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Introduction

In this talk I will present a number of different approaches to solving
discrete versions of minimal surface equations.

There are several motivations for doing this. First, there are physical
motivations since such equations appear in matrix models, like in the
IKKT model and Membrane theory. Secondly, it is of interest in
mathematics to understand in what sense there is a nice theory of
noncommutative minimal surfaces in analogy with the classical situation.

(Joint work with J. Choe, J. Hoppe, G. Huisken, M. Kontsevich)
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Outline
1 Poisson algebraic formulation of Kähler geometry, Laplace operators

and the relation to double commutator equations.
2 Discrete Minimal Surface Algebras - studying solutions of

m∑
j=1

[[X i ,X j ],X j ] = µiX
i .

3 Noncommutative Minimal Surfaces from the Weyl algebra:[
[X i ,U],U

]
+
[
[X i ,V ],V

]
= 0

where [U,V ] = i~1.

4 A noncommutative catenoid:
3∑

j=1

[
[X i ,X j ],X j

]
= 0

Note that these type of equations have been algebraically studied under
the name (inhomogeneous) Yang-Mills algebras.
[Connes, Dubois-Violette, Lett. Math. Phys 61 (2002)], [Berger, Dubois-Violette, Lett. Math. Phys 76 (2006)]

[Herscovich, Solotar, Ann. Math. 173 (2011)]

Joakim Arnlind Quantized Minimal Surfaces 2021-11-29 3 / 28



Poisson algebraic formulation of Kähler geometry

In order to motivate the different approaches that we’ve taken, let me
quickly review how one may formulate Kähler geometry in terms of the
Poisson algebra generated by (isometric) embedding coordinates into an
ambient space. (For an arbitrary n-dimensional Riemannian manifold, one
uses multilinear n-brackets instead.)
[A., Hoppe, Huisken, J. Diff Geo. 91 (2012)], [A., Huisken, Lett. Math. Phys 104 (2014)]

On a Kähler manifold, the fact that the Poisson/symplectic structure is
compatible with the metric has the following particular consequence (in
local coordinates)

γ2gab = θapθbqgpq (1)

where θab is the Poisson bivector and γ = 1. The introduction of γ seems
superfluous at this point, but this freedom turns out to be useful. If the
Poisson structure is compatible with the metric, in the sense of (1), there
exists a Poisson algebraic formulation of the Riemannian geometry.
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Embedded surfaces

For simplicity (and as our examples will be of this form), let us consider
the case of a surface Σ embedded in Rm (via the embedding coordinates
x1, . . . , xm), with a metric induced from the Euclidean metric. For an
arbitrary density ρ,

{f , h} =
1

ρ
εab(∂af )(∂bh)

defines a Poisson structure on Σ. The “natural” (Kähler-)choice
corresponds to ρ =

√
g . However, setting γ =

√
g/ρ one finds that

γ2gab = θapθbqgpq

(since the right-hand-side is simply the cofactor expansion of the inverse of
the matrix gab).
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The Laplace operator

The Laplace-Beltrami operator on Σ:

∆(f ) =
1
√
g
∂a

(√
ggab∂bf

)
.

can be written as

∆(f ) = γ−1
m∑
i=1

{γ−1{f , x i}, x i}

∆(f ) = γ−1{γ−1{f , ua}gab, ub}.

where {x i (u1, u2)}mi=1 are the embedding coordinates of Σ, and
u1 = u, u2 = v is a set of local coordinates on Σ.
Note that such reformulations have also been considered elsewehere; e.g. in
[Blaschke, Steinacker, Class. Quant. Grav. (2010)]
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The Laplace operator

For γ = 1 (i.e. ρ =
√
g) the first forumla becomes

∆(f ) =
m∑
i=1

{{f , x i}, x i}.

For a conformal metric gab = Eδab and ρ = 1 (giving {u, v} = 1 and
γ =
√
g = E ) the second formula becomes

∆(f ) =
1

E

[
{{f , u1}, u1}+ {{f , u2}, u2}

]
.
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Some remarks

As claimed, one can express all objects of Riemannian geometry in a
similar way; for instance, the Gaussian curvature of a surface embedded in
Rm can be computed as

m∑
j ,k,l=1

(
1

2
{{x j , xk}, xk}{{x j , x l}, x l} − 1

4
{{x j , xk}, x l}{{x j , xk}, x l}

)
.

Morevover (however, unrelated to this talk), it is natural to turn the
question around and ask: Can one do Riemannian geometry in a Poisson
algebra without any reference to an underlying manifold? It turns out that
one may find simple conditions for a Poisson algebra to allow for such a
formulation.
[A., Al-Shujary, J. Geom. Phys. 136 (2018)]
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Minimal surfaces in Rm

With the help of the reformulations of the Laplace operator, one can
formulate the equations for minimal surfaces in the following way.

A surface embedded in Rm, via the embedding functions x i , is minimal if
(assuming ρ =

√
g)

∆(x i ) =
m∑
j=1

{{x i , x j}, x j} = 0

or (assuming ρ = 1)

∆(x i ) = {{x i , u}, u}+ {{x i , v}, v} = 0

when the metric is conformal; i.e. ~x ′u · ~x ′v = 0 and ~x ′u · ~x ′u = ~x ′v · ~x ′v .
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Minimal surfaces in Sd

We have also been interested in noncommutative analogues of minimal
surfaces in Sd−1, which can be found by considering embeddings in Rd

such that |~x |2 = 1 and

∆(x i ) =
d∑

j=1

{{x i , x j}, x j} = −2x i

Noncommutative analogues of these equations also appear in Membrane
theory, when constructing solutions to the equations of motion. The above
equations are already very rich for d = 4 as there exist surfaces of arbitrary
genus in S3. [Lawson, Ann. Math. 92 (1970)]

We will in the following consider noncommutative/discrete versions
starting from the correspondence {·, ·} ↔ [·, ·]/(i~).
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Discrete Minimal Surface Algebras

[A., Hoppe, SIGMA 6 (2010)]

In this paper, we study properties of the equation

∆X (xi ) =
m∑
j=1

[
[xi , xj ], xj

]
= µixj . (2)

where X = {x1, x2, . . . , xm}. The above equation makes sense in a Lie
algebra, as well as a (noncommutative) associate algebra. However, I will
in this talk not focus so much on algebraic properties, but rather on
solutions.

The set {µ1, . . . , µm} will be called the spectrum.

Joakim Arnlind Quantized Minimal Surfaces 2021-11-29 11 / 28



Clifford algebra solutions

Let Clp,q be a Clifford algebra generated by e1, e2, . . . , ep+q with

e2i = 1 for i = 1, . . . , p

e2i = −1 for i = p + 1, . . . , p + q

eiej = −ejei when i 6= j .

It is then easy to check that

p+q∑
j=1

[
[ei , ej ], ej

]
=

{
4(p − q − 1)ei if i ∈ {1, . . . , p}
4(p − q + 1)ei if i ∈ {p + 1, . . . , p + q}.
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Lie algebra solutions in sln
It is easy to see that if {x1, . . . , xd} is an orthonormal basis (with respect
to the Killing form) of a semi-simple Lie algebra, then {xi}di=1 is a solution
to the equations.

Let α1, . . . , αn−1 denote the simple roots of sln and for every positive root
α, we choose elements eα, e−α, hα such that

[h, eα] = α(h)eα

[eα, e−α] = hα,

and hα is the element of the Cartan subalgebra h such that
α(h) = K (hα, h) for all h ∈ h. Moreover, let l2 = α(hα) denote the length
of a root.

For every positive root α in sln, we set

e+α = ic
(
eα + e−α

)
and e−α = c

(
eα − e−α

)
,

for arbitrary c ∈ R.
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Lie algebra solutions in sln

Then the following holds

1
[
[e+α , e

+
β ], e+β

]
=
[
[e+α , e

−
β ], e−β

]
= −1

2c
2l2e+α

(when α± β is a root)

2
[
[e−α , e

+
β ], e+β

]
=
[
[e−α , e

−
β ], e−β

]
= −1

2c
2l2e−α

(when α± β is a root)

3
[
[e±α , e

∓
α ], e∓α

]
= −2c2l2e±α

4
[
[e±α , hβ], hβ

]
= (α, β)2e±α

5
[
[hα, e

±
β ], e±β

]
= ∓2c2(α, β)hβ

Let X = {e±β1 , . . . , e
±
βd
} for any positive roots βi . In this case,

[
[xi , xj ], xj

]
is proportional to xi for all xi , xj ∈ X .

Let X = {hβ1 , . . . , hβk , e+γ1 , e
−
γ1 , . . . , e

+
γl
, e−γl }. Now,

[
[hβi , e

+
γj

], e+γj
]

might

not be proportional to hβi . However, since both e+γj , e
−
γj
∈ X this term will

cancel against
[
[hβi , e

−
γj

], e−γj
]
. Thus, ∆X (hβi ) = 0 for i = 1, . . . , k.
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Noncommutative minimal surfaces in the Weyl algebra

[A., Choe, Hoppe, Lett. Math. Phys. 106 (2016)]

Let us return to the equations defining a minimal surface in Rm. We think
of a parametrized minimal surface given by ~x(u, v) : U → R3 such that

∆(x i ) = {{x i , u}, u}+ {{x i , v}, v} = 0

when the metric is conformal; i.e. ~x ′u · ~x ′v = 0 and ~x ′u · ~x ′u = ~x ′v · ~x ′v . (Recall
that the above formula is valid for {u, v} = 1.)

What happens, if one naively translates these conditions to
noncommutative algebras? Can one find noncommutative minimal surfaces
this way? There are many explicitly known minimal surfaces in R3.

Of course, we do not solve the (perhaps) more relevant physical equations,
but one may gain insight on what to expect (and the problem turns out to
be interesting in itself).
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Since {u, v} = 1, it is natural to start with a noncommutative algebra
generated by U and V , satisfying [U,V ] = i~1. That is, the Weyl algebra,
which we denote by A~ and (for technical reasons) its fraction field F~.
Let us start from the following extremely naive definition.

Definition

An element X = (X 1, . . . ,X n) ∈ Fn
~ is called a noncommutative minimal

surface if (X i )∗ = X i and

∆(X i ) =
[
[X i ,U],U

]
+
[
[X i ,V ],V

]
= 0 for i = 1, 2, . . . , n

n∑
i=1

(∂uX
i )(∂uX

i ) =
n∑

i=1

(∂vX
i )(∂vX

i )

n∑
i=1

[
(∂uX

i )(∂vX
i ) + (∂vX

i )(∂uX
i )
]

= 0

∂u(a) = [a,V ]/(i~) and ∂v (a) = −[a,U]/(i~)
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Noncommutative Weierstrass representation

Theorem

Let X ∈ F3
~ be a minimal with ∂(X 1 − iX 2) 6= 0. Then there exist

r-holomorphic elements f , g ∈ F~ (i.e. ∂̄f = ∂̄g = 0) together with x i ∈ R
(for i = 1, 2, 3), such that

X 1 = x11 + Re

∫
1

2
f (1− g2)dΛ

X 2 = x21 + Re

∫
i

2
f (1 + g2)dΛ

X 3 = x31 + Re

∫
fgdΛ.

(3)

Conversely, for any r-holomorphic f and g such that f (1− g2), f (1 + g2)
and fg are integrable, (3) defines a minimal surface.

Note: Integration is just the “anti-derivative” in Λ.
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Another classical representation formula

Proposition

Let F ∈ F~ be r-holomorphic and assume that

Φ1 =
(
1− Λ2

)
F , Φ2 = i

(
1 + Λ2

)
F , Φ3 = 2ΛF

are integrable. Then (X 1,X 2,X 3) ∈ F3
~, defined by

X i = x i1 + Re

∫
ΦidΛ,

is a minimal surface for arbitrary x1, x2, x3 ∈ R.

Thus, given any polynomial F (Λ) the above result constructs a minimal
surface.
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Algebraic minimal surfaces

The previous result gives a class of algebraic minimal surfaces

X 1 = Re
[
(n − 1)

(
nΛn−2 − (n − 2)Λn

)]
X 2 = Re

[
i(n − 1)

(
nΛn−2 + (n − 2)Λn

)]
X 3 = Re

[
2n(n − 2)Λn−1

]
.

and the case n = 3 corresponds to the Enneper surface:

X 1 = U + UV 2 − 1

3
U3 − i~V

X 2 = −V − U2V +
1

3
V 3 + i~U

X 3 = U2 − V 2.
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A change of coordinates?

[A., Hoppe, Kontsevich, arXiv:1903.10792]

Recall that for {f , h} = 1√
g ε

ab(∂af )(∂b):

m∑
j=1

{{x i , x j}, x j} = 0 (4)

and for {f , h} = εab(∂af )(∂b):

{{x i , u}, u}+ {{x i , v}, v} = 0 (5)

(in conformal parametrization) are the equations for the embedding
coordinates of a minimal surface in Rm.

For the corresponding noncommutative equations, we have an infinite
number of explicit examples for the latter, but far less for the former. Is
there a way to obtain solutions to (4) from solutions to (5)? How does
one do it in ordinary geometry?
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A change of coordinates?

Assume that ~x(u, v) is a parametric minimal surface and assume that
ũ(u, v) and ṽ(u, v) are such that∣∣∣∣∂(ũ, ṽ)

∂(u, v)

∣∣∣∣ =
√
g .

If {ũ, ṽ} = 1 then

m∑
j=1

{{x i , x j}, x j} = 0.

Can we make use of this in the noncommuative setting? Let us consider
the case of the catenoid.
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The catenoid
Parametrizing the catenoid in R3 as

~x(u, v) =
(

cosh(v) cos(u), cosh(v) sin(u), v
)
,

implying w := x1 + ix2 = cosh(v)e iu and reparametrizing as

ũ = u, ṽ(v) =
1

2
v +

1

4
sinh(2v),

with ∣∣∣∣∂(ũ, ṽ)

∂(u, v)

∣∣∣∣ = cosh2(v) =
√
g ,

gives

w = cosh
(
v(ṽ)

)
e i ũ

z = v(ṽ).
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In analogy with Ũ(f )(ϕ) = ϕf (ϕ) and Ṽ (f )(ϕ) = −i~ ∂
∂ϕ f (ϕ), giving

e i Ũ(f )(ϕ) = e iϕf (ϕ), [Ũ, Ṽ ] = i~1 and

e i Ũe−inϕ = e−i(n−1)ϕ

Ṽ e−inϕ = −~n e−inϕ,

one makes the following Ansatz

W
∣∣n〉 = wn

∣∣n − 1〉 Z
∣∣n〉 = zn

∣∣n〉
for the operators corresponding to the functions

w = cosh
(
v(ṽ)

)
e i ũ z = v(ṽ).
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In terms of W = X 1 + iX 2 and Z = X 3, the equations

3∑
j=1

[
[X i ,X j ],X j

]
= 0 (i = 1, 2, 3)

are equivalent to

1

2

[
[W ,W †],W

]
+
[
[W ,Z ],Z

]
=

1

2

[
[Z ,W ],W †]+

1

2

[
[Z ,W †],W

]
= 0.

In terms of our Ansatz, these equations are equivalent to

rn − 1
2 rn+1 − 1

2 rn−1 + (zn − zn−1)2 = 0

rn(zn − zn−1) = rn+1(zn+1 − zn)

for rn = |wn|2 and n ∈ Z. One immediately notes that for every solution to
the above recursion relations, c := rn(zn − zn−1) is constant.
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Since rn = |wn|2 we are interested in positive solutions to the recursion
relations. These can be constructed as follows.

For c 6= 0, r0 > 0 and r0 ≤ r1 ≤ r0 + 2c2/r20 set

rn = 2rn−1 − rn−2 +
2c2

r2n−1
for n ≥ 2 (6)

rn = 2rn+1 − rn+2 +
2c2

r2n+1

for n ≤ −1 (7)

zn = zn−1 +
c

rn
for n ≥ 1 (8)

zn = zn+1 −
c

rn+1
for n ≤ −1. (9)

It is easy to see that with the initial conditions given as above, rn > 0.
Hence, one defines the operators

W
∣∣n〉 =

√
rn
∣∣n〉 Z

∣∣n〉 = zn
∣∣n〉
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Example of rn (top) and zn (bottom):
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Summary

I’ve tried to give an overview of the different approaches to
quantum/noncommutative minimal surfaces we’ve taken.

The algebras we construct and the equations we try to solve are
motivated both from physics and mathematics.

In particular, I’ve presented two different ways (in terms of different
Poisson structures) to obtain noncommutative equations for minimal
surfaces.

One may find solutions to these equations, and in the Weyl algebra
one obtains infinitely many explicit noncommutative minimal surfaces.

At the end, an idea to connect the two approaches was presented,
with the hope of being able to construct solutions to the equations
which are more relevant in physics.
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Thank you for your attention!
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