
QCD lecture 9
November 23



QM - reminder
Schrödinger eq.

propagates solution from a =(xa ,ta) to b=(xb ,tb)
(remember H is an operator)
Define propagator:

recall Dirac notation                                      and plane wave solution
complex conjugate  

completness relation

We shall use the following normalization:



Path integral for the propgator
Discretize time

set 

“slice” evolution operator

insert inbetween unity



Path integral for the propgator
Decompose hamiltonian

and use:

which is true only for small ε

Baker-Cambell-Hausdorff: define C

then
~ ε2

Therefore



Path integral for the propgator
We need to calculate
(distinguish operators from eigenalues)

recall normalization

where we have used

bur remember:



Path integral for the propgator

Define functional integration measure
integration over all trajectories from
a to b

and use definition of action 

to arrive at

special role of the classical trajectory
i.e. stationary point of action



Euclidean path integral
Change

then

for large τ only the ground state survives

Feynman-Kac formula

In Euclidean one can perform computer simulations



Gaussian functional integrals
Assume that path integral is the way we formulate QM (and QFT). All properties
and equations are derived from the path integral. In practice we deal with 
Gaussian functional integrals:

Propagator:

To evaluate K decompose the quantal trajectory into the classicel one

and a fluctuation

Since terms linear in y vanish

for convenience T = tb - ta



Gaussian functional integrals
Since           is fixed we have
and

where

Recall: 

identities:
(integration by parts)

we get
definition of D



Gaussian functional integrals

D is a Sturm-Liouville operator

Example:

Use yn basis to expand                                           then

and 



Path integral revisited
We have performed dp integral using a specific form of the hamiltonian

however we do need to use this information. We only have to remember

Let’s recalculate

Hence:



Transition amplitudes
Consider matrix element of a position operator  Q  measuring expectation value of
the position at time t1

We have

which lead to

Similarly for 



Transition amplitudes
Define time dependent operator                                          and

then  

operators                                                functions

Note that l.h.s is very different when t1 > t2 , whereas r.h.s. is the same because 
classical  trajectories commute. Introduce time ordering T

then

generally
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Functional sources an derivatives
One can derive transtion amplitudes with the help of generating functional

where j(t) is some arbitrary function of time and Q(t) is and operator
Amplidudes are given as functional derivatives

Functional derivatives act essentially as regular differenciation with one additional
property

values of function j(t) at different times 
are independent variables

Generating functional has path integral representation (Lagrange)



Functional sources an derivatives
One can derive transtion amplitudes with the help of generating functional

where j(t) is some arbitrary function of time and Q(t) is and operator
Amplidudes are given as functional derivatives

Functinal derivatives act essentially as regular differenciation with one additional
property

values of function j(t) at different times 
are independent variables

Generating functional has path integral representation (Hamilton)



Ground state projection
Initial and final states do not have to be position eigenstates. Consider some 
operator O and some state ψ

Then

In practice we often need matrix element when ininitial and final states are the ground
states:

Assume that E0 = 0 (shifting energy) and multiply the hamiltonian by

Then all factors go to 0 for                   except for the ground state



Ground state projection
With                 prescripton

The generating functional is then vacuum expectation value and reads (Hamilton)

or (Lagrange)

Normalization


