QCD lecture 6

November 8

Infrared divergences

$$
S_{F}^{R}=\frac{i}{\not p}\left(1+\frac{\alpha\left(\mu^{2}\right)}{4 \pi} C_{F}\left(\ln \left(\frac{-p^{2}}{\bar{\mu}^{2}}\right)-1\right)\right)
$$

Divergent for $p^{2}=0$. This is infrared divergence (from the lower int. limit). It can be regularized by going to the number of dimensions higher than 4. Before expansion, change $\quad \varepsilon \rightarrow-\kappa$

$$
S_{F}^{R}(p)=\frac{i}{\not p}\left(1-\frac{\alpha_{s}}{4 \pi} C_{F}\left(\frac{\bar{\mu}^{2}}{-p^{2}}\right)^{\varepsilon}\left(\frac{1}{\varepsilon}+1\right)+\frac{\alpha_{s}}{4 \pi} C_{F} \frac{1}{\varepsilon}\right)
$$

Infrared divergences

$$
S_{F}^{R}=\frac{i}{\not p}\left(1+\frac{\alpha\left(\mu^{2}\right)}{4 \pi} C_{F}\left(\ln \left(\frac{-p^{2}}{\bar{\mu}^{2}}\right)-1\right)\right)
$$

Divergent for $p^{2}=0$. This is infrared divergence (from the lower int. limit). It can be regularized by going to the number of dimensions higher than 4. Before expansion, change $\quad \varepsilon \rightarrow-\kappa$

$$
\begin{aligned}
& S_{F}^{R}(p)= \frac{i}{p^{\prime}} \\
&\left(1-\frac{\alpha_{s}}{4 \pi} C_{F}\left(\frac{-p^{2}}{\bar{\mu}^{2}}\right)^{\kappa}\left(-\frac{1}{\kappa}+1\right)-\frac{\alpha_{s}}{4 \pi} C_{F} \frac{1}{\kappa}\right) \\
&=\frac{i}{p^{2}=0}\left(1-\frac{\alpha_{s}}{4 \pi} C_{F} \frac{1}{\kappa}\right) .
\end{aligned}
$$

Infrared divergencies

One cannot distinguish a single electron from an electron accompanied by a zero energy foton or a collinear foton (for massless fermion). One has to sum over such degenerate states.

Infrared divergencies

Here IR singularities cancel out

Infrared singularities

IR singulariteis arise when the theory has massless particles (photon, gluon)

- when energy of photon (gluon) is small - soft singularity
- when for massless fermion photon (gluon) is parallel to that fermion - collinear singularity

Bloch - Nordsieck theorem (baically derived for QED)
Kinoshita - Lee - Nauenberg theorem (generalized to QCD)
Kinoshita-Lee-Nauenberg (KLN) theorem assures that a summation over degenerate initial and final states removes all infrared (IR) divergences in QCD.

This very broad topic, beyond the scope of this lecture

QCD corrections to parton model

Leading corrections not suppressed by $1 / Q^{2}$

photon scatters off the gluon

QCD corrections to parton model

Non-leading corrections suppressed by $1 / Q^{2}$

QCD corrections to parton model

QCD corrections to parton model

$$
|\mathcal{M}|^{2} d^{4} k \delta\left(k^{2}\right) \sim \sin ^{2} \theta \frac{\omega d \omega d \cos \theta}{\omega^{2}(1-\cos \theta)^{2}} \sim \frac{d \omega}{\omega} \frac{d \theta^{2}}{\theta^{2}}
$$

QCD corrections to parton model

$\frac{d \omega}{\omega} \frac{d \theta^{2}}{\theta^{2}}$

- soft (cancel)
$\omega \rightarrow 0$
- collinear (remain) $\theta \rightarrow 0$

In dimensional regularization:

$$
\left(\frac{Q^{2}}{\mu^{2}}\right)^{\kappa} \frac{1}{\kappa}=\frac{1}{\kappa}+\log \left(\frac{Q^{2}}{\mu^{2}}\right)
$$

Poles can be absorbed into bare parton densities.
Logs can be summed up to all orders. Factrozation. Coefficients of the poles are universal functions of z

Altarelli-Parisi probabilities

It turns out that potentially large logs are multiplied by universal functions of the momentum fraction z (with respect to the emitting parton)

Here $P_{q q}(z)=P_{q \leftarrow q}(z)$ is a probability of "finding"
a quark of the longitudinal momentum fraction z in initial quark

Altarelli-Parisi probabilities

It turns out that potentially large logs are multiplied by universal functions of the momentum fraction z (with respect to the emitting parton)

Here $\quad P_{q q}(z)=P_{q \leftarrow q}(z)$ is a probability of "finding"
a quark of the longitudinal momentum fraction z in initial quark

$$
P_{q q}(z)=C_{F}\left(\frac{1+z^{2}}{1-z}\right)
$$

Altarelli-Parisi probabilities

It turns out that potentially large logs are multiplied by universal functions of the momentum fraction z
(with respect to the emitting parton)
Here $P_{q q}(z)=P_{q \leftarrow q}(z)$ is a probability of "finding"
a quark of the longitudinal momentum fraction z in initial quark
$P_{q q}(z)=C_{F}\left(\frac{1+z^{2}}{1-z}\right)$
"Plus" distribution:
$\int^{1} d z(\ldots)_{+} g(z)=\int^{1} d z(\ldots)[g(z)-g(1)]$
appears because of the virtual diagram for which $z=1$

Altarelli-Parisi probabilities

"Plus" distribution:

$z=1$

Different diagrams give extra contribution at $z=1$ in different gauges. The result is the same: no singularity at $z=1$.

Altarelli-Parisi probabilities

$$
\begin{aligned}
P_{q q}(z) & =C_{F}\left(\frac{1+z^{2}}{1-z}\right)_{+}, \quad P_{G q}(z)=C_{F} \frac{1+(1-z)^{2}}{z}, \quad P_{q G}(z)=\frac{1}{2}\left[z^{2}+(1-z)^{2}\right] \\
P_{G G}(z) & =2 C_{A}\left[\frac{z}{(1-z)_{+}}+\frac{1-z}{z}+z(1-z)\right]+\frac{1}{2}\left(\frac{11}{3} C_{A}-\frac{2}{3} n_{f}\right) \delta(1-z)
\end{aligned}
$$

Altarelli-Parisi probabilities

$$
\begin{aligned}
P_{q G}(z) & =P_{\bar{q} G}(z), \quad P_{G q}(z)=P_{G \bar{q}}(z), \\
P_{q q}(z) & =P_{G q}(1-z),
\end{aligned} \quad P_{G G}(z)=P_{G G}(1-z), \quad P_{q G}(z)=P_{q G}(1-z) \text { } l
$$

QCD corrections to parton model

on-shell condition

$$
\begin{aligned}
& 0=(z y p+q)^{2}=2 z y p q+q^{2}=2 M \nu z y-Q^{2} \\
& z y=\frac{Q^{2}}{2 M \nu}=x
\end{aligned}
$$

Recall $F_{1}: \quad F_{1}(x)=\frac{1}{2} \sum_{i} e_{i}^{2} f_{i}(x)$
$2 F_{1}(x)=e_{q}^{2} \int_{0}^{1} d y q(y) \delta(y-x)$

QCD corrections to parton model

Correction to F_{1} large logs

$$
\begin{aligned}
& q\left(x, Q^{2}\right)=q\left(x, \mu^{2}\right)+\frac{\alpha_{s}}{2 \pi} \ln \frac{Q^{2}}{\mu^{2}} \int_{x}^{1} \frac{d y}{y} P_{q q}\left(\frac{x}{y}\right) q\left(y, \mu^{2}\right)+\ldots \\
&=q\left(x, \mu^{2}\right)+\frac{\alpha_{s}}{2 \pi} \ln \frac{Q^{2}}{\mu^{2}} \xrightarrow{P_{q q} \otimes q\left(\mu^{2}\right)-} \\
& \text { Convolution: }
\end{aligned}
$$

$$
P_{q q} \otimes q=\int_{0}^{1} d z \int_{0}^{1} d y \delta(z y-x) P_{q q}(z) q(y) \begin{aligned}
& \begin{array}{l}
\text { Integration over } \\
d \theta \text { gave a pole }
\end{array} \\
& \hline
\end{aligned}
$$

DGLAP Evolution Equation

$$
\frac{d}{d \ln Q^{2}}=Q^{2} \frac{d}{d Q^{2}} \square q\left(x, Q^{2}\right)=q\left(x, \mu^{2}\right)+\frac{\alpha_{s}}{2 \pi} \ln \frac{Q^{2}}{\mu^{2}} P_{q q} \otimes q\left(\mu^{2}\right)+\ldots
$$

Evolution eq.
Dokshitzer,
Gribov, Lipatov

$$
\frac{d}{d \ln Q^{2}} q\left(x, Q^{2}\right)=\frac{\alpha_{s}}{2 \pi} P_{q q} \otimes q\left(Q^{2}\right)
$$

Altarelli, Parisi
Such equation sums up all powers $\frac{\alpha_{s}}{2 \pi} \ln \frac{Q^{2}}{\mu^{2}}$.
Leading Log Approximation (LLA)

DGLAP Evolution Equations

Full set of DGLAP equations:

$$
\begin{aligned}
& Q^{2} \frac{d}{d Q^{2}} q_{i}\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi}\left[P_{q q} \otimes q_{i}\left(Q^{2}\right)+P_{q G} \otimes G\left(Q^{2}\right)\right] \\
& Q^{2} \frac{d}{d Q^{2}} G\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi}\left[P_{G q} \otimes \sum_{i} q_{i}\left(Q^{2}\right)+P_{G G} \otimes G\left(Q^{2}\right)\right]
\end{aligned}
$$

We need an input at one scale $Q_{0}{ }^{2}$ and then we can evolve them up to some other Q^{2} note that index i runs over quarks and antiquarks when we construct a difference, called non-singlet, gluons cancel

$$
q_{i}^{N S}\left(x, Q^{2}\right)=q_{i}\left(x, Q^{2}\right)-\bar{q}_{i}\left(x, Q^{2}\right)
$$

DGLAP Evolution Equations

Define:
singlet

$$
q^{s}\left(x, Q^{2}\right)=\sum_{i}\left(q_{i}\left(x, Q^{2}\right)+\bar{q}_{i}\left(x, Q^{2}\right)\right)
$$

nonsinglet

$$
q_{i}^{N S}\left(x, Q^{2}\right)=q_{i}\left(x, Q^{2}\right)-\bar{q}_{i}\left(x, Q^{2}\right)
$$

DGLAP Evolution Equations

$$
Q^{2} \frac{d}{d Q^{2}} q^{N S}\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} P_{q q} \otimes q^{N S}\left(Q^{2}\right)
$$

$$
\begin{aligned}
Q^{2} \frac{d}{d Q^{2}} q^{S}\left(x, Q^{2}\right) & =\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi}\left[P_{q q} \otimes q^{S}\left(Q^{2}\right)+2 n_{f} P_{q G} \otimes G\left(Q^{2}\right)\right] \\
Q^{2} \frac{d}{d Q^{2}} G\left(x, Q^{2}\right) & =\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi}\left[P_{G q} \otimes q^{S}\left(Q^{2}\right)+P_{G G} \otimes G\left(Q^{2}\right)\right]
\end{aligned}
$$

DGLAP for Mellin moments

Moments of the convolution

$$
\begin{aligned}
M_{\underline{n}} & =\int_{0}^{1} d x x^{n-1} P \otimes f=\int_{0}^{1} d x x^{n-1} \int_{0}^{1} d z \int_{0}^{1} d y \delta(z y-x) P(z) f(y) \\
& =\xlongequal[\int_{0}^{1} d z z^{n-1} P(z) \int_{0}^{1} d y y^{n-1} f(y)=P_{n} f_{n}=\gamma^{n} f_{n}]{\gamma^{n} \text { anomalous dimension }}
\end{aligned}
$$

convolution is replaced by a product

DGLAP for Mellin moments

$$
\begin{gathered}
\frac{d q_{n}^{N S}(t)}{d t}=\frac{\alpha_{s}(t)}{2 \pi} \gamma_{q q}^{n} q_{n}^{N S}(t) \\
\frac{d}{d t}\left[\begin{array}{c}
q_{n}^{S}(t) \\
G_{n}(t)
\end{array}\right]=\frac{\alpha_{s}(t)}{2 \pi}\left[\begin{array}{cc}
\gamma_{q q}^{n} & 2 n_{f} \gamma_{q G}^{n} \\
\gamma_{G q}^{n} & \gamma_{G G}^{n}
\end{array}\right]\left[\begin{array}{c}
q_{n}^{S}(t) \\
G_{n}(t)
\end{array}\right] \\
\frac{\alpha_{s}(t)}{2 \pi}=2 a_{s}(t)=2 \frac{1}{\beta_{0} t}
\end{gathered}
$$

Numerical solutions

Numerical solutions

HERA F_{2} : data vs. theory

FIG. 2: Structure function F_{2} as a function of Q^{2} based on HERA-I measurements of $\mathrm{H} 1[2,3]$ and ZEUS [4] collaboration compared to results from fixed target experiments BCDMS [5] and NMC [6].

DGLAP vs. BFKL

Anomalous dimensions

$$
\begin{aligned}
\gamma_{q q}^{n} & =C_{F}\left[-2 \sum_{k=1}^{n+1} \frac{1}{k}+\frac{3}{2}+\frac{1}{n}+\frac{1}{n+1}\right] \\
\gamma_{q G}^{n} & =\frac{1}{2} \frac{2+n+n^{2}}{n(n+1)(n+2)}, \\
\gamma_{G q}^{n} & =C_{F} \frac{2+n+n^{2}}{n\left(n^{2}-1\right)} \\
\gamma_{G G}^{n} & =2 C_{A}\left[\frac{11}{12}-\sum_{k=1}^{n+2} \frac{1}{k}+\frac{1}{n-1}-\frac{1}{n}+\frac{2}{n+1}\right]-\frac{n_{f}}{3} .
\end{aligned}
$$

Valnce quark \# conservation

$$
\begin{aligned}
& \gamma_{q q}^{n}=C_{F}\left[-2 \sum_{k=1}^{n+1} \frac{1}{k}+\frac{3}{2}+\frac{1}{n}+\frac{1}{n+1}\right] \\
& \gamma_{q q}^{1}=0 \quad \rightarrow \quad \frac{d q_{n}^{N S}(t)}{d t}=0 \\
& \int d x\left[q_{i}\left(x, Q^{2}\right)-\bar{q}_{i}\left(x, Q^{2}\right)\right]=\text { const. }=\int d x q_{V i}\left(x, Q^{2}\right)
\end{aligned}
$$

Momentum conservation

consider moment $n=2$ for the singlet eqs.

$$
\begin{aligned}
\frac{d}{d t} q_{2}^{S}(t) & =-\frac{2}{\beta_{0} t}\left[\frac{4 C_{F}}{3} q_{2}^{S}(t)-\frac{n_{f}}{3} G_{2}(t)\right]=-\frac{2}{\beta_{0} t} f(t) \\
\frac{d}{d t} G_{2}(t) & =+\frac{2}{\beta_{0} t}\left[\frac{4 C_{F}}{3} q_{2}^{S}(t)-\frac{n_{f}}{3} G_{2}(t)\right]=+\frac{2}{\beta_{0} t} f(t)
\end{aligned}
$$

$q_{2}^{S}(t)+G_{2}(t)=$ const.

$$
=\int d x x\left[\sum_{i}\left(q_{i}\left(x, Q^{2}\right)+\bar{q}_{i}\left(x, Q^{2}\right)\right)+G\left(x, Q^{2}\right)\right]=1
$$

value of 1 is a requirement for a proper normalization

Gluon momentum

$$
\begin{aligned}
\frac{d}{d t} q_{2}^{S}(t) & =-\frac{2}{\beta_{0} t}\left[\frac{4 C_{F}}{3} q_{2}^{S}(t)-\frac{n_{f}}{3} G_{2}(t)\right]=-\frac{2}{\beta_{0} t} f(t) \\
\frac{d}{d t} G_{2}(t) & =+\frac{2}{\beta_{0} t}\left[\frac{4 C_{F}}{3} q_{2}^{S}(t)-\frac{n_{f}}{3} G_{2}(t)\right]=+\frac{2}{\beta_{0} t} f(t)
\end{aligned}
$$

Form a linear combination

$$
\frac{4 C_{F}}{3} \frac{d}{d t} q_{2}^{S}(t)-\frac{n_{f}}{3} \frac{d}{d t} G_{2}(t)=\frac{d}{d t} f(t)=-\frac{2}{\beta_{0} t}\left[\frac{4 C_{F}}{3}+\frac{n_{f}}{3}\right] f(t)
$$

since

$$
c=\frac{4 C_{F}}{3}+\frac{n_{f}}{3}>0
$$

the solution is trivial and tends to $0 \quad f(t)=f\left(t_{0}\right)\left(\frac{t}{t_{0}}\right)^{-2 c / \beta_{0}} \underset{t \rightarrow \infty}{\rightarrow} 0$

Gluon momentum

We have two asymptotic constraints:

$$
f(t)=\frac{4 C_{F}}{3} q_{2}^{S}(t)-\frac{n_{f}}{3} G_{2}(t)=0 \quad q_{2}^{S}(t)+G_{2}(t)=1
$$

which give

$$
q_{2}^{S}(t)=\frac{n_{f}}{4 C_{F}} G_{2}(t) \quad \rightarrow \quad\left[\frac{n_{f}}{4 C_{F}}+1\right] G_{2}(t)=1
$$

numerically we have

$$
G_{2}(t)=\frac{1}{\frac{n_{f}}{4 C_{F}}+1}=\frac{16}{16+3 n_{f}}=0.64, \underset{n_{f}=3}{ }, 0.57,0.52,0.0
$$

asymptotically gluons carry around 50\% of total momentum!

