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1. Effective QCD lagrangian from problem set 4 can be supplemented by two 4 deri-
vative terms, one of them taking a form of the commutator squared,
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where e is a free parameter. Calculate the lowest order interaction term by expan-
ding U in terms of the Goldstone boson fields in SU(3).

2. For the SU(2) case calculate the 4 derivative term for the “hedgehog” Ansatz

U = exp(i ~n · ~τ P (r)).

To this end it is convenient to expand
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where M stands for space index (note that U is time independent). Convince
yourself that
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3. Collecting together the kinetic term and the 4-th order term one obtains an expres-
sion for the hedgehog energy. Show that the energy is finite if P (0) = nπ (with
P (∞) = 0). Instead of solving equation of motion to calculate the numerical va-
lue of the energy (which can be done only numerically), one can use variational
principle, using an Ansatz
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where r0 is a variational parameter. Show that, introducing variable r/r0 = t, one
has
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and the energy (in fact the mass of the soliton) can be calculated numerically:
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4. Effective lagrangians discussed so far contained only even numbers of U fields. In
order do describe physically possible transitions like K+K− → π+π−π0 we need
anomalous term involving five fields U . Such term is called Wess-Zumino-Witten
term and it cannot be written as a local action. Witten proposed to introduce the
fifth time-like dimension characterized by the coordinate 0 ≤ α ≤ 1

xµ → yi = (xµ, α)

and extending the U field
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where φ is the SU(3) meson field we have used before. Then the nonlocal action
takes the following form

SWZW = − i

240π2

1∫
0

dα

∫
d4x εijklmTr (LiLjLkLlLm) ,

where
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and εijklm is totally antisymmetric. Expanding U in powers of φ allows to perform
the integral over α. Calcualte the lowest order term in this expansion.


