QCD lecture 8

November 18

Axial anomaly

pseudoscalar density

Gauge invariance of QED (and QCD):

$$
q_{\mu} j^{\mu}(q)=\bar{u}\left(p^{\prime}\right) \gamma^{\mu} u(p)=0
$$

$$
q_{\mu} j_{5}^{\mu}(q)=\bar{u}\left(p^{\prime}\right) \gamma^{\mu} \gamma_{5} u(p)=2 m \bar{u}\left(p^{\prime}\right) \gamma_{5} u(p)
$$

Axial current is conserved for massless fermions: chiral symmetry

It is not possible to maintain both symmetries when loop corrections are included. This is called: AXIAL ANOMALY

photons are bosons and they are not distinguishable hence amplitude has to be symmetrized

Naïve current conservation

$$
q=k_{1}+k_{2}
$$

Skipping coupling constants (charges) the amplitude reads:

$$
\begin{aligned}
T_{\mu \nu \lambda}= & -i \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\nu} \frac{i}{\left(p p-\not \phi_{1}\right)-m} \gamma_{\mu}\right] \\
& -i \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\mu} \frac{i}{\left(p p-\not p \alpha_{2}\right)-m} \gamma_{\nu}\right]
\end{aligned}
$$

Naively we expect:

$$
k_{1}^{\mu} T_{\mu \nu \lambda}=k_{2}^{\nu} T_{\mu \nu \lambda}=0 \quad q^{\lambda} T_{\mu \nu \lambda}=2 m T_{\mu \nu}
$$

Naïve current conservation

Vector current, first diagram:

$$
k_{1}^{\mu} T_{\mu \nu \lambda}>\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(p q-q)-m} \gamma_{\nu} \frac{i}{\left(p p-\not \phi_{1}\right)-m} \not \phi_{1} \frac{i}{\not p-m}\right] \text {. }
$$

$$
\not \phi_{1}=(\not p-m)-\left(\left(\not p-\not \phi_{1}\right)-m\right)
$$

we get:
$=i \operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(p q-q)-m} \gamma_{\nu} \frac{i}{\left(p p-\not \phi_{1}\right)-m}\right]-i \operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\nu} \frac{i}{p p-m}\right]$

Naïve current conservation

Vector current, first diagram:

$$
k_{1}^{\mu} T_{\mu \nu \lambda}>\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(\not p-q)-m} \gamma_{\nu} \frac{i}{\left(\not p-\not \phi_{1}\right)-m} \not \phi_{1} \frac{i}{\not p-m}\right] \text {. }
$$

$$
\not \phi_{1}=(\not p-m)-\left(\left(\not p-\not \phi_{1}\right)-m\right)
$$

we get:
$=i \operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\nu} \frac{i}{\left(p p-\not \phi_{1}\right)-m}\right]-i \operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\nu} \frac{i}{p p-m}\right]$
same trick with the second diagram gives

$$
=i \operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\nu} \frac{i}{\not p-m}\right]-i \operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{\left(p p-\not \gamma_{2}\right)-m} \gamma_{\nu} \frac{i}{\not p-m}\right]
$$

Naïve current conservation

$$
k_{1}^{\mu} T_{\mu \nu \lambda} \sim \int \frac{d^{4} p}{(2 \pi)^{4}}
$$

$$
\left\{\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\nu} \frac{i}{\left(p p-\not \phi_{1}\right)-m}\right]-\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{\left(p p-\not k_{2}\right)-m} \gamma_{\nu} \frac{i}{p p-m}\right]\right\}
$$

change variable in the first integral $p \rightarrow p+k_{1}$
It seems we get zero

Naïve current conservation

$$
q=k_{1}+k_{2}
$$

Skipping coupling constants (charges) the amplitude reads:

$$
\begin{aligned}
T_{\mu \nu \lambda}= & -i \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\nu} \frac{i}{\left(p p-\not \phi_{1}\right)-m} \gamma_{\mu}\right] \\
& -i \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\mu} \frac{i}{\left(p p-\not \alpha_{2}\right)-m} \gamma_{\nu}\right]
\end{aligned}
$$

Naively we expect:

$$
q^{\lambda} T_{\mu \nu \lambda}=2 m T_{\mu \nu}
$$

Axial current

To calculate $\quad q^{\lambda} T_{\mu \nu \lambda}$
we use the following trick:

$$
\begin{aligned}
q \gamma_{5} & =-\gamma_{5} q \\
& =\gamma_{5}[(\not p-q)-m]-\gamma_{5}[p p-m] \\
& =\gamma_{5}[(\not p-q)-m]+[p p-m] \gamma_{5}+2 m \gamma_{5}
\end{aligned}
$$

and for the first diagram we obtain

$$
\begin{aligned}
q^{\lambda}\left[\frac{i}{p p-m} \gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m}\right]= & 2 m \frac{i}{p p-m} \gamma_{5} \frac{i}{(p p-q)-m} \\
& +i \frac{i}{p p-m} \gamma_{5}+i \gamma_{5} \frac{i}{(p p-q)-m}
\end{aligned}
$$

Axial current

Sum from the two diagrams

$$
q^{\lambda} T_{\mu \nu \lambda}=2 m T_{\mu \nu}+\Delta_{\mu \nu}^{(1)}+\Delta_{\mu \nu}^{(2)}
$$

$$
\begin{aligned}
& \Delta_{\mu \nu}^{(1)}+\Delta_{\mu \nu}^{(2)} \\
= & \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{5} \gamma_{\nu} \frac{i}{\left(\not p-\not \phi_{1}\right)-m} \gamma_{\mu}+\gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\nu} \frac{i}{\left(\not p-\not k_{1}\right)-m} \gamma_{\mu}\right] \\
+ & \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{5} \gamma_{\mu} \frac{i}{\left(p p-\not k_{2}\right)-m} \gamma_{\nu}+\gamma_{5} \frac{i}{(\not p-q)-m} \gamma_{\mu} \frac{i}{\left(p p-\not k_{2}\right)-m} \gamma_{\nu}\right]
\end{aligned}
$$

Axial current

$$
\begin{aligned}
\Delta_{\mu \nu}^{(1)}= & \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{p p-m} \gamma_{5} \gamma_{\nu} \frac{i}{\left(p p-\not k_{1}\right)-m} \gamma_{\mu}-\frac{i}{\left(p p-\not \mu_{2}\right)-m} \gamma_{5} \gamma_{\nu} \frac{i}{(p p-q)-m} \gamma_{\mu}\right] \\
\Delta_{\mu \nu}^{(2)}= & \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{p p-m} \gamma_{5} \gamma_{\mu} \frac{i}{\left(p p-\not k_{2}^{\prime}\right)-m} \gamma_{\nu}-\frac{i}{\left(p p-\not p_{1}\right)-m} \gamma_{5} \gamma_{\mu} \frac{i}{(p p-q)-m} \gamma_{\nu}\right] \\
& \text { The question is: are } \Delta_{\mu \nu}^{(1,2)} \text { equal zero? } \\
& \text { Changing variables } \\
& \text { seems to nullify } \Delta_{\mu \nu}^{(1,2)} .
\end{aligned}
$$

However, $\quad \Delta_{\mu \nu}^{(1,2)} \sim \int^{\infty} d p p^{3} \frac{1}{p^{2}} \sim \int^{\infty} d p p \quad$ are UV divergent
Due to the minus sign the divergence is only linear

Mathematical diggression

Consider the integral that is naively zero:

$$
\int_{-\infty}^{\infty} d x[f(x+a)-f(x)]
$$

However, if

$$
f(\pm \infty) \neq 0
$$

we can calculate this integral by Taylor expansion:

$$
\begin{gathered}
\int_{-\infty}^{\infty} d x[f(x+a)-f(x)]=a[f(\infty)-f(-\infty)]+\frac{a^{2}}{2}\left[f^{\prime}(\infty)-f^{\prime}(-\infty)\right]+\ldots \\
\quad \text { it may happen that } \neq 0
\end{gathered}
$$

Mathematical diggression

Consider Euclidean integral: $\quad \Delta(\vec{a})=\int d^{n} \vec{r}[f(\vec{r}+\vec{a})-f(\vec{r})]$
expand in a
$=\int d^{n} \vec{r} \vec{a} \cdot \vec{\nabla} f(\vec{r})+\ldots$
$=\vec{a} \cdot \vec{n} S_{n}(R) f(\vec{R})$
where $\quad \vec{n}=\frac{\vec{R}}{R}$ and $S_{n}(R)$ is a surface of the n sphere, R is regulator.

For even n

$$
S_{n}(R)=\frac{2 \pi^{n / 2}}{(n / 2-1)!} R^{n-1}=\left\{\begin{array}{ccc}
2 \pi R & \text { for } & n=2 \\
2 \pi^{2} R^{3} & \text { for } & n=4
\end{array}\right.
$$

In Minkowski space

$$
\Delta(a)=2 i \pi^{2} a^{\mu} \lim _{R \rightarrow \infty} R^{2} R_{\mu} f(R)
$$

Shift in full amplitude

$$
\begin{aligned}
T_{\mu \nu \lambda}= & -i \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{p p-m} \gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\nu} \frac{i}{\left(p p-\not p k_{1}\right)-m} \gamma_{\mu}\right] \\
& -i \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{p \nmid-m} \gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\mu} \frac{i}{\left(p p-l k_{2}\right)-m} \gamma_{\nu}\right]
\end{aligned}
$$

define shift vector $a=\alpha k_{1}+(\alpha-\beta) k_{2}$ and amplitude difference:

$$
\Delta_{\mu \nu \lambda}(a)=T_{\mu \nu \lambda}(p \rightarrow p+a)-T_{\mu \nu \lambda}
$$

Strategy:

$$
\begin{aligned}
q^{\lambda} T_{\mu \nu l}(a) & =q^{\lambda}\left(T_{\mu \nu l}(a)-T_{\mu \nu l}(0)\right)+q^{\lambda} T_{\mu \nu l}(0) \\
& =q^{\lambda} \Delta_{\mu \nu \lambda}(a)+2 m T_{\mu \nu}+\Delta_{\mu \nu}^{(1)}+\Delta_{\mu \nu}^{(2)} \\
k_{1}^{\mu} T_{\mu \nu l}(a) & =k_{1}^{\mu}\left(T_{\mu \nu l}(a)-T_{\mu \nu l}(0)\right)+k_{1}^{\mu} T_{\mu \nu l}(0)
\end{aligned}
$$

chose a in a way that vector current is conserved and see what comes out for the axial current

Shift in full amplitude

Calculate (all i^{\prime} s give -)

$$
\begin{aligned}
\Delta_{\mu \nu \lambda}(a)= & -\int \frac{d^{4} p}{(2 \pi)^{4}}\left\{\operatorname{Tr}\left[\frac{1}{\not p+\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{(\not p+\not p-\not q)-m} \gamma_{\nu} \frac{1}{\left(\not p+\not p-\not k_{1}\right)-m} \gamma_{\mu}\right]\right. \\
& \left.-\operatorname{Tr}\left[\frac{1}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{(\not p-\not q)-m} \gamma_{\nu} \frac{1}{\left(\not p-\not k_{1}\right)-m} \gamma_{\mu}\right]\right\} \\
& +\left(\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}\right) .
\end{aligned}
$$

Shift in full amplitude

Calculate (all i^{\prime} s give -)

$$
\begin{aligned}
\Delta_{\mu \nu \lambda}(a)= & -\int \frac{d^{4} p}{(2 \pi)^{4}}\left\{\operatorname{Tr}\left[\frac{1}{\not p+\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{(\not p+\not p-\not p)-m} \gamma_{\nu} \frac{1}{\left(\not p+\not p-\not k_{1}\right)-m} \gamma_{\mu}\right]\right. \\
& \left.-\operatorname{Tr}\left[\frac{1}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{(\not p-\not p)-m} \gamma_{\nu} \frac{1}{\left(\not p-\not k_{1}\right)-m} \gamma_{\mu}\right]\right\} \\
+ & \left(\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}\right) .
\end{aligned}
$$

Expand in $a \quad \Delta_{\mu \nu \lambda}(a)=-\int \frac{d^{4} p}{(2 \pi)^{4}} a^{\sigma} \frac{\partial}{\partial p^{\sigma}} \operatorname{Tr}\left[\frac{1}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{(p p-q)-m} \gamma_{\nu} \frac{1}{\left(\not p-\not k_{1}\right)-m} \gamma_{\mu}\right]$ $+\left(\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}\right)$.

Shift in full amplitude

Calculate (all i^{\prime} s give -)

$$
\begin{aligned}
\Delta_{\mu \nu \lambda}(a)= & -\int \frac{d^{4} p}{(2 \pi)^{4}}\left\{\operatorname{Tr}\left[\frac{1}{\not p+\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{(\not p+\not p-q q)-m} \gamma_{\nu} \frac{1}{\left(\not p+\not p-\not k_{1}\right)-m} \gamma_{\mu}\right]\right. \\
& \left.-\operatorname{Tr}\left[\frac{1}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{(\not p-\not q)-m} \gamma_{\nu} \frac{1}{\left(\not p-\not k_{1}\right)-m} \gamma_{\mu}\right]\right\} \\
+ & \left(\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}\right) .
\end{aligned}
$$

Expand in $a \quad \Delta_{\mu \nu \lambda}(a)=-\int \frac{d^{4} p}{(2 \pi)^{4}} a^{\sigma} \frac{\partial}{\partial p^{\sigma}} \operatorname{Tr}\left[\frac{1}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{(\not p-q q)-m} \gamma_{\nu} \frac{1}{\left(p p-\not k_{1}\right)-m} \gamma_{\mu}\right]$ $+\left(\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}\right)$.
large p limit

$$
\frac{1}{p^{6}} \operatorname{Tr}\left[\not p \gamma_{\lambda} \gamma_{5} \not p \gamma_{\nu} \not p \gamma_{\mu}\right]
$$

Shift in full amplitude

Calculate

$$
\begin{aligned}
\Delta_{\mu \nu \lambda}(a)= & -\int \frac{d^{4} p}{(2 \pi)^{4}}\left\{\operatorname{Tr}\left[\frac{1}{\not p+\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{(p p+\not p-q)-m} \gamma_{\nu} \frac{1}{\left(\not p+\not p-\not k_{1}\right)-m} \gamma_{\mu}\right]\right. \\
& \left.-\operatorname{Tr}\left[\frac{1}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{(\not p-q)-m} \gamma_{\nu} \frac{1}{\left(p p-\not k_{1}\right)-m} \gamma_{\mu}\right]\right\} \\
+ & \left(\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}\right) .
\end{aligned}
$$

Expand in $a \quad \Delta_{\mu \nu \lambda}(a)=-\int \frac{d^{4} p}{(2 \pi)^{4}} a^{\sigma} \frac{\partial}{\partial p^{\sigma}} \operatorname{Tr}\left[\frac{1}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{(\not p-q q)-m} \gamma_{\nu} \frac{1}{\left(p p-\not k_{1}\right)-m} \gamma_{\mu}\right]$

$$
+\left(\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}\right) .
$$

large p limit

$$
\frac{1}{p^{6}} \operatorname{Tr}\left[\not p \gamma_{\lambda} \gamma_{5} \not p \gamma_{\nu} \not p \gamma_{\mu}\right]
$$

go to Euclidean apply Gauss th.
$r_{0} \rightarrow i r_{0}$
$d^{4} r=i d^{4} \vec{r}$

$$
\Delta_{\mu \nu \lambda}(a)=-\frac{i}{(2 \pi)^{4}} 2 \pi^{2} a^{\sigma} \lim _{P \rightarrow \infty} P^{3} \frac{P_{\sigma}}{P} \operatorname{Tr}\left[\not P \gamma_{\lambda} \gamma_{5} \not P \gamma_{\nu} \not P \gamma_{\mu}\right] \frac{1}{P^{6}}
$$

$$
+\left(\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}\right)
$$

Shift in full amplitude

Calculate

$$
\begin{aligned}
\Delta_{\mu \nu \lambda}(a)= & -\int \frac{d^{4} p}{(2 \pi)^{4}}\left\{\operatorname{Tr}\left[\frac{1}{\not p+\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{(\not p+\not p-q)-m} \gamma_{\nu} \frac{1}{\left(\not p+\not p-\not k_{1}\right)-m} \gamma_{\mu}\right]\right. \\
& \left.-\operatorname{Tr}\left[\frac{1}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{(\not p-q)-m} \gamma_{\nu} \frac{1}{\left(p p-\not k_{1}\right)-m} \gamma_{\mu}\right]\right\} \\
+ & \left(\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}\right) .
\end{aligned}
$$

Expand in $a \quad \Delta_{\mu \nu \lambda}(a)=-\int \frac{d^{4} p}{(2 \pi)^{4}} a^{\sigma} \frac{\partial}{\partial p^{\sigma}} \operatorname{Tr}\left[\frac{1}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{(\not p-q)-m} \gamma_{\nu} \frac{1}{\left(p p-\not k_{1}\right)-m} \gamma_{\mu}\right]$

$$
+\left(\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}\right) .
$$

large p limit

$$
\frac{1}{p^{6}} \operatorname{Tr}\left[\not p \gamma_{\lambda} \gamma_{5} \not p \gamma_{\nu} \not p \gamma_{\mu}\right]
$$

go to Euclidean apply Gauss th.

$$
\begin{aligned}
\Delta_{\mu \nu \lambda}(a) & =-\frac{i}{(2 \pi)^{4}} 2 \pi^{2} a^{\sigma} \lim _{P \rightarrow \infty} P^{3} \frac{P_{\sigma}}{P} \operatorname{Tr}\left[P \gamma_{\lambda} \gamma_{5} P \gamma_{\nu} P P \gamma_{\mu}\right] \frac{1}{P^{6}} \\
& +\left(\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}\right)
\end{aligned}
$$

calculate Trace

$$
\operatorname{Tr}\left[\not P \gamma_{\lambda} \gamma_{5} \not P \gamma_{\nu} \not P \gamma_{\mu}\right]=4 i P^{2} \varepsilon_{\alpha \mu \nu \lambda} P^{\alpha}
$$

Shift in full amplitude

We arrive at: $\quad \Delta_{\mu \nu \lambda}(a)=\frac{1}{(2 \pi)^{4}} 8 \pi^{2} \varepsilon_{\mu \nu \lambda \alpha} a_{\sigma} \lim _{P \rightarrow \infty} \frac{P^{\sigma} P^{\alpha}}{P^{2}}+\left(\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}\right)$

Shift in full amplitude

We arrive at: $\quad \Delta_{\mu \nu \lambda}(a)=\frac{1}{(2 \pi)^{4}} 8 \pi^{2} \varepsilon_{\mu \nu \lambda \alpha} a_{\sigma} \lim _{P \rightarrow \infty} \frac{P^{\sigma} P^{\alpha}}{P^{2}}+\left(\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}\right)$
take symmetric limit:

$$
\lim _{P \rightarrow \infty} \frac{P^{\sigma} P^{\alpha}}{P^{2}}=\frac{1}{4} g^{\sigma \alpha}
$$

recall: $\quad a=\alpha k_{1}+(\alpha-\beta) k_{2}$

Shift in full amplitude

We arrive at: $\quad \Delta_{\mu \nu \lambda}(a)=\frac{1}{(2 \pi)^{4}} 8 \pi^{2} \varepsilon_{\mu \nu \lambda \alpha} a_{\sigma} \lim _{P \rightarrow \infty} \frac{P^{\sigma} P^{\alpha}}{P^{2}}+\left(\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}\right)$
take symmetric limit:

$$
\lim _{P \rightarrow \infty} \frac{P^{\sigma} P^{\alpha}}{P^{2}}=\frac{1}{4} g^{\sigma \alpha}
$$

recall: $\quad a=\alpha k_{1}+(\alpha-\beta) k_{2}$
Final result: $\quad \Delta_{\mu \nu \lambda}(a)=\frac{1}{8 \pi^{2}} \varepsilon_{\alpha \mu \nu \lambda} a^{\alpha}+\left(\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}\right)$
$=\frac{1}{8 \pi^{2}} \varepsilon_{\alpha \mu \nu \lambda}\left(\alpha k_{1}^{\alpha}+(\alpha-\beta) k_{2}^{\alpha}-\alpha k_{2}^{\alpha}-(\alpha-\beta) k_{1}^{\alpha}\right)$
$=\frac{\beta}{8 \pi^{2}} \varepsilon_{\alpha \mu \nu \lambda}\left(k_{1}-k_{2}\right)^{\alpha}$.
depends on β, there is an ambiguity, which we have to fix demanding that vector current is conserved.

Axial current, cont.

Recall:

$$
\begin{aligned}
q^{\lambda} T_{\mu \nu \lambda}(a) & =q^{\lambda}\left(T_{\mu \nu \lambda}(a)-T_{\mu \nu \lambda}(0)\right)+q^{\lambda} T_{\mu \nu \lambda}(0) \\
& =q^{\lambda} \Delta_{\mu \nu \lambda}(a)+2 m T_{\mu \nu}+\Delta_{\mu \nu}^{(1)}+\Delta_{\mu \nu}^{(2)}
\end{aligned}
$$

calculated finite needs to be computed

Axial current, cont.

Recall:

$$
\begin{aligned}
q^{\lambda} T_{\mu \nu \lambda}(a) & =q^{\lambda}\left(T_{\mu \nu \lambda}(a)-T_{\mu \nu \lambda}(0)\right)+q^{\lambda} T_{\mu \nu \lambda}(0) \\
& =q^{\lambda} \Delta_{\mu \nu \lambda}(a)+2 m T_{\mu \nu}+\Delta_{\mu \nu}^{(1)}+\Delta_{\mu \nu}^{(2)}
\end{aligned}
$$

calculated finite needs to be computed
Let's calculate

$$
\Delta_{\mu \nu}^{(1)}=\int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{5} \gamma_{\nu} \frac{i}{\left(\not p-\not k_{1}\right)-m} \gamma_{\mu}-\frac{i}{\left(\not p-\not k_{2}\right)-m} \gamma_{5} \gamma_{\nu} \frac{i}{(\not p-q q)-m} \gamma_{\mu}\right]
$$

Axial current, cont.

Recall:

$$
\begin{aligned}
q^{\lambda} T_{\mu \nu \lambda}(a) & =q^{\lambda}\left(T_{\mu \nu \lambda}(a)-T_{\mu \nu \lambda}(0)\right)+q^{\lambda} T_{\mu \nu \lambda}(0) \\
& =q^{\lambda} \Delta_{\mu \nu \lambda}(a)+2 m T_{\mu \nu}+\Delta_{\mu \nu}^{(1)}+\Delta_{\mu \nu}^{(2)}
\end{aligned}
$$

calculated finite needs to be computed
Let's calculate

$$
\begin{aligned}
\Delta_{\mu \nu}^{(1)} & =\int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{5} \gamma_{\nu} \frac{i}{\left(\not p-\not k_{1}\right)-m} \gamma_{\mu}-\frac{i}{\left(\not p-\not k_{2}\right)-m} \gamma_{5} \gamma_{\nu} \frac{i}{(\not p-\not p)-m} \gamma_{\mu}\right] \\
& =\int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{1}{\left(\not p-\not k_{2}\right)-m} \gamma_{5} \gamma_{\nu} \frac{1}{\left(\not p-\not k_{2}-\not k_{1}\right)-m} \gamma_{\mu}-\frac{1}{\not p-m} \gamma_{5} \gamma_{\nu} \frac{1}{\left(\not p-\not k_{1}\right)-m} \gamma_{\mu}\right]
\end{aligned}
$$

We can use the same trick as previously $p \rightarrow p-k_{2}$ where $a=-k_{2}$

Axial current, cont.

Recall:

$$
\begin{aligned}
q^{\lambda} T_{\mu \nu \lambda}(a) & =q^{\lambda}\left(T_{\mu \nu \lambda}(a)-T_{\mu \nu \lambda}(0)\right)+q^{\lambda} T_{\mu \nu \lambda}(0) \\
& =q^{\lambda} \Delta_{\mu \nu \lambda}(a)+2 m T_{\mu \nu}+\Delta_{\mu \nu}^{(1)}+\Delta_{\mu \nu}^{(2)}
\end{aligned}
$$

calculated finite needs to be computed
Let's calculate

$$
\begin{aligned}
\Delta_{\mu \nu}^{(1)} & =\int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{5} \gamma_{\nu} \frac{i}{\left(\not p-\not k_{1}\right)-m} \gamma_{\mu}-\frac{i}{\left(\not p-\not k_{2}\right)-m} \gamma_{5} \gamma_{\nu} \frac{i}{(\not p-\not p)-m} \gamma_{\mu}\right] \\
& =\int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{1}{\left(\not p-\not k_{2}\right)-m} \gamma_{5} \gamma_{\nu} \frac{1}{\left(\not p-\not k_{2}-\not k_{1}\right)-m} \gamma_{\mu}-\frac{1}{\not p-m} \gamma_{5} \gamma_{\nu} \frac{1}{\left(\not p-\not k_{1}\right)-m} \gamma_{\mu}\right]
\end{aligned}
$$

We can use the same trick as previously $p \rightarrow p-k_{2}$ where $a=-k_{2}$
$\Delta_{\mu \nu}^{(1)}=-\frac{1}{(2 \pi)^{4}} 2 i \pi^{2} k_{2}^{\rho} \lim _{P \rightarrow \infty} \frac{P_{\rho}}{P^{2}} \operatorname{Tr}\left[\not P \gamma_{5} \gamma_{\nu}\left(\not P-\not k_{1}\right) \gamma_{\mu}\right] \quad$ keep k_{1}, because Tr with $2 P^{\prime}$ s is zero

Axial current, cont.

$$
\Delta_{\mu \nu}^{(1)}=-\frac{1}{(2 \pi)^{4}} 2 i \pi^{2} k_{2}^{\rho} \lim _{P \rightarrow \infty} \frac{P_{\rho}}{P^{2}} \operatorname{Tr}\left[\not P \gamma_{5} \gamma_{\nu}\left(\not P-\not k_{1}\right) \gamma_{\mu}\right]
$$

We have

$$
\begin{aligned}
\Delta_{\mu \nu}^{(1)} & =\frac{1}{(2 \pi)^{4}} 2 i \pi^{2} k_{2}^{\rho} k_{1}^{\sigma} \lim _{P \rightarrow \infty} \frac{P_{\rho} P^{\alpha}}{P^{2}} \operatorname{Tr}\left[\gamma_{\alpha} \gamma_{5} \gamma_{\nu} \gamma_{\sigma} \gamma_{\mu}\right] \\
& =\frac{1}{(2 \pi)^{4}} 2 i \pi^{2} k_{2}^{\rho} k_{1}^{\sigma} \frac{1}{4}(-) \underbrace{\operatorname{Tr}\left[\gamma_{5} \gamma_{\rho} \gamma_{\nu} \gamma_{\sigma} \gamma_{\mu}\right]}_{4 \varepsilon_{\rho \nu \sigma \mu}} \\
& =-\frac{1}{8 \pi^{2}} \varepsilon_{\mu \nu \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho} .
\end{aligned}
$$

We obtain $\Delta_{\mu \nu}^{(2)}$ by $\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}$, hence

$$
\Delta_{\mu \nu}^{(1)}=\Delta_{\mu \nu}^{(2)}
$$

Axial current, final

$$
\begin{aligned}
q^{\lambda} T_{\mu \nu \lambda}(a) & =q^{\lambda}\left(T_{\mu \nu \lambda}(a)-T_{\mu \nu \lambda}(0)\right)+q^{\lambda} T_{\mu \nu \lambda}(0) \\
& =2 m T_{\mu \nu}+\Delta_{\mu \nu}^{(1)}+\Delta_{\mu \nu}^{(2)}+q^{\lambda} \Delta_{\mu \nu \lambda}(a) \\
& =2 m T_{\mu \nu}-\frac{1}{4 \pi^{2}} \varepsilon_{\mu \nu \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho}+\left(k_{1}+k_{2}\right)^{\lambda} \frac{\beta}{8 \pi^{2}} \varepsilon_{\alpha \mu \nu \lambda}\left(k_{1}-k_{2}\right)^{\alpha} \\
& =2 m T_{\mu \nu}-\frac{1-\beta}{4 \pi^{2}} \varepsilon_{\mu \nu \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho}
\end{aligned}
$$

Vector current

We shall use the same trick to calculate the divergence of a vecor current

$$
\begin{aligned}
k_{1}^{\mu} T_{\mu \nu \lambda}(a) & =k_{1}^{\mu}\left(T_{\mu \nu \lambda}(a)-T_{\mu \nu \lambda}(0)\right)+k_{1}^{\mu} T_{\mu \nu \lambda}(0) \\
& =k_{1}^{\mu} T_{\mu \nu \lambda}(0)+k_{1}^{\mu} \frac{\beta}{8 \pi^{2}} \varepsilon_{\alpha \mu \nu \lambda}\left(k_{1}-k_{2}\right)^{\alpha} \\
& =k_{1}^{\mu} T_{\mu \nu \lambda}(0)+\frac{\beta}{8 \pi^{2}} \varepsilon_{\nu \lambda \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho}
\end{aligned}
$$

We ned the first piece

Vector current

We shall use the same trick to calculate the divergence of a vecor current

$$
\begin{aligned}
k_{1}^{\mu} T_{\mu \nu \lambda}(a) & =k_{1}^{\mu}\left(T_{\mu \nu \lambda}(a)-T_{\mu \nu \lambda}(0)\right)+k_{1}^{\mu} T_{\mu \nu \lambda}(0) \\
& =k_{1}^{\mu} T_{\mu \nu \lambda}(0)+k_{1}^{\mu} \frac{\beta}{8 \pi^{2}} \varepsilon_{\alpha \mu \nu \lambda}\left(k_{1}-k_{2}\right)^{\alpha} \\
& =k_{1}^{\mu} T_{\mu \nu \lambda}(0)+\frac{\beta}{8 \pi^{2}} \varepsilon_{\nu \lambda \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho} .
\end{aligned}
$$

We ned the first piece

$$
\begin{aligned}
k_{1}^{\mu} T_{\mu \nu \lambda}= & -\int \frac{d^{4} p}{(2 \pi)^{4}} \\
& \left\{\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{1}{(\not p-\not q)-m} \gamma_{\nu} \frac{1}{\left(\not p-\not k_{1}\right)-m}\right]-\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{1}{\left(\not p-\not k_{2}\right)-m} \gamma_{\nu} \frac{1}{\not p-m}\right]\right\}
\end{aligned}
$$

Vector current

We shall use the same trick to calculate the divergence of a vecor current

$$
\begin{aligned}
k_{1}^{\mu} T_{\mu \nu \lambda}(a) & =k_{1}^{\mu}\left(T_{\mu \nu \lambda}(a)-T_{\mu \nu \lambda}(0)\right)+k_{1}^{\mu} T_{\mu \nu \lambda}(0) \\
& =k_{1}^{\mu} T_{\mu \nu \lambda}(0)+k_{1}^{\mu} \frac{\beta}{8 \pi^{2}} \varepsilon_{\alpha \mu \nu \lambda}\left(k_{1}-k_{2}\right)^{\alpha} \\
& =k_{1}^{\mu} T_{\mu \nu \lambda}(0)+\frac{\beta}{8 \pi^{2}} \varepsilon_{\nu \lambda \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho} .
\end{aligned}
$$

We ned the first piece

$$
\begin{aligned}
& k_{1}^{\mu} T_{\mu \nu \lambda}=-\int \frac{d^{4} p}{(2 \pi)^{4}} \\
&\left\{\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{1}{(\not p-q q)-m} \gamma_{\nu} \frac{1}{\left(\not p-\not k_{1}\right)-m}\right]-\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{1}{\left(\not p-\not k_{2}\right)-m} \gamma_{\nu} \frac{1}{\not p-m}\right]\right\} \\
&\left\{\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{1}{\left.\left(\not p-\not k_{2}-\not k_{1}\right)\right)-m} \gamma_{\nu} \frac{1}{\left(\not p-\not k_{1}\right)-m}\right]-\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{1}{\left(\not p-\not k_{2}\right)-m} \gamma_{\nu} \frac{1}{\not p-m}\right]\right\}
\end{aligned}
$$

Vector current

We shall use the same trick to calculate the divergence of a vecor current

$$
\begin{aligned}
k_{1}^{\mu} T_{\mu \nu \lambda}(a) & =k_{1}^{\mu}\left(T_{\mu \nu \lambda}(a)-T_{\mu \nu \lambda}(0)\right)+k_{1}^{\mu} T_{\mu \nu \lambda}(0) \\
& =k_{1}^{\mu} T_{\mu \nu \lambda}(0)+k_{1}^{\mu} \frac{\beta}{8 \pi^{2}} \varepsilon_{\alpha \mu \nu \lambda}\left(k_{1}-k_{2}\right)^{\alpha} \\
& =k_{1}^{\mu} T_{\mu \nu \lambda}(0)+\frac{\beta}{8 \pi^{2}} \varepsilon_{\nu \lambda \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho} .
\end{aligned}
$$

We ned the first piece

$$
\begin{aligned}
& k_{1}^{\mu} T_{\mu \nu \lambda}=-\int \frac{d^{4} p}{(2 \pi)^{4}} \\
&\left\{\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{1}{(\not p-\not p)-m} \gamma_{\nu} \frac{1}{\left(\not p-\not k_{1}\right)-m}\right]-\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{1}{\left(\not p-\not k_{2}\right)-m} \gamma_{\nu} \frac{1}{\not p-m}\right]\right\} \\
&\left\{\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{1}{\left.\left(\not p-\not /_{2}-\not k_{1}\right)\right)-m} \gamma_{\nu} \frac{1}{\left(\not p-\not k_{1}\right)-m}\right]-\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{1}{\left(\not p-\not k_{2}\right)-m} \gamma_{\nu} \frac{1}{\not p-m}\right]\right\} \\
& k_{1}^{\mu} T_{\mu \nu \lambda}=-\frac{1}{(2 \pi)^{4}} 2 i \pi^{2}(-) k_{1}^{\sigma} \lim _{R \rightarrow \infty} \frac{P_{\sigma}}{P^{2}} \operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5}\left(\not P-\not k_{2}\right) \gamma_{\nu} \not p\right]
\end{aligned}
$$

Vector current

$$
\begin{aligned}
k_{1}^{\mu} T_{\mu \nu \lambda} & =-\frac{1}{(2 \pi)^{4}} 2 i \pi^{2}(-) k_{1}^{\sigma} \lim _{R \rightarrow \infty} \frac{P_{\sigma}}{P^{2}} \operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5}\left(\not P-\not k_{2}\right) \gamma_{\nu} \not P\right] \\
& =-\frac{1}{8 \pi^{2}} i \frac{1}{4} \operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \gamma_{\rho} \gamma_{\nu} \gamma_{\sigma}\right] k_{1}^{\sigma} k_{2}^{\rho} \\
& =\frac{1}{8 \pi^{2}} \varepsilon_{\nu \lambda \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho}
\end{aligned}
$$

Recall

$$
k_{1}^{\mu} T_{\mu \nu \lambda}(a)=k_{1}^{\mu} T_{\mu \nu \lambda}(0)+\frac{\beta}{8 \pi^{2}} \varepsilon_{\nu \lambda \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho}=\frac{1+\beta}{8 \pi^{2}} \varepsilon_{\nu \lambda \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho}
$$

We need to choose $\beta=-1$ to have vector current conserved!

Axial anomaly

Summarizing:

$$
\begin{aligned}
q^{\lambda} T_{\mu \nu \lambda}(a) & =2 m T_{\mu \nu}-\frac{1-\beta}{4 \pi^{2}} \varepsilon_{\mu \nu \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho} \\
k_{1}^{\mu} T_{\mu \nu \lambda}(a) & =\frac{1+\beta}{8 \pi^{2}} \varepsilon_{\nu \lambda \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho}
\end{aligned}
$$

Choose $\beta=-1$

$$
q^{\lambda} T_{\mu \nu \lambda}=2 m T_{\mu \nu}-\frac{1}{2 \pi^{2}} \varepsilon_{\mu \nu \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho}
$$

Axial current is anomalous
This can be translated to the configurations space

$$
\partial^{\lambda} J_{\lambda}^{5}(x)=\frac{1}{(4 \pi)^{2}} \varepsilon_{\mu \nu \sigma \rho} F^{\mu \nu}(x) F^{\sigma \rho}(x)+\mathcal{O}(m)
$$

Axial anomaly

Summarizing:

$$
\begin{aligned}
q^{\lambda} T_{\mu \nu \lambda}(a) & =2 m T_{\mu \nu}-\frac{1-\beta}{4 \pi^{2}} \varepsilon_{\mu \nu \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho} \\
k_{1}^{\mu} T_{\mu \nu \lambda}(a) & =\frac{1+\beta}{8 \pi^{2}} \varepsilon_{\nu \lambda \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho}
\end{aligned}
$$

Choose $\beta=-1$

$$
q^{\lambda} T_{\mu \nu \lambda}=2 m T_{\mu \nu}-\frac{1}{2 \pi^{2}} \varepsilon_{\mu \nu \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho}
$$

Axial current is anomalous
This can be translated to the configurations space

- Anomaly is mass independent
- Adler-Bardeen theorem (69): no higher order correctoons
- name: Adler-Bardeen-Jackiw anomaly
- Fujikawa (79) path integral formulation
- In non-Abelian case one can nullify anomaly $\operatorname{Tr}(. .)=$.

$$
\partial^{\lambda} J_{\lambda}^{5}(x)=\frac{1}{(4 \pi)^{2}} \varepsilon_{\mu \nu \sigma \rho} F^{\mu \nu}(x) F^{\sigma \rho}(x)+\mathcal{O}(m)
$$

