Effective QCD - problem set 8
 5.12.2017. Tuesday 14:00
 room D-02-2

1. Effective QCD lagrangian from problem set 4 can be supplemented by two 4 derivative terms, one of them taking a form of the commutator squared,

$$
\mathcal{L}_{\text {eff }}=\frac{F_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}\right)+\frac{1}{32 e^{2}} \operatorname{Tr}\left(\left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U\right]^{2}\right)
$$

where e is a free parameter. Calculate the lowest order interaction term by expanding U in terms of the Goldstone boson fields in $\mathrm{SU}(3)$.
2. For the $\operatorname{SU}(2)$ case calculate the 4 derivative term for the "hedgehog" Ansatz

$$
U=\exp (i \vec{n} \cdot \vec{\tau} P(r)) .
$$

To this end it is convenient to expand

$$
U^{\dagger} \partial_{M} U=\frac{i}{2} \xi_{M}^{A} \tau_{A}
$$

where M stands for space index (note that U is time independent). Convince yourself that

$$
\xi_{M}^{A}=A \delta_{M A}+B n_{M} n_{A}+C n_{C} \epsilon_{C M A}
$$

with

$$
A=2 \frac{\sin P \cos P}{r}, \quad B=2\left(P^{\prime}-\frac{\sin P \cos P}{r}\right), \quad C=2 \frac{\sin ^{2} P}{r} .
$$

3. Collecting together the kinetic term and the 4 -th order term one obtains an expression for the hedgehog energy. Show that the energy is finite if $P(0)=n \pi$ (with $P(\infty)=0$). Instead of solving equation of motion to calculate the numerical value of the energy (which can be done only numerically), one can use variational principle, using an Ansatz

$$
P(r)=2 \arctan \left[\left(\frac{r_{0}}{r}\right)^{2}\right],
$$

where r_{0} is a variational parameter. Show that, introducing variable $r / r_{0}=t$, one has

$$
\sin P=\frac{2 t^{2}}{t^{4}+1}, \quad \cos P=\frac{t^{4}-1}{t^{4}+1}, \quad \frac{d P}{d t}=-\frac{4 t}{t^{4}+1}
$$

and the energy (in fact the mass of the soliton) can be calculated numerically:

$$
M=3 \pi^{2} \sqrt{2}\left[F_{\pi}^{2} r_{0}+\frac{30}{32 e^{2}} \frac{1}{r_{0}}\right] .
$$

4. Effective lagrangians discussed so far contained only even numbers of U fields. In order do describe physically possible transitions like $K^{+} K^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ we need anomalous term involving five fields U. Such term is called Wess-Zumino-Witten term and it cannot be written as a local action. Witten proposed to introduce the fifth time-like dimension characterized by the coordinate $0 \leq \alpha \leq 1$

$$
x^{\mu} \rightarrow y^{i}=\left(x^{\mu}, \alpha\right)
$$

and extending the U field

$$
U=\exp \left(i \alpha \frac{\phi(x)}{F_{0}}\right)
$$

where ϕ is the $\mathrm{SU}(3)$ meson field we have used before. Then the nonlocal action takes the following form

$$
S_{W Z W}=-\frac{i}{240 \pi^{2}} \int_{0}^{1} d \alpha \int d^{4} x \varepsilon^{i j k l m} \operatorname{Tr}\left(L_{i} L_{j} L_{k} L_{l} L_{m}\right),
$$

where

$$
L_{i}=U^{\dagger} \frac{\partial U}{\partial y^{i}}
$$

and $\varepsilon^{i j k l m}$ is totally antisymmetric. Expanding U in powers of ϕ allows to perform the integral over α. Calcualte the lowest order term in this expansion.

