QCD lecture 7

November 16

Chiral symmetry

Dirac equation in chrial representation for gamma matrices

$$
\gamma^{0}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \gamma^{i}=\left[\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right], \gamma_{5}=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

splits into two equations

$$
\left(i \partial_{t}-i \boldsymbol{\sigma} \cdot \boldsymbol{\nabla}\right) \psi_{L}-m \psi_{R}=0, \quad\left(i \partial_{t}+i \boldsymbol{\sigma} \cdot \boldsymbol{\nabla}\right) \psi_{R}-m \psi_{L}=0
$$

where $\quad \psi=\left[\begin{array}{l}\psi_{L} \\ \psi_{R}\end{array}\right]$. Note that for massless fermions these eqs. are independent.
Projection operators: $\quad P_{L}=\frac{1}{2}\left(1-\gamma_{5}\right), P_{R}=\frac{1}{2}\left(1+\gamma_{5}\right)$ project solutions of
given chirality (eigen value of γ_{5})

$$
\psi_{-}=\left[\begin{array}{c}
\psi_{L} \\
0
\end{array}\right], \quad \psi_{+}=\left[\begin{array}{c}
0 \\
\psi_{R}
\end{array}\right]
$$

Helicity

Helicity: projecton of spin on the particle's momentum:

$$
h=\frac{2}{p} \boldsymbol{p} \cdot \boldsymbol{\Sigma}=\frac{1}{p}\left[\begin{array}{cc}
\boldsymbol{p} \cdot \boldsymbol{\sigma} & 0 \\
0 & \boldsymbol{p} \cdot \boldsymbol{\sigma}
\end{array}\right] \quad p=|\boldsymbol{p}|
$$

Massless Dirac equation: $\quad\left(\gamma^{0} E-\gamma \cdot \boldsymbol{p}\right) \psi_{ \pm}=0 \rightarrow \frac{\gamma^{0} \boldsymbol{\gamma} \cdot \boldsymbol{p}}{E} \psi_{ \pm}=\psi_{ \pm}$

It is easy to show that in the chiral representation for gamm matrices

$$
\gamma_{5} h= \pm \frac{\gamma^{0} \boldsymbol{\gamma} \cdot \boldsymbol{p}}{E_{ \pm}}=\frac{1}{p}\left[\begin{array}{cc}
-\boldsymbol{p} \cdot \boldsymbol{\sigma} & 0 \\
0 & \boldsymbol{p} \cdot \boldsymbol{\sigma}
\end{array}\right] \quad E_{ \pm}= \pm p
$$

Here positive energy solutions correspond to particles, and negative ones to antiparticles.
Particles: $\quad \gamma_{5} h \psi_{ \pm}=\psi_{ \pm} \quad \rightarrow \quad h \psi_{ \pm}= \pm \psi_{ \pm} \quad$ helicity $=$ chirality
Antiparticles: $\quad-\gamma_{5} h \psi_{ \pm}=\psi_{ \pm} \rightarrow h \psi_{ \pm}=\mp \psi_{ \pm} \quad$ helicity $=-$ chirality

Axial anomaly

pseudoscalar density

Gauge invariance of QED (and QCD):

$$
q_{\mu} j^{\mu}(q)=\bar{u}\left(p^{\prime}\right) \gamma^{\mu} u(p)=0
$$

$$
q_{\mu} j_{5}^{\mu}(q)=\bar{u}\left(p^{\prime}\right) \gamma^{\mu} \gamma_{5} u(p)=2 m \bar{u}\left(p^{\prime}\right) \gamma_{5} u(p)
$$

Axial current is conserved for massless fermions: chiral symmetry

It is not possible to maintain both symmetries when loop corrections are included. This is called: AXIAL ANOMALY

photons are bosons and they are not distinguishable hence amplitude has to be symmetrized

Naïve current conservation

$$
q=k_{1}+k_{2}
$$

Skipping coupling constants (charges) the amplitude reads:

$$
\begin{aligned}
T_{\mu \nu \lambda}= & -i \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\nu} \frac{i}{\left(p p-\not \phi_{1}\right)-m} \gamma_{\mu}\right] \\
& -i \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\mu} \frac{i}{\left(p p-\not p \alpha_{2}\right)-m} \gamma_{\nu}\right]
\end{aligned}
$$

Naively we expect:

$$
k_{1}^{\mu} T_{\mu \nu \lambda}=k_{2}^{\nu} T_{\mu \nu \lambda}=0 \quad q^{\lambda} T_{\mu \nu \lambda}=2 m T_{\mu \nu}
$$

Naïve current conservation

Vector current, first diagram:

$$
k_{1}^{\mu} T_{\mu \nu \lambda}>\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(p q-q)-m} \gamma_{\nu} \frac{i}{\left(p p-\not \phi_{1}\right)-m} \not \phi_{1} \frac{i}{\not p-m}\right] \text {. }
$$

$$
\not \phi_{1}=(\not p-m)-\left(\left(\not p-\not \phi_{1}\right)-m\right)
$$

we get:
$=i \operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(p q-q)-m} \gamma_{\nu} \frac{i}{\left(p p-\not \phi_{1}\right)-m}\right]-i \operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\nu} \frac{i}{p p-m}\right]$

Naïve current conservation

Vector current, first diagram:

$$
k_{1}^{\mu} T_{\mu \nu \lambda}>\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(\not p-q)-m} \gamma_{\nu} \frac{i}{\left(\not p-\not \phi_{1}\right)-m} \not \phi_{1} \frac{i}{\not p-m}\right] \text {. }
$$

$$
\not \phi_{1}=(\not p-m)-\left(\left(\not p-\not \phi_{1}\right)-m\right)
$$

we get:
$=i \operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\nu} \frac{i}{\left(p p-\not \phi_{1}\right)-m}\right]-i \operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\nu} \frac{i}{p p-m}\right]$
same trick with the second diagram gives

$$
=i \operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\nu} \frac{i}{\not p-m}\right]-i \operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{\left(p p-\not \gamma_{2}\right)-m} \gamma_{\nu} \frac{i}{\not p-m}\right]
$$

Naïve current conservation

$$
k_{1}^{\mu} T_{\mu \nu \lambda} \sim \int \frac{d^{4} p}{(2 \pi)^{4}}
$$

$$
\left\{\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\nu} \frac{i}{\left(p p-\not \phi_{1}\right)-m}\right]-\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{\left(p p-\not k_{2}\right)-m} \gamma_{\nu} \frac{i}{p p-m}\right]\right\}
$$

change variable in the first integral $p \rightarrow p+k_{1}$
It seems we get zero

Naïve current conservation

$$
q=k_{1}+k_{2}
$$

Skipping coupling constants (charges) the amplitude reads:

$$
\begin{aligned}
T_{\mu \nu \lambda}= & -i \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\nu} \frac{i}{\left(p p-\not \phi_{1}\right)-m} \gamma_{\mu}\right] \\
& -i \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\mu} \frac{i}{\left(p p-\not \alpha_{2}\right)-m} \gamma_{\nu}\right]
\end{aligned}
$$

Naively we expect:

$$
q^{\lambda} T_{\mu \nu \lambda}=2 m T_{\mu \nu}
$$

Axial current

To calculate $\quad q^{\lambda} T_{\mu \nu \lambda}$
we use the following trick:

$$
\begin{aligned}
q \gamma_{5} & =-\gamma_{5} q \\
& =\gamma_{5}[(\not p-q)-m]-\gamma_{5}[p p-m] \\
& =\gamma_{5}[(\not p-q)-m]+[p p-m] \gamma_{5}+2 m \gamma_{5}
\end{aligned}
$$

and for the first diagram we obtain

$$
\begin{aligned}
q^{\lambda}\left[\frac{i}{p p-m} \gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m}\right]= & 2 m \frac{i}{p p-m} \gamma_{5} \frac{i}{(p p-q)-m} \\
& +i \frac{i}{p p-m} \gamma_{5}+i \gamma_{5} \frac{i}{(p p-q)-m}
\end{aligned}
$$

Axial current

Sum from the two diagrams

$$
q^{\lambda} T_{\mu \nu \lambda}=2 m T_{\mu \nu}+\Delta_{\mu \nu}^{(1)}+\Delta_{\mu \nu}^{(2)}
$$

$$
\begin{aligned}
& \Delta_{\mu \nu}^{(1)}+\Delta_{\mu \nu}^{(2)} \\
= & \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{5} \gamma_{\nu} \frac{i}{\left(p p-\not \prime_{1}\right)-m} \gamma_{\mu}+\gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\nu} \frac{i}{\left(\not p \prime-\not \prime_{1}\right)-m} \gamma_{\mu}\right] \\
+ & \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{5} \gamma_{\mu} \frac{i}{\left(p p-\not k_{2}^{\prime}\right)-m} \gamma_{\nu}+\gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\mu} \frac{i}{\left(p p-\not k_{2}\right)-m} \gamma_{\nu}\right]
\end{aligned}
$$

Axial current

$$
\begin{aligned}
\Delta_{\mu \nu}^{(1)}= & \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{5} \gamma_{\nu} \frac{i}{\left(p p-\not 1_{1}\right)-m} \gamma_{\mu}-\frac{i}{\left(p p-\not p_{2}\right)-m} \gamma_{5} \gamma_{\nu} \frac{i}{(p p-q)-m} \gamma_{\mu}\right] \\
\Delta_{\mu \nu}^{(2)}= & \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{p p-m} \gamma_{5} \gamma_{\mu} \frac{i}{\left(p p-\not k_{2}\right)-m} \gamma_{\nu}-\frac{i}{\left(p p-\not p_{1}\right)-m} \gamma_{5} \gamma_{\mu} \frac{i}{(p p-q)-m} \gamma_{\nu}\right] \\
& \text { The question is: are } \Delta_{\mu \nu}^{(1,2)} \text { equal zero? } \\
& \text { Changing variables } \\
& \text { seems to nullify } \Delta_{\mu \nu}^{(1,2)} .
\end{aligned}
$$

However, $\quad \Delta_{\mu \nu}^{(1,2)} \sim \int^{\infty} d p p^{3} \frac{1}{p^{2}} \sim \int^{\infty} d p p \quad$ are UV divergent
Due to the angular integration divergence is only linear. What is the difference of two linearly divergent integraks?

Mathematical diggression

Consider the integral that is naively zero:

$$
\int_{-\infty}^{\infty} d x[f(x+a)-f(x)]
$$

However, if

$$
f(\pm \infty) \neq 0
$$

we can calculate this integral by Taylor expansion:

$$
\begin{gathered}
\int_{-\infty}^{\infty} d x[f(x+a)-f(x)]=a[f(\infty)-f(-\infty)]+\frac{a^{2}}{2}\left[f^{\prime}(\infty)-f^{\prime}(-\infty)\right]+\ldots \\
\quad \text { it may happen that } \neq 0
\end{gathered}
$$

Mathematical diggression

Consider Euclidean integral: $\quad \Delta(\vec{a})=\int d^{n} \vec{r}[f(\vec{r}+\vec{a})-f(\vec{r})]$
expand in a
$=\int d^{n} \vec{r} \vec{a} \cdot \vec{\nabla} f(\vec{r})+\ldots$
$=\vec{a} \cdot \vec{n} S_{n}(R) f(\vec{R})$
where $\quad \vec{n}=\frac{\vec{R}}{R}$ and $S_{n}(R)$ is a surface of the n sphere, R is regulator.

For even n

$$
S_{n}(R)=\frac{2 \pi^{n / 2}}{(n / 2-1)!} R^{n-1}=\left\{\begin{array}{ccc}
2 \pi R & \text { for } & n=2 \\
2 \pi^{2} R^{3} & \text { for } & n=4
\end{array}\right.
$$

In Minkowski space

$$
\Delta(a)=2 i \pi^{2} a^{\mu} \lim _{R \rightarrow \infty} R^{2} R_{\mu} f(R)
$$

