle\mathrm{d}_{\nabla} u, \theta\right\rangle+\left\langle u, \mathrm{~d}_{\nabla} \theta\right\rangle
$$

Then

$$
\begin{gathered}
\left\langle R_{\nabla}(u, v, z), \theta\right\rangle=\left\langle u \otimes_{A} v \otimes_{A} z, \mathrm{~d}_{\nabla}^{2} \theta\right\rangle \\
\left\langle T_{\nabla}(u, v), \theta\right\rangle=-\left\langle u \otimes_{A} v,(\mathrm{~d}+\wedge \circ \nabla) \theta\right\rangle
\end{gathered}
$$

Braided Riemaniann geometry

Braided-symmetric elements. Let $\mathrm{g} \in \Omega(A) \otimes_{A} \Omega(A)$.
Def. g is braided symmetric if $\tau(\mathrm{g})=\mathrm{g}$
Example: $\omega \otimes_{\star} \omega^{\prime}+\left(\bar{R}^{\alpha} \triangleright \omega^{\prime}\right) \otimes_{\star}\left(\bar{R}_{\alpha} \triangleright \omega\right)$ is braided symmetric.

Given $\mathrm{g} \in \Omega(A) \otimes_{A} \Omega(A)$ we write $\mathrm{g}=\mathrm{g}^{a} \otimes_{A} \mathrm{~g}_{a}$ and define

$$
\mathrm{g}^{b}: \mathfrak{X}(A) \rightarrow \Omega(A), \quad v \mapsto \mathrm{~g}^{b}(v)=\left\langle v, \mathrm{~g}^{a}\right\rangle \mathrm{g}_{a}
$$

Def. A pseudo-Riemannian metric on $\mathfrak{X} A$ in ${ }_{A}^{H} \mathscr{M}_{A}{ }^{\text {sym }}$ is a braided symmetric element $\mathrm{g} \in \Omega(A) \otimes_{A} \Omega(A)$, with g^{b} that is an isomorphism.

Let $\mathrm{g} \in \Omega(A) \otimes_{A} \Omega(A)$ be a pseudo-Riemannian metric. A connection $\nabla \in$ $\operatorname{Con}_{A}(\Omega(A))$ is metric compatible if it satisfies $\nabla(\mathrm{g})=0$. A connection $\nabla \in{ }_{A} \operatorname{Con}(\mathfrak{X}(A))$ is metric compatible if its dual $\nabla \in \operatorname{Con}_{A}(\Omega(A))$ is metric compatible. It follows

$$
\mathrm{d}\left\langle v \otimes_{A} z, \mathrm{~g}\right\rangle=\left\langle\nabla\left(v \otimes_{A} z\right), \mathrm{g}\right\rangle
$$

A Levi-Civita connection is a metric compatible and torsion free connection.

Existence and uniqueness of Levi-Civita connection is proven, similarly to the classical case, via a braided Koszul formula.

For all $u, v, z \in \operatorname{Der}(A)$,
(braiding omitted)

$$
\begin{aligned}
\mathscr{L}_{u}\left\langle v \otimes_{A} z, \mathrm{~g}\right\rangle & =\left\langle\nabla_{u}\left(v \otimes_{A} z\right), \mathrm{g}\right\rangle \\
& =\left\langle z \otimes_{A} \nabla_{v} u, \mathrm{~g}\right\rangle+\left\langle[u, v] \otimes_{A} z, \mathrm{~g}\right\rangle+\left\langle v \otimes_{A} \nabla_{u} z, \mathrm{~g}\right\rangle
\end{aligned}
$$

Summing $\mathscr{L}_{u}\left\langle v \otimes_{A} z, \mathrm{~g}\right\rangle-\mathscr{L}_{z}\left\langle u \otimes_{A} v, \mathrm{~g}\right\rangle+\mathscr{L}_{v}\left\langle z \otimes_{A} u, \mathrm{~g}\right\rangle$ (braiding omitted) we obtain

$$
\begin{aligned}
2\left\langle{ }^{\alpha} v \otimes_{A} \nabla_{\alpha} z, \mathrm{~g}\right\rangle= & \mathscr{L}_{u}\left\langle v \otimes_{A} z, \mathrm{~g}\right\rangle-\mathscr{L}_{\alpha_{v}}\left\langle\alpha_{\alpha} u \otimes_{A} z, \mathrm{~g}\right\rangle+\mathscr{L}_{\alpha \beta_{z}}\left\langle\alpha u \otimes_{A \beta} v, \mathrm{~g}\right\rangle \\
& -\left\langle[u, v] \otimes_{A} z, \mathrm{~g}\right\rangle+\left\langle u \otimes_{A}[v, z], \mathrm{g}\right\rangle+\left\langle\left[u,{ }^{\beta} z\right] \otimes_{A}{ }_{\beta} v, \mathrm{~g}\right\rangle .
\end{aligned}
$$

were ${ }^{\alpha} v:=\bar{R}^{\alpha} \triangleright v$ and $\alpha u:=\bar{R}_{\alpha} \triangleright u$. Now, since u, v, z are arbitrary, the pairing is nondegenerate and the metric is also nondegenerate, knowledge of the I.h.s. uniquely defines the Levi-Civita connection.

Conclusions

Existence and uniqueness of the Levi-Civita connection ∇ for arbitrary metric g (braided symmetric nondegenerate covariant 2-tensor g).

We have formulated in vacuo Einstein equations and defined Enistein NC manifolds.

Gauss-Bonnet?

Possible to relax the triangular Hopf algebra condition? See talk of Thomas.

