
1 Bell’s inequalities 1

One of the most difficult conceptual problems of QM is so called collaps of the wave
function. Suppose that a spinless paricle at rest decays into two massive spin 1/2 particles
that fly apart in opposite directions. After some time one measures spin projection of
one of the decay products along the quantization axis z (which may be chosen e.g. along
the direction of motion). In principle two results of such a measurement are possible,
namely ±1/2. Once this measurement is performed, the result of the measurement of
second particle’s spin, that maybe kilometers away, has to be opposite, despite the fact
that no information can be transmitted from the first measurement point to th second one.
This paradox has been pointed out by Einstein, Rosen and Podolsky, and led Einstein
to mistrust probabilistic interpretation of QM. One may imagine that the probablistic
nature of QM is a result of our limitted knowledge of all degrees of freedom of the system
in question. Such degrees of freedom are often called hidden variables. Bell has proven
that if such hidden variables existed one might propose an experiment that would allow
to distinguish QM from QM with hidden variables.

1.1 Electron spin

Consider unit vector ~nθ in x− z plane that has the following form:

~nθ = cos θ ~nz + sin θ ~nx (1)

where ~nx,z are unit vectors along x an z axis respectively. It is easy to show that the eigen
values of the spin operator

Sθ = ~nθ · ~S (2)

where ~S = (Ŝx, Ŝy, Ŝz) is spin 1/2 operator are ±1/2 (we keep h̄ = 1). Indeed

Sθ =
1

2

[
cos θ sin θ
sin θ − cos θ

]
(3)

and the eigen-equation: ∣∣∣∣ cos θ − λ sin θ
sin θ − cos θ − λ

∣∣∣∣ = 0 (4)

reads
− cos2 θ + λ2 − sin2 θ = λ2 − 1 = 0. (5)

We can arrive at the same conclusion by calculating

S2
θ =

1

4
(~nθ · ~σ) (~nθ · ~σ) =

1

4
(nθ i nθ j) (σiσj)

=
1

4
(nθ i nθ j) (δij1 + iεijkσk) =

1

4
1, (6)
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which means that the eigen-values are ±1/2.
The eigen-vectors can be calculated as follows:[

cos θ − λ sin θ
sin θ − cos θ − λ

] [
x
y

]
= 0 (7)

which reduces to one equation

(cos θ − λ)x+ sin θ y = 0. (8)

To solve this let’s use

cos θ = cos2
θ

2
− sin2 θ

2
,

sin θ = 2 sin
θ

2
cos

θ

2
. (9)

Let’s apply this to λ = 1:(
cos2

θ

2
− sin2 θ

2
− cos2

θ

2
− sin2 θ

2

)
x+ 2 sin

θ

2
cos

θ

2
y

= −2 sin2 θ

2
x+ 2 sin

θ

2
cos

θ

2
y = 0. (10)

The solution reads:
x = cos

θ

2
, y = sin

θ

2
. (11)

For λ = −1: (
cos2

θ

2
− sin2 θ

2
+ cos2

θ

2
+ sin2 θ

2

)
x+ 2 sin

θ

2
cos

θ

2
y

= 2 cos2
θ

2
x+ 2 sin

θ

2
cos

θ

2
y = 0 (12)

and the solution reads:
x = − sin

θ

2
, y = cos

θ

2
. (13)

Let’s denote these eigen-vetors as follows:

|+〉θ = + cos
θ

2
|+〉+ sin

θ

2
|−〉 ,

|−〉θ = − sin
θ

2
|+〉+ cos

θ

2
|−〉 . (14)

Let’s assume that electron is initially in the state |+〉θ. Then we measure its spin
along a different axis characterized by vector ~nα. Again eigen-values of the operator Sα



are ±1/2. Let’s calculate corresponding probabilities:

α〈+ |+〉θ = cos
α

2
cos

θ

2
+ sin

α

2
sin

θ

2

= cos
θ − α

2
, (15)

α〈− |+〉θ = − sin
α

2
cos

θ

2
+ cos

α

2
sin

θ

2

= sin
θ − α

2
. (16)

α〈− |−〉θ = sin
α

2
sin

θ

2
+ cos

α

2
cos

θ

2

= cos
θ − α

2
(17)

Hence

P+(α) = α〈+ |+〉2θ = cos2
θ − α

2
,

P−(α) = α〈− |+〉2θ = sin2 θ − α
2

. (18)

From Eqs.(15,16) we have

|+〉θ = + cos
θ − α

2
|+〉α + sin

θ − α
2
|−〉α

|−〉θ = − sin
θ − α

2
|+〉α + cos

θ − α
2
|−〉α (19)

It is now straigthforward to calculate the expectation value

θ〈+|Sα |+〉θ =
1

2

(
cos2

θ − α
2
− sin2 θ − α

2

)
=

1

2
cos(θ − α). (20)

It is easy to show that

θ〈−|Sα |−〉θ = −1

2
cos(θ − α). (21)

We will also need

θ〈−|Sα |+〉θ =
1

2

(
− sin

θ − α
2

cos
θ − α

2
− sin

θ − α
2

cos
θ − α

2

)
= −1

2
sin(θ − α). (22)

1.2 Correlations between two spins

Consider a hydrogen atom that dissociates into a proton and electron. Assume that the
electron-proton system is in the factorized spin state

|e : +〉θ |p : −〉θ (23)



Suppose we measure now electron spin along axis ~nα, with the pertinent operator denoted
as Seα. Obviously the probability of finding +1/2 is the same as previously

P e
+(α) = cos2

θ − α
2

,

however after the measurement the system is now in a state

|e : +〉α |p : −〉θ . (24)

The proton spin remains unaffected by this measurement, beacsue the intial state was
factorized.

It is easy to calculate expectation values of the spin operators Seα and Spβ in state (23):

〈Seα〉 = θ〈e : +|Seα |e : +〉θ θ〈p : −|1p |p : −〉θ
=

1

2
cos(θ − α) (25)

and 〈
Spβ
〉

= θ〈e : +|1e |e : +〉θ θ〈p : −|Spβ |p : −〉θ

= −1

2
cos(θ − β). (26)

Finally we can also quite easily calculate〈
Seα ⊗ S

p
β

〉
= θ〈e : +|Seα |e : +〉θ θ〈p : −|Spβ |p : −〉θ

= −1

4
cos(θ − α) cos(θ − β). (27)

With these results and (6) we can compute the correlation coefficient

E(α, β) =

〈
Seα ⊗ S

p
β

〉
− 〈Seα〉

〈
Spβ
〉√

〈Se 2α 〉
〈
Sp 2β
〉 = 0.

This result reflects the fact that the system was in a factorized state.

1.3 Correlations in the singlet state

Let’s assume that after the dissociation proton and electron are in the singlet state:

|0〉 =
1√
2

(|e : +〉 |p : −〉 − |e : −〉 |p : +〉) . (28)

Suppose we measure Seα, what are the possible results and their probabilities. To this end
let us decompose electron unity operator in the basis of the eigenstates of Seα:

1 = |e : +〉αα 〈e : +| ⊗ 1p + |e : −〉αα 〈e : −| ⊗ 1p (29)



and apply it to the state (28):

|0〉 =
1√
2

[|e : +〉αα 〈e : +| e : +〉 |p : −〉 − |e : +〉αα 〈e : +| e : −〉 |p : +〉

+ |e : −〉αα 〈e : −| e : +〉 |p : −〉 − |e : −〉αα 〈e : −| e : −〉 |p : +〉] (30)

and use Eqs.(15-17)

|0〉 =
1√
2

[
cos

α

2
|e : +〉α |p : −〉 − sin

α

2
|e : +〉α |p : +〉

− sin
α

2
|e : −〉αα |p : −〉 − cos

α

2
|e : −〉α |p : +〉

]
. (31)

Possible results are

• +1/2 with probability

P+(α) =
1

2
cos2

α

2
+

1

2
sin2 α

2
=

1

2
(32)

• −1/2 with probability

P−(α) =
1

2

as well.

Let’s assume that the result of the measurement was +1/2. This means that after the
measurement the wave function collapsed to

|0〉 →
Seα=+ 1

2

|Φ〉 = cos
α

2
|e : +〉α |p : −〉 − sin

α

2
|e : +〉α |p : +〉

= |e : +〉α |p : −〉α . (33)

If we now measure Spβ we have again two possible results ±1/2 with the following proba-
bilities

P+(β) = | β〈+ |−〉α| = sin2 α− β
2

,

P−(β) = | β〈− |−〉α| = cos2
α− β

2
. (34)

Let us summarize: in the first measurement of electron spin we get both possible results
with the same probability 1/2 but the probabilities to get±1/2 in the second measurement
of the proton spin depend on the relative angle between the measurerement axes and are
in general not equal. Had we measuered the proton spin first, we would have obtained
±1/2 with equal probabilities 1/2. This difference was unnaceptable for Einstein who
claimed that "the real states of two spatially separated objects must be independent of
one another". This simple example leads to a conclusion that QM is not a local theory



as far as mesurement is concerned. This non-locality, however, does not allow for the
instantenous transmition of information. In each single measurement of the proton spin
we cannot tell whether the electron spin has been measured before. One needs a series of
experiments on the same state to find this non-local character of QM.

Let us now calculate correlation coefficient E(α, β). Let’s start from the averages:

〈0|Seα |0〉 =
1

2
〈e : +|Seα |e : +〉+

1

2
〈e : −|Seα |e : −〉

=
1

2
(cosα− cosα) = 0 (35)

where we have used (20) and (21). The same result holds for the proton

〈0|Spβ |0〉 = 0. (36)

Let us now calculate

〈0|Seα ⊗ S
p
β |0〉 =

1

2

(
〈+|Seα |+〉 〈−|S

p
β |−〉 − 〈+|S

e
α |−〉 〈−|S

p
β |+〉

− 〈−|Seα |+〉 〈+|S
p
β |−〉+ 〈−|Seα |−〉 〈+|S

p
β |+〉

)
=

1

8
2 (− cosα cos β − sinα sin β)

= −1

4
cos(α− β) (37)

where we have used (20-22). Hence

E(α, β) =
−1

4
cos(α− β)√

1
4
1
4

= − cos(α− β). (38)

1.4 Simple hidden variable model

Here we propose a simple model of hidden variables. Assume that after the decay the
system is in a factorized state (23)

|e : +〉θ |p : −〉θ (39)

however direction ~nθ varies from event to event. In this case angle θ is a hidden variable.
Assuming that all directions θ are equaly probable we define now the expectation value
of an observable O as

〈O〉 =

2π∫
0

dθ

2π
θ〈p : −|θ〈e : +| O |e : +〉θ |p : −〉θ . (40)

Let’s first calculate expectation value of the electron spin

〈Seα〉 =

2π∫
0

dθ

2π

1

2
cos(θ − α) = 0 (41)



as in the case of the singlet state. The same applies to the proton spin. Therefore
our simple hidden variable model reproduce in this case the results of QM. For double
correlation we get however different result:

〈
Seα ⊗ S

p
β

〉
= −

2π∫
0

dθ

2π

1

2
cos(θ − α)

1

2
cos(θ − β)

= −1

4

2π∫
0

dθ

2π
(cos θ cosα + sin θ sinα) (cos θ cos β + sin θ sin β)

= −1

4

2π∫
0

dθ

2π

[
cos2 θ cosα cos β + cos θ sin θ (cosα sin β + sinα cos β) + sin2 θ sinα sin β

]
.

Taking into account that

2π∫
0

dθ

2π
cos2 θ =

2π∫
0

dθ

2π
sin2 θ =

1

2
,

2π∫
0

dθ

2π
cos θ sin θ = 0 (42)

we get 〈
Seα ⊗ S

p
β

〉
= −1

8
(cosα cos β + sinα sin β) = −1

8
cos(α− β). (43)

Finally

E(α, β) =
−1

8
cos(α− β)√

1
4
1
4

= −1

2
cos(α− β) (44)

is twice smaller than the QM result (38). Therefore by measuring E one can distinguish
between QM and hidden variable model. Question arises whether it is just an accidental
feature of our simple hidden variable model, or whether it is generally impossible to
construct a hidden variable model that would reproduce E of QM.

1.5 Bell’s theorem

Bell proved in 1965 that the disagreement between QM and hidden variable theories is
very general. Consider hidden variable (λ) theory characterized by two functions

A(λ, ~nα) = ±1

2
, B(λ, ~nβ) = ±1

2
depending on λ (45)

corresponding to electron and proton spin, respectively. Note that B does not depend
on ~nα and A does not depend on ~nβ. This locality requirement is essential for further



discussion. We shall assume that λ is distributed according to the probability distribution
P (λ) ≥ 0 such that ∫

dλP (λ) = 1 (46)

and

〈Seα〉 =

∫
dλP (λ)A(λ, ~nα) = 0,〈

Spβ
〉

=

∫
dλP (λ)B(λ, ~nβ) = 0 (47)

to be compatible with (35,36) and (41). Therefore in the framework of hidden variable
theory

E(α, β) = 4

∫
dλP (λ)A(λ, ~nα)B(λ, ~nβ). (48)

We shall now define quantity S

S = E(α, β) + E(α, β′) + E(α′, β′)− E(α′, β) (49)

and prove that in hidden variable theory for any angles α, α′, β, β′

|S| ≤ 2. (50)

Equation (50) is called Bell’s inequality. We will show that in QM for some choices of
angles α, α′, β, β′ it is possible that |S| > 2. To this end let us first show that

s = A(λ, α)B(λ, β) + A(λ, α)B(λ, β′) + A(λ, α′)B(λ, β′)− A(λ, α′)B(λ, β) = ±1

2
. (51)

Indeed
s = A(λ, α)[B(λ, β) +B(λ, β′)]︸ ︷︷ ︸

±1 or 0

+ A(λ, α′)[B(λ, β′)−B(λ, β)]︸ ︷︷ ︸
0 or ±1

(52)

Note that A is either 1/2 or −1/2. So whenever the first [. . .] 6= 0

−1

2
≤
∫
dλP (λ)A(λ, α) [B(λ, β) +B(λ, β′)] ≤ 1

2
(53)

and whenever the second [. . .] 6= 0

−1

2
≤
∫
dλP (λ)A(λ, α′) [B(λ, β′)−B(λ, β)] ≤ 1

2
. (54)

Because E has in denominator 1/4,we arrive at (50).
In QM

S = − cos(α− β︸ ︷︷ ︸
=θ1

)− cos(α− β′︸ ︷︷ ︸
=−θ2

)− cos(α′ − β′︸ ︷︷ ︸
=θ3

) + cos(α′ − β︸ ︷︷ ︸
=θ4

). (55)



Note that
θ1 + θ2 + θ3 = α− β + β′ − α + α′ − β′ = α′ − β = θ4. (56)

Therefore
S = − cos θ1 − cos θ2 − cos θ3 + cos(θ1 + θ2 + θ3). (57)

Let’s make a speciphic coice of angles θ1,2,3:

θ1 = θ2 = θ3
df
= θ (58)

With this choice
S = −3 cos θ + cos(3θ). (59)

Let’s plot S(θ):
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We see that there are regions (shaded areas) where where Bell’s inequality (50) is violated
but allowed by QM.


