Effective QCD - problem set 2 24.10.2017. Tuesday 14:00
 room D-02-2

1. Real scalar field lagrangian density reads as follows:

$$
\mathcal{L}\left(\phi, \partial_{\mu} \phi\right)=\frac{1}{2} \partial_{\mu} \phi(x) \partial^{\mu} \phi(x)-\frac{1}{2} m^{2} \phi^{2}(x) .
$$

Calculate Hamiltonian. Canonical equal-time quantization rules for real scalar field operators read:

$$
\left[\hat{\phi}(t, \vec{x}), \vec{\pi}\left(t, \vec{x}^{\prime}\right)\right]=i \delta^{(3)}\left(\vec{x}-\vec{x}^{\prime}\right)
$$

and all other possible commutators are zero. Using decomposition

$$
\hat{\phi}(t, \vec{x})=\int \frac{d^{3} \vec{k}}{(2 \pi)^{2} \sqrt{2 \omega_{k}}}\left[e^{-i k x} \hat{a}(\vec{k})+e^{+i k x} \hat{a}^{\dagger}(\vec{k})\right]
$$

show that the canonical quatization rules are satisfied if

$$
\left[\hat{a}(\vec{k}), \hat{a}^{\dagger}\left(\vec{k}^{\prime}\right)\right]=(2 \pi)^{3} \delta^{(3)}\left(\vec{k}-\vec{k}^{\prime}\right)
$$

and the remaining two commutators vanish.
2. Show that $\psi_{R}^{\dagger} \psi_{L}$ and $\psi_{L}^{\dagger} \psi_{R}$ are invariant under proper Lorentz transformations, and $\psi_{R}^{\dagger} \sigma^{\mu} \psi_{R}$ and $\psi_{L}^{\dagger} \tilde{\sigma}^{\mu} \psi_{L}$ are contravariant four-vectors.
3. Consider momentum in polar coordinates

$$
\vec{p}=|\vec{p}|(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) .
$$

Find two dimensional Weyl spinors $| \pm\rangle$ that are eigenstates of the helicity operator

$$
\frac{\vec{\sigma} \cdot \vec{p}}{|\vec{p}|}| \pm\rangle= \pm| \pm\rangle .
$$

4. Lagrangian density for real scalar field ϕ takes the following form

$$
\mathcal{L}\left(\phi, \partial_{\mu} \phi\right)=\frac{1}{2} \partial_{\mu} \phi(x) \partial^{\mu} \phi(x)-\frac{1}{2} m^{2} \phi^{2}(x)-\frac{\lambda}{4} \phi^{4}(x)
$$

Consider the case $\mu^{2}<0$. Irrespectively of the sign of μ^{2} term the Hamiltonain has a symmetry $R: \phi \rightarrow-\phi$. Find minima of the potential. How do they transform under R ? Check that $R^{2}=1, R=R^{-1}=R^{\dagger}$. Shift the fields by the field value at the minimum and find the resulting Lagrangian density.
5. Assume that the vacuum state is a linear superposition (with plus sign) of the two minima from the previous problem. Such vacuum state is invariant uner R. Show that this superposition is not stable against any perturbation H^{\prime} that satisfies

$$
R H^{\prime} R^{\dagger}=-H^{\prime}
$$

To this end calculate the first order correction to the ground state energy. Note that you have to use degenerate perturbation theory, because the second linear superposition with a minus sign has also the same energy. Use the above symmetry to eleminate some elements of the perturbation matrix. What are the eigenstates that diagonalize H^{\prime} ?

