Effective QCD - problem set 4 7.11.2017. Tuesday 14:00 room D-02-2

1. Find n for which

$$
\partial_{\mu} \frac{z^{\mu}}{\left(z^{2}\right)^{n}}=0 .
$$

2. Define

$$
D(z-y)=\langle 0| T(\phi(x) \phi(y))|0\rangle
$$

We have shown that

$$
D(z)=\int_{0}^{\infty} d \mu^{2} \rho\left(\mu^{2}\right) D^{+}\left(z, \mu^{2}\right)
$$

where D^{+}is a positive frequency part of the free scalar propagator with mass μ and $\rho\left(\mu^{2}\right)$ is a positive non-perturbative function, called spectral density. Show that the canonical commutation relations of scalar fields imply

$$
\int_{0}^{\infty} d \mu^{2} \rho\left(\mu^{2}\right)=1
$$

3. We have shown that (for $x^{0}>y^{0}$)

$$
\langle 0|\left[A_{a}^{\mu}(x), P_{a}(y)\right]|0\rangle=C_{a} \partial^{\mu} D(x-y, 0) \quad \text { no sum over } a
$$

where $D(z, 0)$ is a full scalar propagator. Show hat this implies

$$
\langle 0|\left[Q_{a}^{A}(t), P_{a}(y)\right]|0\rangle=C_{a} .
$$

4. Gell-Mann Oaks Renner relation.

Recall that we have shown, that

$$
\begin{equation*}
i\langle 0|\left[Q_{a}^{A}(t), P_{a}(y)\right]|0\rangle=\frac{2}{3}\langle\bar{q} q\rangle \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
P_{a}(y) & =i \bar{q}(y) \gamma^{5} \lambda^{a} q(y), \\
Q_{a}^{A}(t) & =\int d^{3} x \bar{q}(x) \gamma^{0} \gamma^{5} \frac{\lambda^{a}}{2} q(x)
\end{aligned}
$$

Generalize relation (1) to the case when two $\mathrm{SU}(3)$ indices are different $\rightarrow Q_{a}^{A}(t), P_{b}(y)$.In particular show that

$$
\int d^{3} x\langle 0|\left[\bar{u}(x) \gamma^{0} \gamma^{5} u(x), \bar{d}(y) \gamma^{5} u(y)\right]|0\rangle=-\langle\bar{u} u+\bar{d} d\rangle .
$$

This implies that

$$
\langle 0| \bar{u}(x) \gamma^{\mu} \gamma^{5} u(x) \bar{d}(y) \gamma^{5} u(y)|0\rangle=C \partial^{\mu} D^{+}(x-y, 0)
$$

where $C=-\langle\bar{u} u+\bar{d} d\rangle$. Rewrite this relation in momentum space. Remember that this relation is saturated by intermediate zero mass states, Goldstone bosons. In this particular case the only intermediate state is $\left|\pi^{-}(p)\right\rangle$.Assuming from Lorentz invariance

$$
\langle 0| \bar{u}(0) \gamma^{\mu} \gamma^{5} u(0)\left|\pi^{-}(p)\right\rangle=i \sqrt{2} F_{\pi} p^{\mu},\langle 0| \bar{u}(0) \gamma^{5} u(0)\left|\pi^{-}(p)\right\rangle=\sqrt{2} G_{\pi}
$$

Relate the product $F_{\pi} G_{\pi}$ to C. Using axial current non-conservation in the massive quark case

$$
\partial_{\mu} A_{a}^{\mu}=i \bar{q}\left\{\frac{\lambda_{a}}{2}, M\right\} \gamma^{5} q
$$

prove that

$$
\begin{equation*}
m_{\pi}^{2} F_{\pi}^{2}=\left(m_{u}+m_{d}\right)|\langle\bar{u} u\rangle| . \tag{2}
\end{equation*}
$$

