The Euclidean contour rotation in quantum gravity

John Barrett

University of Nottingham

Abstract: The talk will discuss the rotation of the contour of
functional integration in quantum gravity from Lorentzian geometries to
Euclidean geometries. In the usual framework of metric tensors the
functional integral does not have a good definition and so the formulas
are necessarily heuristic. However it is hoped that these formulas will
provide exact mathematical results when applied to theories that are
constructed with a fundamental Planck scale cut-off.
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Euclidean "Physics"

Euclidean signature ++++

e Euclidean QG (Hawking)
e Heat Kernel Expansion
e NCG & Connes-Chamseddine spectral action
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Formula to "prove"
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ssues

e Functional integrals heuristic

e Euclidean E-H action not bounded below

e Planck scale
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Proof
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Contour rotation |
In @
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Locally,
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History

PHYSICAL REVIEW D VOLUME 18, NUMBER 6 15 SEPTEMBER 1978

Quantum gravity and path integrals

S. W. Hawking

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, England
and W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125

(Received 1 November 1977)

In order to make sure that one registers this
surface term correctly one has to join the initial
and final spacelike surfaces by a timelike tube
at some large radius 7,. It is convenient to rotate
the time interval on this timelike tube between the
two surfaces into the complex plane so that it
becomes purely imaginary. This makes the me-
tric on the boundary positive definite so that the
path integral can be taken over all positive-def-
inite metrics g that induce the given metric for
the boundary.
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More history

PATH INTEGRALS AND THE INDEFINITENESS OF THE
GRAVITATIONAL ACTION

G.W. GIBBONS
Max Planck Institut fiir Physik und Astrophysik, 8 Miinchen 40, Postfach 401212, FDR

and

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Silver Street, Cambridge CB3 9EW, UK

S.W. HAWKING and M.J. PERRY

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Silver Street, Cambridge CB3 9EW, UK

Received 3 January 1978

The Euclidean action for gravity is not positive definite unlike those of scalar and
Yane-Mills fields. Indefiniteness arises because conformal transformations can make the
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The Euclidean action for gravity is not positive definite unlike those of scalar and
Yang-Mills fields. Indefiniteness arises because conformal transformations can make the
action arbitrarily negative. In order to make the path integral converge one has to take
the contour of integration for the conformal factor to be parallel to the imaginary axis.
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.. unbounded below

el = == [R@"?a% — - [IKI0)? &% (13

is not positive semi-definite. (The minus sign comes from the direction of the Wick
rotation, which has to be chosen to be consistent with that for the matter fields.)
Under conformal transformations of the metric g, = Q%g,p, R transforms as

R=Q72R - 60 3%, (1.4)

and
K=Q7'K+3Q72Q »°, (1.5)

where n¢ is the unit outward normal to the boundary oM. Thus

iE = fQ2R 68 L2%(g) 12 d%x — [Q2K](h)1/2d4x. (1.6)

8G

One sees that / may be as negative, as one wants, by choosing a rapidly varying
conformal factor Q. f
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This is not

Wick Rotation
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Even more history

Hawking, Cargese lectures 1978

EUCLIDEAN QUANTUM GRAVITY 147

I feel that one should adopt a similar Euclidean approach in
quantum gravity and supergravity. Of course one cannot simply
replace the time coordinates by imaginary quantities because there
is no preferred set of time coordinates in general relativity.
Instead I think one should perform the path integrals over all
positive definite metrics, most of which will not admit a section
on which the metric is real and Lorentzian, and then analytically
continue the result of the path integral, if necessary. 1In order
to restrict the path integral to positive definite metrics and to
exclude integration over metrics with Lorentzian or ultra hyperbolic
signatures, one should probably integrate not over the components
of the metric g, but over the components efj of a tetrad. This
can be regarded as the square root of the metric

8ab = em;e m ) (1.4)
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Frame field

4-manifold M
Vector fields lo, 11, 15, I3
Spin connection 'V
-1 0 0 O
. : . 1 0 1 0 O
Minkowski metric n = 0 0 1 0
O 0 O 1
- Functions 05 Vlalbzagblc V\of\~c\7\o D[\U?A%L (o)
Cab: [la, Ip] = cqplc Q

Curvature R(lg, lp)le = (Lo (opc) + cho-gld lp(0gc) — GaCde Cabo-glc)le
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Imaginary contour

On G;, fields [, =ie,, l; =eq, |, =e,, I3 =e3, e real
0y, = 1wy, N = 0py + S0 — 040, w real
Actions
Sp= | —2A+ v + Speater
g ] 167G L

Rg
— 2N — scalar
Sk f 16 dVy + Si

Euclideanisation (c.f. Samuel 2015, D'Andrea, Kurkov, Lizzi 2016)
~. !l . » >
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Spinors

Y € C*

Euclidean inner product (Y, {)g
Lorentzian (', ) = (yOL|J’,L|J)E
Gamma matrices y*y? + y?y% = —2n@?
Chirality y, y* =

Charge conjugation J:C* - C* antilinear
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Spinors on manifold

W, ) = j W, ) dv
M

D = lya vla
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Euclidean spinors

Y(x) same
Y same
Je =YY

Dp = Y%VEea
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Euclideanisation - chiral

OnG): [y =iey, etc.

Calculation: D = iDg
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