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Of particular interest (e.g. in string theory) are noncommutative
gauge theories — after over 20 years of intensive work, there are
still many open general problems in the construction of these theories

Problems with star-gauge transformations:
A = dA+[AA] = dAA+AXxA—Ax )
In general, closure of gauge algebra is obstructed:

(03, 0%, — 03, 3)A # 675 1y A

Failure of Leibniz rule: d(fxg) # df xg + f xdg
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» Noncommutative gravity: in general (particularly for nonassociative
star-products) metric aspects of noncommutative differential
geometry only partially developed, no general version of the

Einstein-Hilbert action is known
(Aschieri et al. '05; Blumenhagen & Fuchs '16; Aschieri, Dimitrijevi¢ Ciri¢ & Sz '17)

» Try to treat as a deformation of ‘gauge theory':

Use Einstein-Cartan principal bundle formulation, corresponding

action is the Palatini action
(Chamseddine '01; Cardela & Zanon '03; Aschieri & Castellani '09; ...)

» [..-algebras offer a natural arena for systematic constructions of
noncommutative gauge theories that deal with these issues —

so far not understood beyond “semi-classical (Poisson) level”
(Blumenhagen, Brunner, Kupriyanov & Liist '18; Kupriyanov & Sz '21)



L..-Algebras in Physics & Mathematics

Higher spin gauge theories with field-dependent gauge parameters:
(Berends, Burgers & van Dam '85)

(0005 = 050a)® = dc(a,p,0)®

“Generalized" gauge symmetries of closed string field theory involve
higher brackets: (Zwiebach '92)

Zz Lo )

Dual to differential graded (commutative) algebras (Lada & Stasheff '92)

Deformation theory: Kontsevich's Formality Theorem based on
L -quasi-isomorphims of differential graded Lie algebras

Any classical field theory with “generalized” gauge symmetries is

determined by an L,-algebra, due to duality with BV-BRST
(Hohm & Zwiebach '17; Jur&o, Raspollini, Samann & Wolf '18)
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Goals & Disclaimers

> Twisted diffeomorphism symmetry does not fit (nicely) into
L.-algebra picture = deform L.,-algebra to make it compatible

» In this talk: Define deformations of field theories with braided
gauge symmetries, formulate through a general notion of braided
L.-algebras which systematically constructs new examples

» Disclaimers:

» | do not claim notion of ‘braided gauge symmetry’ is new
— kinematical aspects of this idea have appeared before
(Brzezinkski & Majid '92; ...) — ideas and techniques borrowed from
twisted noncommutative gravity

»> | do not know anything yet about corresponding QFTs —

they should be related to Oeckl's ‘braided QFT’
(Oeckl '99; Sasai & Sasakura '07)

» I'll only discuss diffeomorphism-invariant field theories here for
simplicity — Yang-Mills theory, scalar field theories, ... also fit

> Physical realizations? To be looked into ...
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What is a Gauge Symmetry?

Consider the example of Chern-Simons theory on a 3D manifold M:
Let g be a quadratic Lie algebra with pairing Trg, then the
Chern-Simons action for a gauge field A € QY(M, g) is

S = /MTrg(zA/\dA—l—3|A/\[AA]>

This action is invariant under the gauge transformations
A = dA\— [\ A]y forany A € Q°(M,g): 6,S =

The Euler-Lagrange equations S = 0 (for arbitrary variations 0A)
are Fa = 0, where Fy = dA+ 1[A Al € Q*(M,g) is the
curvature of the connection A, which is covariant: d\Fa = [\, Falg

Gauge symmetry acts on classical solutions:
Farssa = Fa+6xFa+ O()\?), so there are gauge redundancies in
the classical degrees of freedom

Space of physical states: Moduli space of classical solutions (flat
connections) modulo gauge transformations
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What is a Gauge Symmetry?

An equivalent perspective on gauge redundancies: gauge
transformations 0, A are special cases of general field variations 0A:

5\S = / Trg(O\A N Fa) = 7/ Try (A d*Fa)
M M

dAFa = dFa+[Fa,Al; € Q3(M,g) covariant derivative of Fa

Bianchi identity d*F4 = 0 is equivalent to gauge invariance of
the action §,S = 0 for all A € Q%(M, g)

This is just a simple example of the more general statement of
Noether’'s Second Theorem: Gauge symmetries are in 1-1
correspondence with differential identities among the equations of
motion (off-shell)

Noether identities exhibit interdependence of degrees of freedom due
to gauge symmetries
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What is a Gauge Symmetry?

» To describe the classical moduli space of Chern-Simons theory, we
relied on 3 ingredients:
» The graded vector space V = Q*(M,g) = Vo®d Vi d Vo @ Vs,

where V, = QP(M,g) (p =0 are gauge parameters, p =1 are
fields, p = 2 are field equations, p = 3 are Noether identities)

» The ‘brackets’ &1 = d , o = [—,—]g on V; ¥¢1 makes V into a
cochain complex, which is a derivation of ¢, while ¢> is a graded Lie
bracket on V (antisymmetric and satisfies Jacobi identity)

» The action is constructed by pairing A with ¢1(A) and £>(A, A)
through the ‘cyclic pairing’ (o, ) = / Trg(a AB) on V
M

» Chern-Simons gauge theory is organised by a
(cyclic) differential graded Lie algebra

» This is the prototypical example of a more general statement:
Any classical field theory with “generalized” gauge symmetries is
organised by a (cyclic) L..-algebra
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with graded exterior algebra Ay = A°*(V[1]) viewed as a free
cocommutative coalgebra

» L:Ay — Ay coderivation of degree |L| = 1 , with [?> = 0
» Write L2 = 0 in ‘components’ L= {/,} where
£y A"(V[1]) — V[1] with |€,] = 1, or restoring original grading
b A"V — V' with |4, = 2—n
L(l(v)) =0 (V,£1) is a cochain complex
b(L(v,w)) = L(l(v),w) £ (v, l(w)) (1 is a derivation of 4,
Oo(v, l2(w, u)) + cyclic = (¢1 0483+ L3041)(v,w,u) Jacobi up to homotopy
plus “higher homotopy Jacobi identities”

» [ .-algebras are generalizations of differential graded Lie algebras
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Cyclic L,.-Algebras

» Cyclic pairing (—,—) : V x V — R is non-degenerate, graded
symmetric, bilinear and satisfies cyclicity:

<V07€n(V17 V2,..., Vn)> = =+ <Vna‘€n(V07 Vigeooy Vn71)>

» Cyclic L,.-algebras generalize quadratic Lie algebras

» Dualizing gives graded commutative algebra derivation
Q = L*:AN,— A, with | =1, @ =0
(Chevalley-Eilenberg algebra)

» Cyclic pairing is dually a graded symplectic 2-form w € Q2(V/[1])
which is Q-invariant



L..-Algebras of Classical Field Theories
BV formalism constructs a dg algebra (CZ°(V[1]), Qsv) on graded
vector space V of BV fields (ghosts, fields and antifields)

Translate coordinate functions £ to elements of vector spaces, then
action of Qgy is a polynomial in ghosts, fields and antifields and
their derivatives, dual to sum over all brackets ¢, on V:

QBV§ = 61(§)+%£2(€7§)+

BV symplectic form (inducing antibracket) of degree —1 on V
induces cyclic pairing of degree —3
Vo Vi Vs V3
gauge par. fields field eqs. Noether ids.

V_i encode ‘higher gauge transformations’ (ghosts-for-ghosts, etc.)
for reducible symmetries
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Gauge transformations of fields A€ Vi by A€ Vg
A = 81()\) + 62()\, A) + -

Closure of gauge algebra: [dx,,00,]JA = dc(a 204 A
C(A1, A5 A) = Lo(A1, A2) +03(A1, A, A) + -+

Field equations: Fp = (1(A) — 3 (A, A) + -+
Gauge covariance: dxFa = Lla(A, Fa) + €3(\, Fa, A) + - -+
Noether ids: ZaFa = (1(Fa) + £2(Fa,A) +--- = 0 (off-shell)

Action: S = L1(A (1(A)) — & (A Lo(A A)) + - -
5S = (SAFa) , 6xS = (5\AFa) = —(\,TaFa)



L..-Algebras of Classical Field Theories

Gauge transformations of fields A€ Vi by A€ Vg
AA = L(A) + LA A) + -
Closure of gauge algebra: [dx,,00,]JA = dc(a 204 A
C(A1, A5 A) = Lo(A1, A2) +03(A1, A, A) + -+
Field equations: Fp = (1(A) — 3 (A, A) + -+
Gauge covariance: dxFa = Lla(A, Fa) + €3(\, Fa, A) + - -+
Noether ids: ZaFa = (1(Fa) + {2(Fa,A) +--- = 0 (off-shell)

Action: S = L1(A (1(A)) — & (A Lo(A A)) + - -
5S = (SAFa) , 6xS = (5\A, Fa)

—(\,ZaFnp)

Moduli space = field equations / gauge transformations
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Conventional Star-Gauge Symmetry

Consider noncomm. field theory defined with the Moyal-Weyl
star-product, for a constant Poisson bivector § on M = RY:

frg = i (i)"lgmw...gunvnam...a#nfayl...aung

n!
n=0

Let g be a matrix Lie algebra, A € Q°(M, g) gauge parameter,
A€ QY (M, g) gauge field

A star-gauge transformation is the naive deformation of a classical
gauge transformation: 07A = dX — [AFA],

Problem: These gauge variations do not close on g:

* * J— * .
[0%,50%,] = 5[/\1,’%]9, but star-commutator does not close:

[)\1’:)\2]9 = )\1*/\2—)\2*)\1 §é QO(M,Q)

(Exception: g = u(N) in fundamental representation)
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Closing Star-Gauge Transformations

» Enveloping alg-valued gauge symm: Closure takes place in universal
enveloping algebra Ug, so extend ) € Q°(M, Ug), A € QY(M, Ug)
(Jur&o, Schraml, Schupp & Wess '00; Aschieri & Castellani '09)
Introduces (infinitely many) new degrees of freedom, no good classical
limit
» Seiberg-Witten map: Noncommutative gauge orbits induced by
classical gauge orbits: A(A+ 0,A) = A(A) + 5* A A(A);

no new degrees of freedom, new interactions appear
(Seiberg & Witten '99)

Seiberg-Witten map not known in closed form, describes star-gauge

transformations only to lowest orders in 6

» Gravity? If &,&, are vector fields, then [€;*&,] is not a vector field

No analog of Seiberg-Witten map for deformed diffeomorphisms, naturally

defined using Drinfel'd twist techniques (Aschieri et al. '05)
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Drinfel’d Twist Deformation Quantization

Let F = f*®f, € UT(TM) ® UF(TM) be a Drinfel'd twist;
e.g. Moyal-Weyl twist F = exp ( — %9“” O ® 81,)

If Ais a UF(TM)-module algebra (functions, forms, tensors on M),
then ['(TM) acts on A via Lie derivative and Leibniz rule

Deform product on A into a star-product:

axb = -Fla®b) = f*(a) f.(b)

Defines noncommutative algebra A, carrying representation of
twisted Hopf algebra Uz (TM):

f(axb) = {uy(a) xEp)(b) » A(E) = {u) @&
If A is commutative, then A, is braided-commutative:
axb = R*(b) xRq(a)

R = F 2 = R*®R, = triangular R-matrix
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Braided Gauge Symmetry

> Braided Lie algebra Q%(M, g): [\, ]y = [ —Jgo F (M ® X2)

» Braided antisymmetry and braided Jacobi identity:
A Xely = —[R*M2, RaAi]s
s D2, Aslgly = [P, Aalg, Aslg + [R7(M2), [Ra (M), As5]

(Woronowicz '89; Majid '93; ...)

> For matrix g: [A, Xo]f = Arx X2 — R¥(N\2) *Ra(M) # [M*Xeg



Braided Gauge Symmetry

Braided Lie algebra QO(M, g): [A1, Aol = [, —Ja 0 F (A1 ® 2)
Braided antisymmetry and braided Jacobi identity:
A Xely = —[R*M2, RaAi]s
s D2, Aslgly = [P, Aalg, Aslg + [R7(M2), [Ra (M), As5]

(Woronowicz '89; Majid '93; ...)

For matrix g: [A1, Ae]f = Aixde — R¥(\2) xRa(M1) # [t
Braided gauge fields, matter fields A€ QY(M,g) , ¢ € Q2(M, W)
transform in left/right braided representations:
0"p = —Ax¢ , XA = dA =[N A[;
53¢ = —RY(A\)*Ra(¢) A = dA+[A N

Star-gauge transformations don't see left/right distinction
— we'll only consider left ones from now on
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> Braided gauge transformations satisfy braided Leibniz rule:
Fp®A) = Bo©A+RY L A
» They close a braided Lie algebra:

I 2 ORI oS * Sk * . S*
[6>\1’§>\2} T 6>\1 06>\2 5R"<)\2 Oéﬁa)\l - 6[/\1,)\213
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Braided Gauge Symmetry

> Braided gauge transformations satisfy braided Leibniz rule:
Fp®A) = Bo©A+RY L A

» They close a braided Lie algebra:
[0%,,03,]7 = 0%, 063, —0fay, 00k 5 = Ol
» Braided left/right covariant derivatives:
dd¢ = dp+ AN @ , d.¢ = dé +R(A) A Ra(9)
Braided covariance: 63 (df, r¢) = —Ax (diL o)

» Braided curvature:
Fi = dA+3[AAlL , 8iFh = —[NFAlG

» Braided diffeomorphisms I, (TM):
LiT = Lrag(BaT) o [L5.LL] = Lo



Braided Chern-Simons Theory
1

* 1 *
5 — /M Trg (5 AN dA+ 5 AN A, AT
» Invariant under braided gauge transformations from Q%(M, g)

No extra degrees of freedom introduced
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* 1 *
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» Invariant under braided gauge transformations from Q%(M, g)
No extra degrees of freedom introduced

» Field equations: F} = 0

» Field equations are braided covariant, but braided gauge symmetries
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Braided Chern-Simons Theory
1

* 1 *
s :/MTrg(EA/\*quL?)!A/\*[A,A]g)

Invariant under braided gauge transformations from Q%(M, g)
No extra degrees of freedom introduced

Field equations: F; = 0

Field equations are braided covariant, but braided gauge symmetries
do not produce new solutions:

0%FA # Fhrsga— F

There is no “moduli space” of classical solutions

Bianchi identities are modified:
3 (A4 F4+adfFa) = —3[RY(A), [Ra(A), Al3ls

Braided Noether identity off-shell: justifies interpretation of local
braided symmetries as “gauge”
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Braided L. -Algebras

> If (V,{¢,}) is a classical L.-algebra in the category of
UT(TM)-modules, then (V,{¢*}) is a braided L..-algebra in the
category of Ux[( TM)-modules, where

(v A Avp) = Lp(vi A s Ak Vi)

» Braided graded antisymmetry:
C(v V) = —(=D)MIVE e RA(V), Ra(v), - )
+ braided homotopy Jacobi identities (unchanged for n = 1, 2)
» Cyclic pairing: {—, =)y = (=, =)o F71

» Example: Braided Chern-Simons theory built on dg braided Lie
algebra with V,, = QP(M, g) and
G=h=d . =[]
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Braided L..-Algebras of Braided Field Theories
» Braided gauge transformations 05A = (3(A) + 5(XA)+ -
close a braided Lie algebra under braided commutator [—,—]*
> Braided field eqs F; = (i(A) — 3 (5(A,A)+--- are covariant:
0XFa = G\ FR) + 5 (BN FRLA) = LA FR) + -

» No moduli space of solutions to F; = 0, but braided Noether ids
from weighted sum over all braided homotopy relations on (A"):

TiFi = G(FA)+ 35 (6(Fi, A) = 65(A FR))
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Braided L..-Algebras of Braided Field Theories

Braided gauge transformations §YA = £§(X) + 5(N, A) +---

close a braided Lie algebra under braided commutator [—,—]*

Braided field eqs F; = (i(A) — % (5(A,A) +--- are covariant:
0XFa = G\ FR) + 5 (BN FRLA) = LA FR) + -

No moduli space of solutions to F; = 0, but braided Noether ids
from weighted sum over all braided homotopy relations on (A"):

TiFi = G(FR)+ ;5 (6(FA,A) — B(A FR))
HEG(BAY) + 1 (BBA),A) = BABA)) +-- = 0

Action: S = (A G(A). — (A LA A)) . + -
0S = (BAFX)s , 0SS = —(NZiFA). # (0ZA, Fi)«
Braided gauge variations not special directions of general field variations



Braided L..-Algebras of Braided Field Theories

Braided gauge transformations §YA = £§(X) + 5(N, A) +---

close a braided Lie algebra under braided commutator [—,—]*

Braided field eqs F; = (i(A) — % (5(A,A) +--- are covariant:
0XFa = G\ FR) + 5 (BN FRLA) = LA FR) + -

No moduli space of solutions to F; = 0, but braided Noether ids
from weighted sum over all braided homotopy relations on (A"):

TiFi = G(FA)+ 35 (6(Fi, A) = 65(A FR))
+L G (G(AY) + 5 (B(A),A) = (A G(AY)) + -

Action: S = (A G5(A)x — 3 (A L3(AA)) .+ -
05 = (6AFi)s , O3S = —(NTAFA). # (53A FA)

Braided gauge variations not special directions of general field variations

Systematic constructions of new noncomm. field theories with no
new degrees of freedom, good classical limit, and some “surprises”
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Einstein-Cartan-Palatini Gravity (4d)

1 A
5:/ Tr<fe/\e/\R+—e/\e/\e/\e)
M 2 4

> Fields: e € QYM,RY3) |, w € QYM,s0(1,3))
R = dw+ }[w,w] € Q*(M,s0(1,3)), Tr:A*R®) — R

» (Infinitesimal) gauge symmetries: Diffeos + local Lorentz
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» Bianchi identities: d*T = RAe , d*R =0
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For e non-degenerate, equivalent to torsion-free + Einstein equations



Einstein-Cartan-Palatini Gravity (4d)

1 A
5:/ Tr<fe/\e/\R+—e/\e/\e/\e)
M 2 4

Fields: e € QY(M,RY3) , w € QYM,s0(1,3))
R = dw+ }[w,w] € Q*(M,s0(1,3)), Tr:A*R®) — R
(Infinitesimal) gauge symmetries: Diffeos + local Lorentz
F(TM) x Q°(M, s0(1,3))

Bianchi identities: d*T = RAe , d“R = 0

T = dYe = de+wAe = torsion of w
Field equations: eAT = 0 , eAR+ANeAene =0
For e non-degenerate, equivalent to torsion-free + Einstein equations

Loo-algebra is not a dg Lie algebra (43 # 0)

(Dimitrijevi¢ Ciri¢, Giotopoulos, Radovanovi¢ & Sz '20)
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Braided Noncommutative Gravity (4d)

» Invariant under braided semi-direct product:

M (TM) x, Q%(M, 50(1,3))

> Field equations: Ty, = d¥ e = braided left/right torsion of w

*L,R

eN TT —Ti Nee—diL(ence) —dir(ence) =0

2e N R*+2R*" Nve+6ANeNceNce
+eAsdw +dw As e + RY(€) Ax [Ra(w),w]* = 0

Covariant, classical limit is torsion-free + Einstein equations

» Action:
* 1 L A
ST = Tr(fe/\*e/\*R —|—7e/\*e/\*e/\*e)
Iy 2 4
1
~ % Tr(w A (e N TE =2 TE Ave+dii(eAve) +din(e As e)))
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Gauge invariant with good classical limit



Braided Noncommutative Gravity (4d)

» Invariant under braided semi-direct product:

M (TM) x, Q%(M, 50(1,3))

> Field equations: Ty, = d¥ e = braided left/right torsion of w

*L,R

eN TT —Ti Nee—diL(ence) —dir(ence) =0

2e N R*+2R*" Nve+6ANeNceNce
+eAsdw +dw As e + RY(€) Ax [Ra(w),w]* = 0

Covariant, classical limit is torsion-free + Einstein equations

» Action:
1 A
S* = / Tr<fe/\*e/\*R*—|—7e/\*e/\*e/\*e)
M 2 4
1 * w
%/, Tr(w A (e N TE =2 TE Ave+dii(eAve) +din(e As e)))

Gauge invariant with good classical limit

» Noether ids: complicated ... — New deformation of general relativity



