PROBLEMS

1
We define a vector field X as a linear operator on smooth functions which obeys the Leibniz rule. Please show that vector fields is local, that is if f vanishes identically on an open set U then so does $X(f)$.

2 If $\phi: M \rightarrow N$ is a map between manifolds, we define, for a given vector field on $M: \phi_{*}(X)$ which is an operator acting on $C^{\infty}(N)$:

$$
\phi_{*}(X)(f)=X(f \circ \phi)
$$

What is the target space of this map? Can we modify the definition to get a vector field on N ?
(3) Please show that the Moebius band is not a trivial real vector bundle over the circle.
(4)

Let ∇ be a connection on a vector bundle E seen as a map from $\Sigma(E) \rightarrow \Omega^{1}(M) \otimes \Sigma(E)$. Let U be a C^{∞}-linear map on $\Sigma(E)$. Please check that $U^{-1} \nabla U$ is also a connection and find the difference between ∇ nad $U^{-1} \nabla U$.

6
The following defines a projector on S^{2}.

$$
p(\theta, \phi)=\frac{1}{2}\left(\begin{array}{cc}
1+\cos (\theta) & \sin (\theta) e^{i \phi} \\
\sin (\theta) e^{-i \phi} & 1-\cos (\theta)
\end{array}\right)
$$

How can we argue that this defines a nontrivial (complex) vector bundle?

For the projector above please do compute the connection ∇_{p} on the sections of the bundle defined by p and the curvature.

Using two local trivialisation of the above bundle (one over the northern hemisphere, one over the southern) plase compute the associated connection one-form.

The potential of the magnetic monopole expressed locally (using local trivialisations) is:

$$
A_{\phi}^{N}=g \frac{1-\cos \theta}{r \sin \theta}, \quad A_{\phi}^{S}=-g \frac{1+\cos \theta}{r \sin \theta} .
$$

Please compute the change of the phase of the point particle of charge e transported along the equator γ,

$$
\Delta \Phi=e \int_{\gamma} A
$$

where the integral is just the integral of a one form along the curve.

Taking F to be a curvature two-form we can define the characteristic polynomials in different ways, for example:

$$
\operatorname{det}\left(\frac{i F t}{2 \pi}+1\right)=\sum_{k} c_{k}(F) t^{k}
$$

and

$$
\operatorname{tr}\left(e^{\frac{i F t}{2 \pi}}\right)=\sum_{k} c h_{k}(F) t^{k}
$$

Please, relate c_{1}, c_{2} and $c h_{1}, c h_{2}$.
10
Let F be a two-form on \mathbb{R}^{4} such that $F=d A$. Please verify if there are any nontrivial solutions of the equation:

$$
F= \pm * F
$$

where $*$ is the Hodge star.

Try to solve the previous problem on $\mathbb{R}^{4} \backslash\{x=y=z=0\}$ (4-dimensional space without a line).

Assume the solution of t'Hooft-Polyakov monopole in the BPS limit as:

$$
\Phi^{a}(x)=\frac{x^{a}}{e r^{2}} H(\xi), \quad A_{j}^{a}(x)=\epsilon_{a j k} \frac{x^{k}}{e r^{2}}(1-K(\xi))
$$

gdzie:

$$
\xi=v e x, \quad K(\xi)=\frac{\xi}{\sinh \xi}, \quad H(\xi)=\xi \operatorname{coth} \xi-1
$$

please check that these are the solutions and compute the t'Hooft tensor:

$$
\mathcal{F}_{\mu \nu}=\widehat{\Phi}^{a} F_{\mu \nu}^{a}+\frac{1}{e} \epsilon_{a b c} \widehat{\Phi}^{a}\left(D_{\mu} \widehat{\Phi}^{b}\right)\left(D_{\nu} \widehat{\Phi}^{c}\right),
$$

where $\widehat{\Phi}^{a}=\frac{\Phi^{a}}{|\Phi|}$. Please compare the result to the field of the magnetic monople.

Let ρ^{i} be the matrices:

$$
\rho^{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \rho^{1}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad \rho^{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \rho^{3}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) .
$$

and

$$
X=\sum_{i=0}^{3} x^{i} \rho^{i}, \quad d X=\sum_{i=0}^{3} d x^{i} \rho^{i} .
$$

Please show that

$$
A(x)=\frac{1}{2} \frac{X^{*} d X-d X^{*} X}{1+|x|^{2}}
$$

gives a selfdual (or antiselfdual) curvature F and please compute the intanton number,

$$
\frac{1}{2} \int_{\mathbb{R}^{4}} \operatorname{tr}(F \wedge F)
$$

