Effective QCD - problem set 6 21.11.2017. Tuesday 14:00
 room D-02-2

1. Find transformation properties of $\mathrm{SU}(3)$ source currents: vector, axial, vectorsinglet, and source densities: scalar and pseudoscalar under parity transformation and charge conjugation.
2. Suppose we transform the quark fields by local transformations:

$$
\begin{aligned}
q_{R} & \rightarrow \exp (-i \theta(x) / 3) V_{R}(x) q_{R}, \\
q_{L} & \rightarrow \exp (-i \theta(x) / 3) V_{L}(x) q_{L}
\end{aligned}
$$

where $V_{R, L}(x)$ are $\mathrm{SU}(3)$ matrices. Find transformation properties of above mentioned currents and densities that leave the QCD lagrangian invariant.
3. At the last problem class we have derived interaction lagrangian coming from \mathcal{L}_{2}

$$
\mathcal{L}_{2}=\frac{F_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}\right)
$$

with

$$
U=e^{\frac{i}{F_{\pi}} \vec{\tau} \cdot \vec{\phi}(x)}
$$

that took the following form:

$$
\mathcal{L}_{2}^{4 \phi}=\frac{1}{6 F_{\pi}^{2}}\left(\partial_{\mu} \vec{\phi} \cdot \vec{\phi} \partial^{\mu} \vec{\phi} \cdot \vec{\phi}-\partial_{\mu} \vec{\phi} \cdot \partial^{\mu} \vec{\phi} \vec{\phi} \cdot \vec{\phi}\right)
$$

Calculate the same interaction term for another parametrizaton of the U matrix

$$
U=\frac{1}{F_{\pi}}[\sigma(x)+i \vec{\tau} \cdot \vec{\pi}(x)] \text { where } \sigma(x)=\sqrt{F_{\pi}^{2}-\vec{\pi}^{2}(x)}
$$

In both cases calculate the mass term

$$
\mathcal{L}_{m}=\frac{F_{\pi}^{2} m_{\pi}^{2}}{4} \operatorname{Tr}\left(U+U^{\dagger}\right)
$$

up to 4 fields.
4. (*) Calculate Feynman vertices for both parametrizations.

