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Plan: present a canonical construction of Noncommutative Riemannian Ge-
ometry, including existence and uniqueness of the Levi-Civita connection, on a
wide class of noncommutative algebras (e.g. algebras of coordinate functions
on noncommutative manifolds). [P.A. e-Print: 2006.02761]

Data:

• (H,R) triangular Hopf algebra, or quantun group
(a subalgebra of the UEA of infinitesimal quantum diffeomorphisms on the NC manifold).

We use the notation R−1 = R̄α ⊗ R̄α ∈ H ⊗H

Triangularity: R−1 = R21.

• A an H-module algebra

A carries a representation of (is symmetric under) the quantum group H.

• The product in A is braided commutative:

ab = (R̄α . b)(R̄α . b) .
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Easiest examples of NC spacetimes are

(I) [xi, xj] = iθij canonical

(II) [xi, xj] = if
ij
kx
k Lie algebra

(III) xixj − qxjxi = 0 quantum plane

(I) and (III) have a triangular Hopf algebra symmetry (with H = O(T d)).
Some examples from (II), e.g. x0xi − xix0 = i

κx
i, xixj − xjxi = 0, that is

κ-Minkowski spacetime, have a triangular Hopf algebra symmetry.

Further examples:

- All NC algebras arising as Drinfeld twist (2-cocycle) deformations of com-
mutative algebras are of this kind: e.g. NC-torus; Connes-Landi spheres,
Connes–Dubois-Violette NC manifolds....

- Any cotriangular Hopf algebra, for example Sweedler Hopf algebra H4.
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The present work genralizes previous studies.

For the Moyal-Weyl NC plane, Rnθ , with relations [xµ, xν] = iθµν the partial
derivatives ∂µ are derivations of the algebra. Easy differential calculus.
Levi-Civita connection, Ricci tensor and scalar curvature were studied in [Wess
et al. 2005].

The partial derivatives ∂µ are derivations also of the NC torus algebra, hence
the same expression for the Levi-Civita connection applies also to Tnθ , cf.
[Rosenberg 2013].

Further cases have been considered in [Arnlind et al. 2017], here too relying
on the existence of a “big enough” set of derivations. See also [Bhowmick,
Goswami, Landi 2020] and [P.A. Castellani 2010].

In the present study there is no assumption on the existence of derivations of
the algebra, and no use of special coordinates. Indeed we use a global, coor-
dinate independent, approach.
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We retrive the results in [Wess et al. 2005] by considering coordinates xµ and
partial derivatives ∂µ.

We complement the results in [Wess et al. 2006] where we used an arbitrary
twist but we did not have an explicit formula for the Levi-Civita connection.

We consider a categorical approach that clarifies the requirements for the con-
struction of NC Riemmanian geometry.



Triangular Hopf algebras and representations
(H,R) a triangular Hopf algebra over a field k (C or C[[~]] power series in ~)

HM category of left H-modules, objects in HM are H-modules V .

H is a bialgebra⇒ V ⊗W is still an H-module (HM is a monoidal category).

(H,R) triangular⇒ V ⊗W isomorphic to W ⊗ V :

τV,W : V ⊗W −→W ⊗ V , v ⊗ w 7−→
(
R̄α . w

)
⊗
(
R̄α . v

)
(1)

where R−1 = R̄α ⊗ R̄α. The category HM is braided symmetric τ2 = id.

H is a Hopf algebra⇒ homk(V,W ) is in HM ; for all L : V →W and h ∈ H,

(h . L)(v) = h(1) . (L(S(h(2)) . v)) , (2)

HM is a braided closed monoidal category

Another H-action on linear maps L : V →W

(h .cop L̃)(v) := h(2) . (L̃(S−1(h(1)) . v))

We have the H-module khom(V, ·).
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Summary:
L ∈ homk(V,W ), L̃ ∈ homk(V,W ) .

(HM ,⊗,homk) and (HM ,⊗, khom) related via the braiding.

Tensor products [Majid 1994]
Given linear maps L ∈ homk(V,W ), L′ ∈ homk(V ′,W ′)

L⊗R L′ := (L ◦ R̄α. )⊗ (R̄α . L
′) ∈ homk(V ⊗W, Ṽ ⊗ W̃ ) ,

In particular L⊗R id = L⊗ id , id⊗R L′ = R̄α . ⊗ R̄α . L′

Given linear maps L̃ ∈ khom(V,W ), L̃′ ∈ khom(V ′,W ′)

L̃ ⊗̃R L̃′ := (R̄α .cop L̃)⊗ (L̃′ ◦ R̄α. ) ∈ khom(V ⊗W, Ṽ ⊗ W̃ ) ,

∗ ∗ ∗



Consider now an H-module algebra A that is braided commutative:

ab = (R̄α . b)(R̄α . a) .

Category HAM sym
A of H-modules A-bimodules that are braided symmetric:

for all v ∈ V , a v = (R̄α . v)(R̄α . a)

(HAM sym
A ,⊗A) is a braided monoidal category.

Moreover, as for HM , we have two closed monoidal structures

(HAMA
sym,⊗A,homA) , (HAMA

sym,⊗A,Ahom) .

homA(V,W ) module of right A-linear maps L(va) = L(v)a.

Ahom(V,W ) module of left A-linear maps: L̃(av) = ãL̃(v).

Classical example: A-bimodule of 1-forms or of vector fields on a manifold.

• We further consider only finitely generated and projective modules,
hence every A-bimodule V has a dual A-bimodule ∗V = Ahom(V,A).

We thus work in a rigid braided symmetric monoidal category, i.e. compact closed category.

5



Differential and Cartan Calculus [T. Weber 2019]
(twist deformation case in

[P.A, Dimitrievich, Meyer, Wess ’06])
The module Der(A) in H

AM sym
A of braided derivations.

u ∈ Der(A) ⊂ homk(A,A) with braided Leibniz rule

u(ab) = u(a)b+ (R̄α . a)(R̄α . u)(b) .

h . u and au(b) := a u(b) are again braided derivations.

The braided commutator

[ , ] : Der(A)⊗Der(A)→ Der(A) , u⊗ v 7→ uv − (R̄α . v)(R̄α . u)

structures Der(A) as a braided Lie algebra,

[u, v] = −[R̄α . v, R̄α . u]

[u, [v, z]] = [[u, v], z] + [R̄α . v, [R̄α . u, z]] .
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Braided derivations based differential calculus

Dual module of 1-forms

Ω(A) := Ahom(Der(A), A)

(left A-linear maps). Pairing:

u⊗ ω 7→ 〈u, ω〉

Exterior derivative

〈u,da〉 = u(a) ,

Contraction operator

iu(ω) = 〈u, ω〉 . (3)

Generalize the pairing to the tensor algebra

〈ν⊗Au, ω1⊗Aω2 . . . ωp⊗Av1⊗A . . . vq〉 = 〈ν , 〈u1, ω1〉 ω2 . . .⊗Av1⊗Avq〉 .

Exterior product

ω ∧ ω′ := ω ⊗A ω′ − R̄α . ω′ ⊗A R̄α . ω , (4)

is braided antisymmetric.
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Lie derivative

Lu(a) := u(a) , Lu(v) := [u, v] .

L is H-equivariant. Extended to the tensor algebra via:

Lu(ν ⊗A ν′) = Lu(ν)⊗A ν′+ R̄α . ν ⊗A LR̄α.u
(ν′)

and on contravariant tensor fields is canonically defined by duality,

Lu〈ν, θ〉 = 〈Luν, θ〉+ 〈R̄α . ν,LR̄α.u
θ〉 (5)

Theorem (Braided Cartan calculus) [T. Weber]

[Lu,Lv] = L[u,v]R
,

[Lu, iv] = i[u,v]R
,

[Lu,d] = 0 ,

[iu, iv] = 0 ,

[iu,d] = Lu,

[d,d] = 0 ,

where [L,L′] = L ◦ L′ − (−1)|L||L
′|R̄α(L′) ◦ R̄α(L) is the graded braided

commutator of k-linear maps L,L′ on Ω•(A) of degree |L| and |L′|.



Connections and Cartan equation

Def. A right connection on a module Γ in H
AMA

sym is a k-linear map

�

: Γ→ Γ⊗A Ω (6)

which satisfies the Leibniz rule, for all s ∈ Γ, a ∈ A,

�

(sa) =

�

(s)a+ s⊗A da . (7)

A left connection on Γ is a k-linear map
�

: Γ→ Ω⊗A Γ (8)

which satisfies the Leibniz rule,
�

(as) = da⊗A s+ a
�

(s) . (9)

ConA(Γ) = { right connections } , AConA(Γ) = { left connections }
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Since Γ is a braided commutative A-bimodule a right connection

�

on Γ is
also a braided left connection [P.A, Schenkel ’14] (similarly a left connection

�

on Γ is also a braided right connection):

�

(as) = (R̄α . a)(R̄α .

�

)(s) + R̄α . s⊗A R̄α . da(10)

If

�

isH-equivariant we recover the notion of connection on centralA-bimodules
studied in [Dubois-Violette, Michor].

Given connections
�

∈ ConA(Γ) ,
�̂
∈ ConA(Γ̂) on the modules Γ and Γ̂ in

H
AMA

sym we consider the connection

�

⊕ ̂ �∈ ACon(Γ⊗A Γ̂) well defined
by

�

⊕ ̂ �: Γ⊗A Γ̂ −→ Γ⊗A Γ̂⊗A Ω(A)

s⊗A ŝ 7−→ τ23 ◦ (

�

(s)⊗A ŝ) + (R̄α . s)⊗A (R̄β .
̂ �)(ŝ)

where we have used the braiding isomorphism τ23 : Γ ⊗A Ω(A) ⊗A Γ̂ →
Γ⊗A Γ̂⊗Ω(A).
(a similar formula holds for left connections).
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Extend

�

to

d �: Γ⊗A Ω•(A) −→ Γ⊗A Ω•+1(A) ,

by

d �(s⊗A θ) =

�

(s)⊗A θ + s⊗A dθ ,

d� satisfies the unbraided Leibniz rule,

d �(ς ∧ ϑ) = d �ς ∧ ϑ+ (−1)kς ∧ dϑ

Curvature

The curvature of
�
∈ ACon(Γ) is

d�
2

= d� ◦ d� .

It is a left Ω•(A)-linear map,

d�
2 ∈ Ω•(A)hom(Ω•(A)⊗A Γ,Ω•+2⊗A Γ) .
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Torsion

For Γ = Ω(A),

θ 7→ (d + ∧ ◦

�

)θ .

All other expression of curvature and torsion are equivalent due to Cartan
structure equations.

Dual connections & Cartan structure equation for curvature and torsion

Let

�

now denote the connection dual to
�

, i.e.

d〈u, θ〉 = 〈d�u, θ〉+ 〈u,d �θ〉 .

Then

〈R�(u, v, z), θ〉 = 〈u⊗A v ⊗A z,d �2θ〉

〈T �(u, v), θ〉 = −〈u⊗A v, (d + ∧ ◦

�

) θ〉
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Braided Riemaniann geometry

Braided-symmetric elements. Let g ∈ Ω(A)⊗A Ω(A).
Def. g is braided symmetric if τ(g) = g

Example: ω ⊗? ω′+ (R̄α . ω′)⊗? (R̄α . ω) is braided symmetric.

Given g ∈ Ω(A)⊗A Ω(A) we write g = ga ⊗A ga and define

g[ : X(A)→ Ω(A) , v 7→ g[(v) = 〈v, ga〉 ga

Def. A pseudo-Riemannian metric on XA in H
AMA

sym is a braided symmetric
element g ∈ Ω(A)⊗A Ω(A), with g[ that is an isomorphism.

Let g ∈ Ω(A) ⊗A Ω(A) be a pseudo-Riemannian metric. A connection

�

∈
ConA(Ω(A)) is metric compatible if it satisfies

�

(g) = 0. A connection
�
∈ ACon(X(A)) is metric compatible if its dual

�

∈ ConA(Ω(A)) is metric
compatible. It follows

d〈v ⊗A z, g〉 = 〈
�

(v ⊗A z), g〉
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A Levi-Civita connection is a metric compatible and torsion free connection.

Existence and uniqueness of Levi-Civita connection is proven, similarly to the
classical case, via a braided Koszul formula.

For all u, v, z ∈ Der(A), (braiding omitted)

Lu〈v ⊗A z, g〉 = 〈
�
u(v ⊗A z), g〉

= 〈z ⊗A
�
v u , g〉 + 〈[u, v]⊗A z , g〉 + 〈v ⊗A

�
u z , g〉

Summing Lu〈v⊗A z, g〉 −Lz〈u⊗A v, g〉+ Lv〈z⊗A u, g〉 (braiding omitted) we
obtain

2〈αv ⊗A
�
αu z , g〉 = Lu〈v ⊗A z, g〉 −Lαv〈αu⊗A z, g〉+ Lαβz

〈αu⊗A βv, g〉

− 〈[u, v]⊗A z , g〉+ 〈u⊗A [v, z] , g〉+ 〈[u, βz]⊗A βv , g〉 .

were αv := R̄α . v and αu := R̄α . u. Now, since u, v, z are arbitrary, the
pairing is nondegenerate and the metric is also nondegenerate, knowledge of
the l.h.s. uniquely defines the Levi-Civita connection.



Conclusions

Existence and uniqueness of the Levi-Civita connection

�

for arbitrary metric
g (braided symmetric nondegenerate covariant 2-tensor g).

We have formulated in vacuo Einstein equations and defined Enistein NC man-
ifolds.

Gauss–Bonnet?

Possible to relax the triangular Hopf algebra condition? See talk of Thomas.
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