Effective QCD - problem set 12

23.01.2018. Tuesday 14:00
room D-02-2

1. Nonrelativistic reduction of the Dirac hamiltonian.

Consider Dirac equation for a point-like, relativistic, charged particle

$$
i \partial_{t} \Psi=\left[\vec{\alpha} \cdot(\vec{p}-q \vec{A})+\beta m+q A_{0}\right] \Psi \equiv H \Psi
$$

in the canonical representation for matrices $\vec{\alpha}$ and $\beta=\operatorname{diag}\left[1_{2 \times 2},-1_{2 \times 2}\right]$. For simplicity let's assume $\vec{A}=0$. Define

$$
\Psi(\vec{x}, t)=e^{-i m} \Psi^{\prime}(\vec{x}, t)
$$

and derive equation for Ψ^{\prime}. Decompose Ψ^{\prime} into a large and a small component

$$
\Psi^{\prime}=\frac{1}{2}(1+\beta) \Psi_{L}+\frac{1}{2}(1-\beta) \Psi_{S}
$$

and write a system of two first order (in time and ∂_{x}) differencial equations that mix both components.
2. Show that the system from the previous problem can formally solved for Ψ_{S}

$$
\Psi_{S}=\frac{1}{2 m+i \partial_{t}-q A_{0}} \vec{\sigma} \cdot \vec{p} \Psi_{L} \equiv \mathcal{D} \Psi_{L} .
$$

Expand operator \mathcal{D} in powers of $1 / m$ up to the second order. Use Maxwell equation to eliminate derivatives of A_{0}. Using this expansion derive equation for the large component Ψ_{L}.
[Answer: $\left(i \partial_{t}-q A_{0}\right) \Psi_{L}=\left(p^{2} / 2 m-q / 4 m^{2}\{\vec{\nabla} \cdot \vec{E}+\vec{\sigma} \cdot \vec{E} \times \vec{p}+i \vec{E} \cdot \vec{p}\}\right) \Psi_{L}$]
Compare the result with the Foldy-Wouthuysen transformation discussed e.g. in the book of Bjorken and Drell.

