QCD lecture 9

November 23

QM - reminder

Schrödinger eq.

$$
i \hbar \frac{\partial \Psi\left(x, t_{b}\right)}{\partial t_{b}}=H \Psi\left(x, t_{b}\right)
$$

propagates solution from $a=\left(x_{a}, t_{a}\right)$ to $b=\left(x_{b}, t_{b}\right) \quad \Psi\left(x, t_{b}\right)=e^{-\frac{i}{\hbar} H\left(t_{b}-t_{a}\right)} \Psi\left(x, t_{a}\right)$
(remember H is an operator)
Define propagator:

$$
\left.K(b, a)=<x_{b}\left|e^{-\frac{i}{\hbar} H\left(t_{b}-t_{a}\right)}\right| x_{a}\right\rangle
$$

recall Dirac notation

$$
\begin{array}{rlrl}
\Psi(x)=<x \mid \Psi> & \text { and plane wave solution } & <x \left\lvert\, p>=N e^{\frac{i}{\hbar} p x}\right. \\
& \text { complex conjugate } & & <p \left\lvert\, x>=N e^{-\frac{i}{\hbar} p x}\right.
\end{array}
$$

completness relation

$$
\sum_{p}|p><p|=\sum_{x}|x><x|=1
$$

We shall use the following normalization: $\quad\langle p \mid y\rangle=\sqrt{\frac{1}{2 \pi \hbar}} e^{-\frac{i}{\hbar} p y}$

Path integral for the propgator

$$
K(b, a)=<x_{b}\left|e^{-\frac{i}{\hbar} H\left(t_{b}-t_{a}\right)}\right| x_{a}>
$$

Discretize time

$$
\text { set } \hbar=m=1
$$

"slice" evolution operator

$$
e^{-i\left(t_{b}-t_{b}\right) H}=e^{-i \epsilon N H}=e^{-i \epsilon H} e^{-i \epsilon H} \ldots e^{-i \epsilon H}
$$

insert inbetween unity $1=\int d x_{j}\left|x_{j}><x_{j}\right|$

$$
\begin{aligned}
&<x_{b}\left|e^{-i\left(t_{b}-t_{a}\right) H}\right| x_{a}>=\int<x_{b}\left|e^{-i \epsilon H}\right| x_{N-1}>d x_{N-1}<x_{N-1}\left|e^{-i \epsilon H}\right| x_{N-2}> \\
& \ldots<x_{2}\left|e^{-i \epsilon H}\right| x_{1}>d x_{1}<x_{1}\left|e^{-i \epsilon H}\right| x_{a}>
\end{aligned}
$$

Path integral for the propgator

Decompose hamiltonian $\quad H=\frac{p^{2}}{2 m}+V(x)=K+V$
and use:

$$
e^{-i \epsilon H}=e^{-i \epsilon(K+V)}=e^{-i \epsilon K} e^{-i \epsilon V}+O\left(\epsilon^{2}\right)
$$

which is true only for small ε
Baker-Cambell-Hausdorff: define $C \quad e^{A} e^{B}=e^{C}$
then $\quad C=A+B+\frac{1}{2}[\underset{\sim}{\sim} \underset{\sim}{\sim}, B]+\frac{1}{12}[A,[A, B]]+\frac{1}{12}[[A, B], B]+\ldots$
Therefore

$$
\begin{aligned}
K(b, a) & =<x_{b}\left|e^{-i\left(t_{b}-t_{a}\right) H}\right| x_{a}> \\
& =\int<x_{b}\left|e^{-i \epsilon K}\right| x_{N-1}>e^{-i \epsilon V\left(x_{N-1}\right)} d x_{N-1}<x_{N-1}\left|e^{-i \epsilon K}\right| x_{N-2}> \\
& \times e^{-i \epsilon V\left(x_{N-2}\right)} d x_{N-2} \quad \ldots \quad d x_{1}<x_{1}\left|e^{-i \epsilon K}\right| x_{a}>e^{-i \epsilon V\left(x_{a}\right)}
\end{aligned}
$$

Path integral for the propgator

We need to calculate $\left.<x\left|e^{-\frac{i}{\hbar} \epsilon K}\right| y>=\int d p<x\left|e^{-\frac{i}{\hbar} \epsilon \frac{p^{2}}{2 m}}\right| p><p \right\rvert\, y>$
(distinguish operators from eigenalues)

$$
=\int d p<x|p\rangle e^{\frac{-i \epsilon p^{2}}{\hbar 2 m}}<p|y\rangle
$$

recall normalization $\langle p \mid y\rangle=\sqrt{\frac{1}{2 \pi \hbar}} e^{-\frac{i}{\hbar} p y}$

$$
<x\left|e^{-\frac{i}{\hbar} \epsilon K}\right| y>=\frac{1}{2 \pi \hbar} \int_{-\infty}^{+\infty} d p e^{\frac{-i \epsilon p^{2}}{2 m \hbar}} e^{-\frac{i}{\hbar}(y-x) p}=\sqrt{\frac{m}{2 i \pi \hbar \epsilon}} e^{i m \frac{(y-x)^{2}}{2 \epsilon \hbar}}
$$

where we have used

$$
\int_{-\infty}^{+\infty} d x e^{a x^{2}+b x}=\sqrt{\frac{\pi}{-a}} e^{-\frac{b^{2}}{4 a}}, \quad \operatorname{Re} a \leq 0
$$

bur remember:

$$
\frac{i}{2 \hbar} m\left(\frac{y-x}{\epsilon}\right)^{2} \epsilon=\frac{i}{\hbar} \frac{m v^{2}}{2} \epsilon
$$

$$
L_{j}=\frac{1}{2} m\left(\frac{x_{j+1}-x_{j}}{\epsilon}\right)^{2}-V\left(x_{j}\right)
$$

Path integral for the propgator

$$
\stackrel{\text { def }}{=} \int[\mathcal{D} x(t)] e^{\frac{i}{\hbar} \int_{t_{a}}^{t_{b}} d t L[x(t), \dot{x}(t)]}
$$

Define functional integration measure integration over all traiectories from a to b

$$
[\mathcal{D} x(t)]=d x_{1} \ldots d x_{N-1}\left(\frac{m}{2 i \epsilon \hbar \pi}\right)^{\frac{1}{2} N}
$$

and use definition of action

$$
\text { to arrive at } \quad \lim _{\epsilon \rightarrow 0} \sum_{j=0}^{N-1} \epsilon L_{j}=\int_{t_{a}}^{t_{b}} d t L(x(t), \dot{x}(t))=S[x(t)]
$$

$$
K(b, a)=\int[\mathcal{D} x(t)] e^{\frac{i}{\hbar} S[x(t)]}
$$

special role of the classical trajectory
i.e. stationary point of action

Euclidean path integral

Change $\quad t \rightarrow-i \tau$
then

$$
\begin{aligned}
K\left(x_{b}, x_{a},-i \tau\right) & =<x_{b}\left|e^{-\frac{H}{\hbar} \tau}\right| x_{a}> \\
& =\sum_{n, n^{\prime}}<x_{b}\left|E_{n}><E_{n}\right| e^{-\frac{H}{\hbar} \tau}\left|E_{n^{\prime}}><E_{n^{\prime}}\right| x_{a}> \\
& =\sum_{n} e^{-\frac{E_{n}}{\hbar} \tau} \phi_{n}\left(x_{b}\right) \phi_{n}^{*}\left(x_{a}\right) .
\end{aligned}
$$

for large τ only the ground state survives
Feynman-Kac formula $\quad E_{0}=-\lim _{\tau \rightarrow \infty}\left\{\frac{\hbar}{\tau} \ln \left(K\left(x_{b}, x_{a},-i \tau\right)\right)\right\}$

In Euclidean one can perform computer simulations

$$
K_{n}(x, x,-i \tau)=\int d x_{1} d x_{2} \ldots d x_{n}\left(\frac{1}{2 \pi \epsilon}\right)^{\frac{1}{2}(n+1)} e^{\left.-\epsilon \sum_{j=0}^{n}\left\{\frac{1}{2} \frac{x_{j+1}-x_{j}}{\epsilon}\right)^{2}+V\left(x_{j}\right)\right\}}
$$

Gaussian functional integrals

Assume that path integral is the way we formulate QM (and QFT). All properties and equations are derived from the path integral. In practice we deal with Gaussian functional integrals:

$$
L(\dot{x}, x, t)=a(t) \dot{x}^{2}(t)+b(t) \dot{x} x+c(t) x^{2}+d(t) \dot{x}+e(t) x+f(t)
$$

Propagator:

$$
K\left(x_{b}, x_{a}, t_{b}-t_{a}\right)=\int[\mathcal{D} x(t)] e^{\frac{i}{\hbar} \int_{t_{a}}^{t_{b}} d t L(\dot{x}, x, t)}
$$

To evaluate K decompose the quantal trajectory into the classicel one $\bar{x}(t)$

$$
\delta S[x(t)]=0 \quad \text { gives } \quad \bar{x}(t)
$$

and a fluctuation $y(t)$:

$$
x(t)=\bar{x}(t)+y(t), \quad y\left(t_{b}\right)=y\left(t_{a}\right)=0
$$

Since terms linear in y vanish
for convenience $T=t_{b}-t_{a}$

$$
\begin{aligned}
& S[\bar{x}(t)+y(t)]=S[\bar{x}(t)]+\frac{1}{2} \delta^{2} S[y(t)] \\
= & S[\bar{x}]+\frac{1}{2!} \int_{0}^{T}\left[\frac{\partial^{2} L}{\partial \dot{x}^{2}} \dot{y}^{2}+2 \frac{\partial^{2} L}{\partial x \partial \dot{x}} \dot{y} y+\frac{\partial^{2} L}{\partial x^{2}} y^{2}\right] d t
\end{aligned}
$$

Gaussian functional integrals

Since $\bar{x}(t)$ is fixed we have $\mathcal{D} x(t)=\mathcal{D} y(t)$ and

$$
K\left(x_{b}, x_{a}, t_{b}-t_{a}\right)=F\left(t_{b}-t_{a}\right) e^{\frac{i}{\hbar} S[\bar{x}(t)]}
$$

where

$$
F\left(t_{b}-t_{a}\right)=\int[\mathcal{D} y(t)] e^{\frac{i}{\hbar} \frac{1}{2} \delta^{2} S[y(t)]}
$$

Recall:

$$
\delta^{2} S=\int_{0}^{T}\left[\dot{y} \frac{\partial^{2} L}{\partial \dot{x}^{2}} \dot{y}+2 y \frac{\partial^{2} L}{\partial x \partial \dot{x}} \dot{y}+y \frac{\partial^{2} L}{\partial x^{2}} y\right] d t
$$

identities:
(integration by parts) $\quad \dot{y} \frac{\partial^{2} L}{\partial \dot{x}^{2}} \dot{y}=\frac{d}{d t}\left(y \frac{\partial^{2} L}{\partial \dot{x}^{2}} \dot{y}\right)-y \frac{d}{d t}\left(\frac{\partial^{2} L}{\partial \dot{x}^{2}} \dot{y}\right)$

$$
y(0)=y(T)=0
$$

$$
2 y \frac{\partial^{2} L}{\partial x \partial \dot{x}} \dot{y}=\frac{d}{d t}\left(\frac{\partial^{2} L}{\partial x \partial \dot{x}} y^{2}\right)-y \frac{d}{d t}\left(\frac{\partial^{2} L}{\partial x \partial \dot{x}}\right) y
$$

$\begin{aligned} & \text { we get } \\ & \text { definition of } D\end{aligned} \delta^{2} S=-\int_{0}^{T} y\left[\frac{d}{d t}\left(\frac{\partial^{2} L}{\partial \dot{x}^{2}} \dot{y}\right)+\frac{d}{d t}\left(\frac{\partial^{2} L}{\partial x \partial \dot{x}}\right) y-\frac{\partial^{2} L}{\partial x^{2}} y\right] d t=\int_{0}^{T} y D(t) y d t$

Gaussian functional integrals

$$
\delta^{2} S=-\int_{0}^{T} y\left[\frac{d}{d t}\left(\frac{\partial^{2} L}{\partial \dot{x}^{2}} \dot{y}\right)+\frac{d}{d t}\left(\frac{\partial^{2} L}{\partial x \partial \dot{x}}\right) y-\frac{\partial^{2} L}{\partial x^{2}} y\right] d t=\int_{0}^{T} y D(t) y d t .
$$

D is a Sturm-Liouville operator $\quad D(t) y_{n}(t)=\lambda_{n} y_{n}(t), \quad n=1,2,3, \ldots, \quad \lambda_{1}<\lambda_{2}<\ldots$
Example: $\quad L=\frac{1}{2} m \dot{x}^{2}-V(x)$

$$
D(t)=-m \frac{\partial^{2}}{\partial t^{2}}-\left.\frac{\partial^{2} V}{\partial x^{2}}\right|_{x=\bar{x}(t)}
$$

Use y_{n} basis to expand $y(t)=\sum_{n=1}^{\infty} a_{n} y_{n}(t) \quad$ then $\quad \delta^{2} S[y]=\sum_{n=1}^{\infty} \lambda_{n} a_{n}^{2}$ and $\quad[\mathcal{D} y(t)] \sim \prod_{n=1}^{\infty} d a_{n}$

$$
F(T) \sim \prod_{n=1}^{\infty} d a_{n} \exp \left(\frac{i}{2 \hbar} \lambda_{n} a_{n}^{2}\right) \sim \sqrt{\frac{1}{\prod_{n} \lambda_{n}}}=\sqrt{\frac{1}{\operatorname{det} D(t)}}
$$

Path integral revisited

We have performed $d p$ integral using a specific form of the hamiltonian

$$
H=\frac{p^{2}}{2 m}+V(x)
$$

however we do need to use this information. We only have to remember

$$
\mathcal{L}=p \dot{q}-H(p, q)
$$

Let's recalculate

$$
\begin{aligned}
\langle x, t+\varepsilon \mid y, t\rangle & =\langle x| e^{-i H \varepsilon}|y\rangle \\
& =\int \frac{d p}{2 \pi} e^{i p(x-y)} e^{-i H \varepsilon} \\
& =\int \frac{d p}{2 \pi} \exp i\left[p \frac{(x-y)}{\varepsilon}-H(p, x)\right] \varepsilon \\
& =\int \frac{d p}{2 \pi} \exp i[p \dot{x}-H(p, x)] \varepsilon
\end{aligned}
$$

Hence:

$$
K(b, a) \sim \int \mathcal{D}[x(t)] \int \mathcal{D}[p(t)] \exp \left(\frac{i}{\hbar} \int d t[p \dot{x}-H(p, x)]\right)
$$

Transition amplitudes

Consider matrix element of a position operator Q measuring expectation value of the position at time t_{1}

$$
\left\langle q_{f}\right| e^{-i \mathcal{H}\left(t_{f}-t_{1}\right)} Q e^{-i \mathcal{H}\left(t_{1}-t_{i}\right)}\left|q_{i}\right\rangle
$$

We have
which lead to

$$
\mathrm{Q} \rightarrow \int \mathrm{dqdq}{ }^{\prime}|\mathrm{q}\rangle \underbrace{\langle\mathrm{q}| \mathrm{Q}\left|\mathrm{q}^{\prime}\right\rangle}_{\mathrm{q} \delta\left(\mathrm{q}-\mathrm{q}^{\prime}\right)}\left\langle\mathrm{q}^{\prime}\right|=\int \mathrm{dq} \mathrm{q}|\mathrm{q}\rangle\langle\mathrm{q}|
$$

$$
\begin{aligned}
&\left\langle q_{f}\right| e^{-i \mathcal{H}\left(t_{f}-t_{2}\right)} Q e^{-i \mathcal{H}\left(t_{2}-t_{1}\right)} Q e^{-i \mathcal{H}\left(t_{1}-t_{i}\right)}\left|q_{i}\right\rangle= \\
&=\int_{\begin{array}{c}
q\left(t_{i}\right)=q_{i} \\
q\left(t_{f}\right)=q_{f}
\end{array}}[D q(t)] q\left(t_{1}\right) q\left(t_{2}\right) e^{i \mathcal{S}[q(t)]}
\end{aligned}
$$

Transition amplitudes

F. Gelis: A Stroll Through Field Theory

Define time dependent operator $\quad \mathrm{Q}(\mathrm{t}) \equiv \mathrm{e}^{\mathfrak{i} \mathcal{H} t} \mathrm{Q} e^{-\boldsymbol{i} \mathcal{H} t}$ and $\quad|\mathrm{q}, \mathrm{t}\rangle \equiv \mathrm{e}^{\mathrm{iHt}}|\mathrm{q}\rangle$
then

Note that I.h.s is very different when $t_{1}>t_{2}$, whereas r.h.s. is the same because classical trajectories commute. Introduce time ordering T

$$
\mathrm{T}\left(Q\left(t_{1}\right) Q\left(t_{2}\right)\right)=\theta\left(t_{1}-t_{2}\right) Q\left(t_{1}\right) Q\left(t_{2}\right)+\theta\left(t_{2}-t_{1}\right) Q\left(t_{2}\right) Q\left(t_{1}\right)
$$

then

$$
\left\langle q_{f}, t_{f}\right| T\left(Q\left(t_{1}\right) Q\left(t_{2}\right)\right)\left|q_{i}, t_{i}\right\rangle=\int_{\substack{q\left(t_{i}\right)=q_{i} \\ q\left(t_{f}\right)=q_{f}}}[D q(t)] q\left(t_{1}\right) q\left(t_{2}\right) e^{i \delta[q(t)]}
$$

Functional sources an derivatives

One can derive transtion amplitudes with the help of generating functional

$$
Z_{f i}[j(t)] \equiv\left\langle q_{f}, t_{f}\right| T \exp i \int_{t_{i}}^{t_{f}} d t j(t) Q(t)\left|q_{i}, t_{i}\right\rangle
$$

where $j(t)$ is some arbitrary function of time and $Q(t)$ is and operator Amplidudes are given as functional derivatives

$$
\left\langle q_{f}, t_{f}\right| T\left(Q\left(t_{1}\right) \cdots Q\left(t_{n}\right)\right)\left|q_{i}, t_{i}\right\rangle=\left.\frac{\delta^{n} Z_{f i}[j]}{i^{n} \delta j\left(t_{1}\right) \cdots \delta j\left(t_{n}\right)}\right|_{j \equiv 0}
$$

Functional derivatives act essentially as regular differenciation with one additional property

$$
\frac{\delta \mathfrak{j}(\mathrm{t})}{\delta \mathfrak{j}\left(\mathrm{t}^{\prime}\right)}=\delta\left(\mathrm{t}-\mathrm{t}^{\prime}\right) \quad \begin{aligned}
& \text { values of function } j(t) \text { at different times } \\
& \text { are independent variables }
\end{aligned}
$$

Generating functional has path integral representation (Lagrange)

$$
Z_{f i}[j(t)]=\int_{\substack{q\left(t_{i}\right)=q_{i} \\ q\left(t_{f}\right)=q_{f}}}[D q(t)] e^{i S[q(t)]+i \int_{t_{i}}^{t_{f}} d t j(t) q(t)}
$$

Functional sources an derivatives

One can derive transtion amplitudes with the help of generating functional

$$
Z_{f i}[j(t)] \equiv\left\langle q_{f}, t_{f}\right| T \exp i \int_{t_{i}}^{t_{f}} d t j(t) Q(t)\left|q_{i}, t_{i}\right\rangle
$$

where $j(t)$ is some arbitrary function of time and $Q(t)$ is and operator Amplidudes are given as functional derivatives

$$
\left\langle q_{f}, t_{f}\right| T\left(Q\left(t_{1}\right) \cdots Q\left(t_{n}\right)\right)\left|q_{i}, t_{i}\right\rangle=\left.\frac{\delta^{n} Z_{f i}[j]}{i^{n} \delta j\left(t_{1}\right) \cdots \delta j\left(t_{n}\right)}\right|_{j \equiv 0}
$$

Functinal derivatives act essentially as regular differenciation with one additional property

$$
\frac{\delta \mathfrak{j}(\mathrm{t})}{\delta \mathfrak{j}\left(\mathrm{t}^{\prime}\right)}=\delta\left(\mathrm{t}-\mathrm{t}^{\prime}\right) \quad \begin{aligned}
& \text { values of function } j(t) \text { at different times } \\
& \\
& \text { are independent variables }
\end{aligned}
$$

Generating functional has path integral representation (Hamilton)

$$
\begin{aligned}
& Z_{f i}[j(t)]=\int_{\substack{q\left(t_{i}\right)=q_{i} \\
q\left(t_{f}\right)=q_{f}}}[D p(t) D q(t)] \\
& \times \exp \left\{i \int_{\mathrm{t}_{\mathrm{i}}}^{\mathrm{t}_{\mathrm{f}}} \mathrm{dt}(\mathfrak{p}(\mathrm{t}) \dot{\mathbf{q}}(\mathrm{t})-\mathcal{H}(\mathbf{p}(\mathrm{t}), \mathrm{q}(\mathrm{t}))+\mathfrak{j}(\mathrm{t}) \mathbf{q}(\mathrm{t}))\right\}
\end{aligned}
$$

Ground state projection

Initial and final states do not have to be position eigenstates. Consider some operator O and some state ψ

$$
\psi(q) \equiv\langle q \mid \psi\rangle
$$

Then

$$
\left\langle\psi_{f}, t_{f}\right| \mathcal{O}\left|\psi_{i}, t_{i}\right\rangle=\int d q_{i} d q_{f} \psi_{f}^{*}\left(q_{f}\right) \psi_{i}\left(q_{i}\right)\left\langle q_{f}, t_{f}\right| \mathcal{O}\left|q_{i}, t_{i}\right\rangle
$$

In practice we often need matrix element when ininitial and final states are the ground states:

$$
\begin{aligned}
\left|q_{i}, t_{i}\right\rangle & =e^{i \mathcal{H} t_{i}}\left|q_{i}\right\rangle \\
& =\sum_{n=0}^{\infty} e^{i \mathcal{H} t_{i}}|n\rangle\left\langle n \mid q_{i}\right\rangle \\
& =\sum_{n=0}^{\infty} \psi_{n}^{*}\left(q_{i}\right) e^{i E_{n} t_{i}}|n\rangle
\end{aligned}
$$

Assume that $E_{0}=0$ (shifting energy) and multiply the hamiltonian by $1-\mathrm{i}^{+}$
Then all factors $\exp \left(i\left(1-i 0^{+}\right) E_{n} t_{i}\right)$ go to 0 for $t_{i} \rightarrow-\infty$ except for the ground state

Ground state projection

With $1-\mathfrak{i 0 ^ { + }}$ prescripton

$$
\lim _{t_{i} \rightarrow-\infty}\left|q_{i}, t_{i}\right\rangle=\psi_{0}^{*}\left(q_{i}\right)|0\rangle \quad \lim _{t_{f} \rightarrow+\infty}\left\langle q_{f}, t_{f}\right|=\psi_{0}\left(q_{f}\right)\langle 0|
$$

The generating functional is then vacuum expectation value and reads (Hamilton)

$$
\begin{aligned}
& Z[j(t)]=\int[D p(t) D q(t)] \\
& \quad \times \exp \left\{i \int d t\left(p(t) \dot{q}(t)-\left(\underline{1-i 0^{+}}\right) \mathcal{H}(p(t), q(t))+j(t) q(t)\right)\right\}
\end{aligned}
$$

or (Lagrange)

$$
\begin{aligned}
& Z[j(t)]=\int[D q(t)] \\
& \quad \times \exp \left\{i \int d t\left(\left(1+i 0^{+}\right) \frac{m \dot{q}^{2}(t)}{2}-\left(1-i 0^{+}\right) V(q(t))+j(t) q(t)\right)\right\}
\end{aligned}
$$

Normalization $Z[0]=1$

