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Plan: present a canonical construction of Noncommutative Riemannian Ge-
ometry, including existence and uniqueness of the Levi-Civita connection, on a
wide class of noncommutative algebras (e.g. algebras of coordinate functions
on noncommutative manifolds). [PA. e-Print: 2006.02761]

Data:

e (H, R) triangular Hopf algebra, or quantun group
(a subalgebra of the UEA of infinitesimal quantum diffeomorphisms on the NC manifold).

We use the notation R = R*®Q R, € HRQ H
Triangularity: R~ = Ro1.

e A an H-module algebra

A carries a representation of (is symmetric under) the quantum group H.

e The product in A is braided commutative:
ab= (R*>b)(Ra>D) .



Easiest examples of NC spacetimes are

(I) [, 7] = i6Y canonical
(II) [, 1] = if* zF Lie algebra
(II1) rlr) — galxt = quantum plane

(1) and (II1) have a triangular Hopf algebra symmetry (with H = O(T%)).
Some examples from (II), e.g. 292¢ — 220 = sz z'z) — )zt = 0, that is
r-Minkowski spacetime, have a trlangular Hopf algebra symmetry.

Further examples:
- All NC algebras arising as Drinfeld twist (2-cocycle) deformations of com-
mutative algebras are of this kind: e.g. NC-torus; Connes-Landi spheres,

Connes—Dubois-Violette NC manifolds....

- Any cotriangular Hopf algebra, for example Sweedler Hopf algebra H,.



The present work genralizes previous studies.

For the Moyal-Weyl NC plane, R7?, with relations [z#, Y] = i0*Y the partial
derivatives 0, are derivations of the algebra. Easy differential calculus.
Levi-Civita connection, Ricci tensor and scalar curvature were studied in [Wess
et al. 2005].

The partial derivatives 9,, are derivations also of the NC torus algebra, hence
the same expression for the Levi-Civita connection applies also to T}, cf.
[Rosenberg 2013].

Further cases have been considered in [Arnlind et al. 2017], here too relying
on the existence of a “big enough” set of derivations. See also [Bhowmick,
Goswami, Landi 2020] and [P.A. Castellani 2010].

In the present study there is no assumption on the existence of derivations of
the algebra, and no use of special coordinates. Indeed we use a global, coor-
dinate independent, approach.



We retrive the results in [Wess et al. 2005] by considering coordinates xz* and
partial derivatives 9,,.

We complement the results in [Wess et al. 2006] where we used an arbitrary
twist but we did not have an explicit formula for the Levi-Civita connection.

We consider a categorical approach that clarifies the requirements for the con-
struction of NC Riemmanian geometry.



Triangular Hopf algebras and representations
(H,R) atriangular Hopf algebra over a field k (C or C[[%]] power series in #)

H g category of left H-modules, objects in .# are H-modules V.
H is a bialgebra = V ® W is still an H-module (?.# is a monoidal category).

(H, R) triangular = V' ® W isomorphicto W ® V'
v VW — WV, v®wn—>(}?a>w)®(ﬁa>v) (1)

where R~1 = R* ® R.. The category ¥ # is braided symmetric 72 = id.

H is a Hopf algebra = homy (V, W) isin ¥ #:forallL : V — W and h € H,

(h>L)(v) = h(1) > (L(S(h(2)) >v)), (2)

H_ 4 is a braided closed monoidal category

Another H-actiononlinearmaps L : V — W

(h P L) (v) := gy > (L(S™(h(1)) > v))
We have the H-module hom(V, ).



Summary:
L € hom(V,W), L € hom(V,W) .

(" #,®,homy) and (H 4, ®, .hom) related via the braiding.

Tensor products [Majid 1994]
Given linear maps L € homy(V, W), L' € homy(V/, W')

LOr L = (LoR%)® (Ra>L") € hom(VOW, VW),
In particular L @ id =L ®id, id®pr L' = R*> @ Ro> L'

Given linear maps L € hom(V, W), L' € yhom(V/, W")

L&pL = (R*>PL)® (L o Rap) € ghom(Ve@ W,V e W),



Consider now an H-module algebra A that is braided commutative:

ab = (R*>b)(Ra>a) .

Category {.#5/™ of H-modules A-bimodules that are braided symmetric:
foralveV, av=(R>v)(Raba)
(H3™, ® ) is a braided monoidal category.
Moreover, as for £ # , we have two closed monoidal structures
Hot ™, @ 4,homy) , B, ¥™, @4, shom) .
hom 4(V, W) module of right A-linear maps L(va) = L(v)a.
Ahom(V, W) module of left A-linear maps: L(av) = aL(v).
Classical example: A-bimodule of 1-forms or of vector fields on a manifold.
e We further consider only finitely generated and projective modules,

hence every A-bimodule V' has a dual A-bimodule *V = jhom(V, A).
We thus work in a rigid braided symmetric monoidal category, i.e. compact closed category.
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Differential and Cartan Calculus [T. Weber 2019]
(twist deformation case in
[P.A, Dimitrievich, Meyer, Wess ’06])
The module Der(A) in #.#5'™ of braided derivations.
u € Der(A) C homy (A, A) with braided Leibniz rule

u(ab) = u(a)b+ (R*>a)(Ra > u)(d) .

h>wu and au(b) := au(b) are again braided derivations.

The braided commutator
[,]: Der(A) @ Der(A) — Der(4), u®@vr— uv — (R¥>v)(Ra>u)
structures Der(A) as a braided Lie algebra,

[u,v] = —[R*> v, Ra > u]

[u, [v, 2]] = [[u,v], 2] + [R¥> v, [Ra > u, 2]] .



Braided derivations based differential calculus

Dual module of 1-forms
Q(A) ;= ghom(Der(A), A)
(left A-linear maps). Pairing:
U w— (u,w)
Exterior derivative
(u, da) = u(a) ,
Contraction operator

u(w) = (u,w) .

Generalize the pairing to the tensor algebra

(VR®AU, WL R AW .. . wWpRAVIRA...Vg) = (V,{ul,w1)wp ... QU1 R AVq) .

Exterior product

wWAW =w®qw — R¥>w @4 Rabw,

is braided antisymmetric.
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Lie derivative

Z,(a) :=ula), Z,(v): = [u,v].
Z is H-equivariant. Extended to the tensor algebra via:
L) =2L,0) 40V + R>rv Ry D%Rabu(l/)

and on contravariant tensor fields is canonically defined by duality,

L, v, 0y =(Lv,0) +(R>v, L5 _0) (5)

RQD'LL

Theorem (Braided Cartan calculus) [T. Weber]

[guagv: :g[u,v]n’ [Iua lfu — U,
[gtm Iv — i[u,v]Ra [|u7 d — gqu
[-Z,d] =0, [d,d] =0,

where [L,L'] = Lo L' — (=D)IEIFIR(L" o Ro(L) is the graded braided
commutator of k-linear maps L, L' on 2°(A) of degree |L| and |L/|.



Connections and Cartan equation

Def. A right connection on a module ™ in #.# ,5Y™ is a k-linear map
=T ®402 (6)
which satisfies the Leibniz rule, forall s € ', a € A,
(sa) = (s)a+s®4da. (7)
A left connection on I is a k-linear map
T >4 (8)

which satisfies the Leibniz rule,

(as) =da®qs+a (s). (9)

Con4(I") = { right connections } , 4Con4(I") = { left connections }



Since [ is a braided commutative A-bimodule a right connection on I is
also a braided left connection [P.A, Schenkel *14] (similarly a left connection
on " is also a braided right connection):

(as) = (R*>a)(Ra> )(s)+ R>s®4 Ro>da

If is H-equivariant we recover the notion of connection on central A-bimodules
studied in [Dubois-Violette, Michor].

Given connections € Con ("), € Con4(I") onthe modules M and I in
H # ,Y™ we consider the connection @ € 4Con(I" ®4 ") well defined
by

AN

B T RAT — TRAT ®4Q(A4)
s®48 +— 1230( (8)®438)+ (R¥>s)®a (Rg> )(8)

where we have used the braiding isomorphism 73 : T ®4 Q(A) @4 T —
FRal ®QLA).
(a similar formula holds for left connections).



Extend to

d (T4 0%A) — T4
by

d (s®40)= (5)R@40+s5®4d0 ,

d satisfies the unbraided Leibniz rule,

d (cA®)=d cA9+ (=1)Fc A dY

Curvature

The curvature of € 4Con(IN) is

It is a left 2°(A)-linear map,

2
d” € qeayhom(Q%(A) @4, Q* 2@, ) .
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Torsion

ForIm = Q(A),
O— (d+ Ao )b.

All other expression of curvature and torsion are equivalent due to Cartan
structure equations.

Dual connections & Cartan structure equation for curvature and torsion

Let now denote the connection dualto , i.e.

d(u,0) = (d u,0) 4+ (u,d 0) .
Then

(R (u,v,2),0) ={(u®4vR®4y z,d 20)

(T (u,0),0) = —(u®4v,(d+ Ao )6)
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Braided Riemaniann geometry

Braided-symmetric elements. Let g € Q2(A) ® 4 Q2(A).
Def. g is braided symmetric if 7(g) = g

Example: w @4« w’ + (R > w') @« (Ra > w) is braided symmetric.

Giveng € Q2(A) ® 4 2(A) we write g = g% ® 4 go and define

g X(A) = QA), v g (W) = (v,8%) ga

Def. A pseudo-Riemannian metric on XA in {.# ;Y™ is a braided symmetric
element g € Q2(A) ® 4 2(A4), with g’ that is an isomorphism.

Let g € Q(A) ® 4 2(A) be a pseudo-Riemannian metric. A connection ¢
Con 4(2(A)) is metric compatible if it satisfies (g) = 0. A connection

€ 2Con(X(A)) is metric compatible if its dual € Con 4(S2(A)) is metric
compatible. It follows

d(v®a 2,8 =( (v®42),8)
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A Levi-Civita connection is a metric compatible and torsion free connection.

Existence and uniqueness of Levi-Civita connection is proven, similarly to the
classical case, via a braided Koszul formula.

For all u,v, z € Der(A), (braiding omitted)
gu<,v ®A <y g> — < U(v ®A Z)7 g>

— <Z®A ’Uuag> _I_ <[U,U] ®Azag> _I_ <U®A Uzag>

Summing ., (v® 4 2,8) — £, (u®4v,8) +-L,(z R4 u,g) (braiding omitted) we
obtain

2("v®4 Luz,8 =L (v®428) — Loyau®4 2,8) + Lo {at ®4 gV, 8)

- <[u,’U] ®Az,g>+<U®A [U7Z]7g> —|—<[u,6z] ®A5’U,g> :

were “v = RYp> v and qu = Ra > u. Now, since u, v, z are arbitrary, the
pairing is nondegenerate and the metric is also nondegenerate, knowledge of
the |.h.s. uniquely defines the Levi-Civita connection.



Conclusions

Existence and uniqueness of the Levi-Civita connection  for arbitrary metric
g (braided symmetric nondegenerate covariant 2-tensor g).

We have formulated in vacuo Einstein equations and defined Enistein NC man-
ifolds.

Gauss—Bonnet?

Possible to relax the triangular Hopf algebra condition? See talk of Thomas.
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