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1. (From last set) Let’s denote Lorentz transformations (including boosts, rotations,
space and time reflections) in a usual way

x′µ = Λµ
νx

ν .

In order to calculate Lorentz transformation of the spinors consider matrixX related
to the space-time point xµ:

X(x) = xµσ̃
µ = x0σ0 + x1σ1 + x2σ2 + x3σ3.

To this end it is useful to introduce the following notation

σµ = (1, ~σ), σ̃µ = (1,−~σ)

remembering that:
∂µ = (∂t, ~∇), ∂µ = (∂t,−~∇).

Show that
detX = xµxµ.

Therefore Lorentz transformation Λ generates SL(2, C) transformation of matrix X:

M †X ′M = X

where X ′ = X(x′). These transformations preserve determinant. Show that

Λµ
ν =

1

2
Tr
(
σ̃νM †σ̃µM

)
=

1

2
Tr
(
σµM

†σ̃µM
)
.

Note that M are defined up to a phase. The same reasoning can be repeated for
matrix Y (x):

Y (x) = xµσ
µ

where the pertinent transformation matrix N is defined as

N †Y ′N = Y.

Express Lorentz transformation Λ in terms of N . Prove that NM † = 1.

Calculate Λ for
M = N =

[
eiθ/2 0

0 e−iθ/2

]
and

M =

[
eθ/2 0
0 e−θ/2

]
, N =

[
e−θ/2 0

0 eθ/2

]
where v/c = tanh θ.



2. Real scalar field lagrangian density reads as follows:

L(x) =
1

2
∂µφ(x)∂µφ(x)− 1

2
m2φ2(x).

Calculate Hamiltonian. Canonical equal-time quantization rules for real scalar field
operators read: [

φ̂(t, ~x), ~π(t, ~x ′)
]

= iδ(3)(~x− ~x ′)

and all other possible commutators are zero. Using decomposition

φ̂(t, ~x) =

∫
d3~k

(2π)2
√

2ωk

[
e−i kxâ(~k) + e+i kxâ†(~k)

]
show that the canonical quatization rules are satisfied if[

â(~k), â†(~k ′)
]

= (2π)3δ(3)(~k − ~k ′)

and the remaining two commutators vanish.

3. For a system of SU(3) scalar fields φ̂i(x) with i = 1, 2, 3 that satisfy the following
commutation rules [

φ̂i(t, ~x), π̂j(t, ~x
′)
]

= iδ(3)(~x− ~x ′)δij

one defines charge operators

Q̂a(t) = −i
∫
d3~x π̂i(t, ~x)T aijφ̂j(t, ~x)

where matrices T a satisfy SU(3) commutation relations:[
T a, T b

]
= ifabcT c.

Prove that [
Q̂a(t), Q̂b(t)

]
= ifabcQ̂c(t).

4. In the case of fermion fields, commutation relations from problem 2 are replaced by
anticommutation relations:

{qα,k(t, ~x), qβ,l(t, ~x
′)} = δ(3)(~x− ~x ′)δαβδkl

where α, β stand for Dirac indices and k, l denote SU(3) matrices. Relevant charges
are defined as

Q̂a
L,R(t) =

∫
d3~x q†L,R(t, ~x)T aqL,R(t, ~x),

Q̂V (t) =

∫
d3~x

[
q†L(t, ~x)qL(t, ~x) + q†R(t, ~x)qR(t, ~x)

]



where T a = λa/a are SU(3) generators (Gell-Mann matrices). Making use of the
identity (prove it!)

{ab, cd} = a {b, c} d− ac{b, d}+ {a, c} bd− c{a, d}b

show that [
Q̂a
L, Q̂

b
L

]
= ifabcQ̂c

L,[
Q̂a
R, Q̂

b
R

]
= ifabcQ̂c

R,[
Q̂a
L, Q̂

b
R

]
= 0,[

Q̂a
L,R, Q̂

b
V

]
= 0.

5. In this problem we shall solve Diraq equations

iσ̃µ∂µψL −mψR = 0, iσµ∂µψR −mψL = 0

staring from a solution in the reference frame S ′ where the particle is at rest:

i∂′tψ
′
L = mψ′R, i∂′tψ

′
R = mψ′L.

Solve these equations for positive energy E = m. Decompose solutions in the
basis of eigen functions of the spin operator S3 (remember we are working here in
the chiral representations of Dirac matrices). Next, transform these solution to the
system S, in which system S ′ (connected with the particle) moves with velocity
~v = (0, 0, v), v > 0 along the z axis (tanh θ = v

c
). Find solutions in this frame by

applying Lorentz transformation (see problem 1)

ψL(x) = M−1ψ′L(x′), ψR(x) = N−1ψ′R(x′).

Construct positive and negative helicity solutions in frame S in terms of Dirac
bispinors

ψ =

[
ψL
ψR

]
.

Solution for a particle moving in any direction (not only along a z axis) can be
obtained by applying rotation to the above solution. Show that rotation preserves
helicity. Express such solutions in terms of two dimensional (Weyl spinor) helicity
eigenstates

~σ · ~p
|~p|
|±〉 = ± |±〉 .


