Anomalies: list of problems

Problem 1: ABJ computation

Please check what are the minimal assumptions on f so that the expression:

$$
\Delta(a)=\int d x^{n}(f(x+a)-f(x))
$$

gives the answer as in the "naive" ABJ computations:

$$
\Delta(a) \sim \sum_{i=1}^{n} a^{i} \lim _{|x| \rightarrow \infty} x_{i}|x|^{n-2} f(x)
$$

Problem 2: Fujikawa method in 2D

Please use the Fujikawa method (eigenvalues) to compute the anomaly (like in the lecture) but in 2 dimensions.

Problem 3: BRST

Let:

$$
\mathbf{A}_{\mu}=A_{\mu}^{a} t^{a}, \quad \mathbf{c}=c^{a} t^{a}, \quad \boldsymbol{\Phi}=\Phi^{a} t^{a},
$$

where t^{a} are matrices generating a Lie algebra that satisfy $\left[t^{a}, t^{b}\right]=f^{a b r} t^{r}$. All c^{a} are Grassman fields. Take s to be the following operator:

$$
s \mathbf{A}_{\mu}=D_{\mu} \mathbf{c}, \quad s \mathbf{c}=\alpha \mathbf{c} \mathbf{c}, \quad s \overline{\mathbf{c}}=\beta \boldsymbol{\Phi}, s \boldsymbol{\Phi}=0
$$

where α, β are real numbers and c, \bar{c} are Grassman.
Please check for which α, β we have $s^{2}=0$ and what is the graded Leibniz rule so that both terms

$$
\mathcal{L}_{Y M}=-\frac{1}{4} F^{\mu \nu a} F_{\mu \nu}^{a}, \quad \mathcal{L}_{1}=\partial^{\mu} \Phi^{a} A_{\mu}^{a}+\frac{\xi}{2} \Phi^{a} \Phi^{a}+\partial_{\mu} \bar{c}^{a}\left(D_{\mu} c\right)^{a}
$$

are invariant .
Note:

$$
\begin{gathered}
\mathbf{F}_{\mu \nu}=\partial_{\mu} \mathbf{A}_{\nu}-\partial_{\nu} \mathbf{A}_{\mu}-i\left[\mathbf{A}_{\mu}, \mathbf{A}_{\nu}\right] \\
D_{\mu}(x)=\partial_{\mu}(x)-i\left[\mathbf{A}_{\mu}, x\right] .
\end{gathered}
$$

