Effective QCD - problem set 9
 12.12.2017. Tuesday 14:00
 room D-02-2

1. Effective QCD lagrangian from problem set 4 can be supplemented by two 4 derivative terms, one of them taking a form of the commutator squared,

$$
\mathcal{L}_{\mathrm{eff}}=\frac{F_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}\right)+\frac{1}{32 e^{2}} \operatorname{Tr}\left(\left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U\right]^{2}\right)
$$

where e is a free parameter. Calculate the lowest order interaction term by expanding U in terms of the Goldstone boson fields in $\mathrm{SU}(3)$
2. Effective lagrangians discussed so far contained only even numbers of U fields. In order do describe physically possible transitions like $K^{+} K^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ we need anomalous term involving five fields U. Such term is called Wess-Zumino-Witten term and it cannot be written as a local action. Witten proposed to introduce the fifth time-like dimension characterized by the coordinate $0 \leq \alpha \leq 1$

$$
x^{\mu} \rightarrow y^{i}=\left(x^{\mu}, \alpha\right)
$$

and extending the U field

$$
U=\exp \left(i \alpha \frac{\phi(x)}{F_{0}}\right),
$$

where ϕ is the $\operatorname{SU}(3)$ meson field we have used before. Then the nonlocal action takes the following form

$$
S_{W Z W}=-\frac{i}{240 \pi^{2}} \int_{0}^{1} d \alpha \int d^{4} x \varepsilon^{i j k l m} \operatorname{Tr}\left(L_{i} L_{j} L_{k} L_{l} L_{m}\right)
$$

where

$$
L_{i}=U^{\dagger} \frac{\partial U}{\partial y^{i}}
$$

and $\varepsilon^{i j k l m}$ is totally antisymmetric. Expanding U in powers of ϕ allows to perform the integral over α. Calcualte the lowest order term in this expansion.
3. Prove that in 4 dimensional Minkowski space

$$
\Delta(a)=a^{\mu} \int d^{4} r \partial_{\mu} f(r)=2 \pi i a^{\mu} \lim _{R \rightarrow \infty} R^{2} R_{\mu} f(R)
$$

4. Recall that the axial current amplitude to two photons is given by $\left(q=k_{1}+k_{2}\right)$

$$
\begin{aligned}
T_{\mu \nu \lambda}= & -\int \frac{d^{4} p}{(2 \pi)^{4}}\left\{\operatorname{Tr}\left[\frac{1}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{\not p-\not q-m} \gamma_{\nu} \frac{1}{\not p-\not k_{1}-m} \gamma_{\mu}\right]\right. \\
& +\operatorname{Tr}\left[\frac{1}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{\not p-q q-m} \gamma_{\mu} \frac{1}{\not p-\not k_{2}-m} \gamma_{\nu}\right] .
\end{aligned}
$$

Calculate $k_{1}^{\mu} T_{\mu \nu \lambda}$ using in the numerator the following trick

$$
k_{1}=\left(p-k_{2}-m\right)-(p-q-m)
$$

Then use the expansion from problem 3 for $a=k_{1}$ to show that

$$
k_{1}^{\mu} T_{\mu \nu \lambda}=\frac{1}{8 \pi} \varepsilon_{\nu \lambda \rho \sigma} k_{1}^{\rho} k_{2}^{\sigma} .
$$

