Effective QCD - problem set 1 10.10.2017. Tuesday 14:00
 room D-02-2

1. Canonical representation of Dirac matrices (or Bjorken-Drell) takes the following form:

$$
\gamma^{0}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \gamma^{k}=\left[\begin{array}{cc}
0 & \sigma^{k} \\
-\sigma^{k} & 0
\end{array}\right]
$$

where σ^{k} are 2×2 Pauli matrices. It is useful to use diffent representations. Weyl (or chiral) representation differs from the canonical one only by γ^{0} :

$$
\gamma_{\mathrm{ch}}^{0}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \gamma_{\mathrm{ch}}^{k}=\gamma^{k} .
$$

Another useful representation, known as Majorana representation, takes the following form:

$$
\gamma_{\mathrm{M}}^{0}=\left[\begin{array}{cc}
0 & \sigma^{2} \\
\sigma^{2} & 0
\end{array}\right], \gamma_{\mathrm{M}}^{1}=i\left[\begin{array}{cc}
0 & \sigma^{3} \\
\sigma^{3} & 0
\end{array}\right], \gamma_{\mathrm{M}}^{2}=i\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \gamma_{\mathrm{M}}^{3}=-i\left[\begin{array}{cc}
0 & \sigma^{1} \\
\sigma^{1} & 0
\end{array}\right] .
$$

Note that $\left(\gamma_{M}^{\mu}\right)^{*}=-\gamma_{M}^{\mu}$. Check by explicit calculation that all these reps. satisfy anticommutation relations:

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}
$$

Calculate $\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$ in all these representations. Find transformation matrices X and Y defined as:

$$
\gamma_{\mathrm{ch}}^{\mu}=X \gamma^{\mu} X^{-1}, \gamma_{\mathrm{ch}}^{\mu}=Y \gamma_{\mathrm{M}}^{\mu} Y^{-1}
$$

2. Remember that originally Dirac equation has been written in a form

$$
i \hbar \frac{\partial \psi}{\partial t}=\left(c \vec{\alpha} \cdot \vec{p}+\beta m c^{2}\right) \psi
$$

where $\vec{p}=-i \hbar \vec{\nabla}$ is the momentum operator. Relation between γ matrices and β, $\vec{\alpha}$ matrices reads as follows:

$$
\gamma^{0}=\beta, \gamma^{k}=\beta \alpha^{k}
$$

Calculate α^{k} in all the above representations of Dirac matrices.
3. Spin operator is related to the J generators of the Lorentz transformations

$$
J^{\mu \nu}=\frac{1}{2} \sigma^{\mu \nu}=\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]
$$

and reads

$$
S_{i}=\frac{1}{2} \varepsilon_{i j k} J^{j k}
$$

Calculate \vec{S} in chiral representation. Calculate \vec{S}^{2}.
4. Helicity operator is defined as

$$
h=2 \frac{\vec{S} \cdot \vec{k}}{|\vec{k}|}
$$

Prove that

$$
\gamma^{5} h=\frac{\gamma^{0} \vec{\gamma} \cdot \vec{k}}{|\vec{k}|}
$$

5. Let's denote Lorentz transformations (including boosts, rotations, space and time reflections) in a usual way

$$
x^{\mu}=\Lambda_{\nu}^{\mu} x^{\nu} .
$$

In order to calculate Lorentz transformation of the spinors consider matrix X related to the space-time point x^{μ} :

$$
X(x)=x_{\mu} \tilde{\sigma}^{\mu}=x^{0} \sigma^{0}+x^{1} \sigma^{1}+x^{2} \sigma^{2}+x^{3} \sigma^{3} .
$$

To this end it is useful to introduce the following notation

$$
\sigma^{\mu}=(1, \vec{\sigma}), \quad \tilde{\sigma}^{\mu}=(1,-\vec{\sigma})
$$

remembering that:

$$
\partial_{\mu}=\left(\partial_{t}, \vec{\nabla}\right), \quad \partial^{\mu}=\left(\partial_{t},-\vec{\nabla}\right)
$$

Show that

$$
\operatorname{det} X=x^{\mu} x_{\mu} .
$$

Therefore Lorentz transformation Λ generates $\operatorname{SL}(2, C)$ transformation of matrix X :

$$
M^{\dagger} X^{\prime} M=X
$$

where $X^{\prime}=X\left(x^{\prime}\right)$. These transformations preserve determinant. Show that

$$
\Lambda_{\nu}^{\mu}=\frac{1}{2} \operatorname{Tr}\left(\tilde{\sigma}^{\nu} M^{\dagger} \tilde{\sigma}^{\mu} M\right)=\frac{1}{2} \operatorname{Tr}\left(\sigma_{\mu} M^{\dagger} \tilde{\sigma}^{\mu} M\right) .
$$

Note that M are defined up to a phase. The same reasoning can be repeated for matrix $Y(x)$:

$$
Y(x)=x_{\mu} \sigma^{\mu}
$$

where the pertinent transformation matrix N is defined as

$$
N^{\dagger} Y^{\prime} N=Y
$$

Express Lorentz transformation Λ in terms of N. Prove that $N M^{\dagger}=1$.
Calculate Λ for

$$
M=N=\left[\begin{array}{cc}
e^{i \theta / 2} & 0 \\
0 & e^{-i \theta / 2}
\end{array}\right]
$$

and

$$
M=\left[\begin{array}{cc}
e^{\theta / 2} & 0 \\
0 & e^{-\theta / 2}
\end{array}\right], \quad N=\left[\begin{array}{cc}
e^{-\theta / 2} & 0 \\
0 & e^{\theta / 2}
\end{array}\right]
$$

where $v / c=\tanh \theta$.

