QCD lecture 6

November 8

Infrared divergences

$$S_F^R = \frac{i}{p} \left(1 + \frac{\alpha(\mu^2)}{4\pi} C_F \left(\ln\left(\frac{-p^2}{\bar{\mu}^2}\right) - 1 \right) \right)$$

Divergent for $p^2 = 0$. This is infrared divergence (from the lower int. limit). It can be regularized by going to the number of dimensions higher than 4. Before expansion, change $\varepsilon \rightarrow -\kappa$

$$S_F^R(p) = \frac{i}{p} \left(1 - \frac{\alpha_s}{4\pi} C_F \left(\frac{\bar{\mu}^2}{-p^2} \right)^{\varepsilon} \left(\frac{1}{\varepsilon} + 1 \right) + \frac{\alpha_s}{4\pi} C_F \frac{1}{\varepsilon} \right)$$

Infrared divergences

$$S_F^R = \frac{i}{p} \left(1 + \frac{\alpha(\mu^2)}{4\pi} C_F \left(\ln\left(\frac{-p^2}{\bar{\mu}^2}\right) - 1 \right) \right)$$

Divergent for $p^2 = 0$. This is infrared divergence (from the lower int. limit). It can be regularized by going to the number of dimensions higher than 4. Before expansion, change $\varepsilon \rightarrow -\kappa$

$$S_F^R(p) = \frac{i}{p'} \left(1 - \frac{\alpha_s}{4\pi} C_F \left(\frac{-p^2}{\bar{\mu}^2} \right)^{\kappa} \left(-\frac{1}{\kappa} + 1 \right) - \frac{\alpha_s}{4\pi} C_F \frac{1}{\kappa} \right)$$
$$= \frac{i}{p'^2 = 0} \frac{i}{p'} \left(1 - \frac{\alpha_s}{4\pi} C_F \frac{1}{\kappa} \right).$$

Infrared divergencies

One cannot distinguish a single electron from an electron accompanied by a zero energy foton or a collinear foton (for massless fermion). One has to sum over such degenerate states.

Here IR singularities cancel out

Infrared singularities

IR singularite is arise when the theory has massless particles (photon, gluon)

- when energy of photon (gluon) is small soft singularity
- when for massless fermion photon (gluon) is parallel to that fermion

 collinear singularity

Bloch – Nordsieck theorem (baically derived for QED) Kinoshita – Lee – Nauenberg theorem (generalized to QCD)

Kinoshita-Lee-Nauenberg (KLN) theorem assures that a summation over degenerate initial and final states removes all infrared (IR) divergences in QCD.

This very broad topic, beyond the scope of this lecture

QCD corrections to parton model

photon scatters off the gluon

QCD corrections to parton model

QCD corrections to parton model yp = E(1, 0, 0, 1) $\frac{z(yp)}{\varphi} \xrightarrow{\theta}_{k} d^{4}k \,\delta(k^{2}) \sim \frac{d^{3}k}{\omega} \sim \omega d\omega d\cos\theta d\varphi$ $k = \omega(1, \sin\theta\sin\varphi, \sin\theta\cos\varphi, \cos\theta)$ p' = z(yp) $\frac{1}{p'^{2}} = \frac{1}{(yp-k)^{2}} = \frac{1}{2ypk} = \frac{1}{2E\omega(1-\cos\theta)}$

QCD corrections to parton model yp = E(1, 0, 0, 1) $\frac{z(yp)}{\varphi} = \frac{\theta}{k} d^4k \,\delta(k^2) \sim \frac{d^3k}{\omega} \sim \omega d\omega d\cos\theta d\varphi$ $k = \omega(1, \sin\theta\sin\varphi, \sin\theta\cos\varphi, \cos\theta)$ p' = z(yp)

$$|\mathcal{M}|^2 d^4k \,\delta(k^2) \sim \sin^2 \theta \frac{\omega d\omega \, d\cos \theta}{\omega^2 (1 - \cos \theta)^2} \sim \frac{d\omega}{\omega} \frac{d\theta^2}{\theta^2}$$

QCD corrections to parton model

• soft (cancel)
$$\omega \to 0$$

• collinear (remain)
$$heta
ightarrow 0$$

p' = z(vp)

yp

In dimensional regularization:

 $d\omega \, d\theta^2$

 $\frac{\omega}{\omega} \frac{d\sigma}{\theta^2}$

$$\left(\frac{Q^2}{\mu^2}\right)^{\kappa} \frac{1}{\kappa} = \frac{1}{\kappa} + \log\left(\frac{Q^2}{\mu^2}\right)$$

Poles can be absorbed into bare parton densities. Logs can be summed up to all orders. Factrozation. Coefficients of the poles are universal functions of z

a quark of the longitudinal momentum fraction z in initial quark

a quark of the longitudinal momentum fraction z in initial quark

$$P_{qq}(z) = C_F \left(\frac{1+z^2}{1-z}\right)_+$$

a quark of the longitudinal momentum fraction z in initial quark

appears because of the virtual diagram for which z = 1

Different diagrams give extra contribution at z = 1 in different gauges. The result is the same: no singularity at z = 1.

 $P_{qG}(z) = P_{\overline{q}G}(z), \qquad P_{Gq}(z) = P_{G\overline{q}}(z),$

 $P_{qq}(z) = P_{Gq}(1-z), \ P_{GG}(z) = P_{GG}(1-z), \ P_{qG}(z) = P_{qG}(1-z)$

QCD corrections to parton model

QCD corrections to parton model

DGLAP Evolution Equation

$$\frac{d}{d\ln Q^2} = Q^2 \frac{d}{dQ^2} \quad \Longrightarrow \quad q(x, Q^2) = q(x, \mu^2) + \frac{\alpha_s}{2\pi} \ln \frac{Q^2}{\mu^2} P_{qq} \otimes q(\mu^2) + \dots$$

Evolution eq. Dokshitzer, Gribov, Lipatov Altarelli, Parisi

$$\frac{d}{d\ln Q^2}q(x,Q^2) = \frac{\alpha_s}{2\pi}P_{qq} \otimes q(Q^2)$$

Such equation sums up all powers $\frac{s}{2\pi} \ln \frac{s}{\mu^2}$.

Leading Log Approximation (LLA)

DGLAP Evolution Equations

Full set of DGLAP equations:

$$Q^2 \frac{d}{dQ^2} q_i(x, Q^2) = \frac{\alpha_s(Q^2)}{2\pi} \left[P_{qq} \otimes q_i(Q^2) + P_{qG} \otimes G(Q^2) \right]$$
$$Q^2 \frac{d}{dQ^2} G(x, Q^2) = \frac{\alpha_s(Q^2)}{2\pi} \left[P_{Gq} \otimes \sum_i q_i(Q^2) + P_{GG} \otimes G(Q^2) \right]$$

We need an input at one scale Q_0^2 and then we can evolve them up to some other Q^2 note that index *i* runs over quarks and antiquarks when we construct a difference, called non-singlet, gluons cancel

$$q_i^{NS}(x,Q^2) = q_i(x,Q^2) - \overline{q}_i(x,Q^2)$$

DGLAP Evolution Equations

Define:

singlet

$$q^{S}(x,Q^{2}) = \sum_{i} \left(q_{i}(x,Q^{2}) + \overline{q}_{i}(x,Q^{2}) \right)$$

nonsinglet

$$q_i^{NS}(x,Q^2) = q_i(x,Q^2) - \overline{q}_i(x,Q^2)$$

DGLAP Evolution Equations

$$Q^2 \frac{d}{dQ^2} q^{NS}(x, Q^2) = \frac{\alpha_s(Q^2)}{2\pi} P_{qq} \otimes q^{NS}(Q^2)$$

$$Q^{2} \frac{d}{dQ^{2}} q^{S}(x, Q^{2}) = \frac{\alpha_{s}(Q^{2})}{2\pi} \left[P_{qq} \otimes q^{S}(Q^{2}) + 2n_{f} P_{qG} \otimes G(Q^{2}) \right]$$
$$Q^{2} \frac{d}{dQ^{2}} G(x, Q^{2}) = \frac{\alpha_{s}(Q^{2})}{2\pi} \left[P_{Gq} \otimes q^{S}(Q^{2}) + P_{GG} \otimes G(Q^{2}) \right]$$

DGLAP for Mellin moments

Moments of the convolution

$$M_{\underline{n}} = \int_{0}^{1} dx \, x^{n-1} P \otimes f = \int_{0}^{1} dx \, x^{n-1} \int_{0}^{1} dz \int_{0}^{1} dy \delta(zy - x) P(z) f(y)$$
$$= \int_{0}^{1} dz \, z^{n-1} P(z) \int_{0}^{1} dy \, y^{n-1} f(y) = P_n \, f_n = \gamma^n f_n$$

 γ^n anomalous dimension

convolution is replaced by a product

DGLAP for Mellin moments

$$\frac{\alpha_s(t)}{2\pi} = 2\,a_s(t) = 2\,\frac{1}{\beta_0 t}$$

Numerical solutions

Numerical solutions

HERA F_2 : data vs. theory

FIG. 2: Structure function F_2 as a function of Q^2 based on HERA-I measurements of H1 [2, 3] and ZEUS [4] collaboration compared to results from fixed target experiments BCDMS [5] and NMC [6].

DGLAP vs. BFKL

small x large W

W – gamma+proton energy

large x small W

Anomalous dimensions

$$\begin{split} \gamma_{qq}^{n} &= C_{F} \left[-2 \sum_{k=1}^{n+1} \frac{1}{k} + \frac{3}{2} + \frac{1}{n} + \frac{1}{n+1} \right], \\ \gamma_{qG}^{n} &= \frac{1}{2} \frac{2 + n + n^{2}}{n(n+1)(n+2)}, \\ \gamma_{Gq}^{n} &= C_{F} \frac{2 + n + n^{2}}{n(n^{2} - 1)} \\ \gamma_{GG}^{n} &= 2C_{A} \left[\frac{11}{12} - \sum_{k=1}^{n+2} \frac{1}{k} + \frac{1}{n-1} - \frac{1}{n} + \frac{2}{n+1} \right] - \frac{n_{f}}{3} \frac{1}{2} \right] \end{split}$$

Valnce quark # conservation

$$\gamma_{qq}^{n} = C_{F} \left[-2\sum_{k=1}^{n+1} \frac{1}{k} + \frac{3}{2} + \frac{1}{n} + \frac{1}{n+1} \right]$$
$$\gamma_{qq}^{1} = 0 \quad \to \quad \frac{dq_{n}^{NS}(t)}{dt} = 0$$

$$\int dx \left[q_i(x, Q^2) - \overline{q}_i(x, Q^2) \right] = \text{const.} = \int dx q_{Vi}(x, Q^2)$$

Momentum conservation

consider moment n = 2 for the singlet eqs.

 $q_2^S(t)$

$$\begin{aligned} \frac{d}{dt}q_2^S(t) &= -\frac{2}{\beta_0 t} \left[\frac{4C_F}{3} q_2^S(t) - \frac{n_f}{3} G_2(t) \right] = -\frac{2}{\beta_0 t} f(t) \\ \frac{d}{dt} G_2(t) &= +\frac{2}{\beta_0 t} \left[\frac{4C_F}{3} q_2^S(t) - \frac{n_f}{3} G_2(t) \right] = +\frac{2}{\beta_0 t} f(t) \\ + G_2(t) &= \text{const.} \\ &= \int dx \, x \left[\sum_i \left(q_i(x, Q^2) + \overline{q}_i(x, Q^2) \right) + G(x, Q^2) \right] = 1 \end{aligned}$$

value of 1 is a requirement for a proper normalization

$$\begin{aligned} & \frac{d}{dt}q_{2}^{S}(t) = -\frac{2}{\beta_{0}t} \left[\frac{4C_{F}}{3} q_{2}^{S}(t) - \frac{n_{f}}{3}G_{2}(t) \right] = -\frac{2}{\beta_{0}t} f(t) \\ & \frac{d}{dt}G_{2}(t) = +\frac{2}{\beta_{0}t} \left[\frac{4C_{F}}{3} q_{2}^{S}(t) - \frac{n_{f}}{3}G_{2}(t) \right] = +\frac{2}{\beta_{0}t} f(t) \end{aligned}$$

Form a linear combination

$$\frac{4C_F}{3}\frac{d}{dt}q_2^S(t) - \frac{n_f}{3}\frac{d}{dt}G_2(t) = \frac{d}{dt}f(t) = -\frac{2}{\beta_0 t} \left[\frac{4C_F}{3} + \frac{n_f}{3}\right]f(t)$$

since $c = \frac{4C_F}{3} + \frac{n_f}{3} > 0$

the solution is trivial and tends to 0

$$f(t) = f(t_0) \left(\frac{t}{t_0}\right)^{-2c/\beta_0} \xrightarrow[t \to \infty]{} 0$$

Gluon momentum

We have two asymptotic constraints:

$$f(t) = \frac{4C_F}{3} q_2^S(t) - \frac{n_f}{3} G_2(t) = 0 \qquad q_2^S(t) + G_2(t) = 1$$

which give

$$q_2^S(t) = \frac{n_f}{4C_F} G_2(t) \qquad \rightarrow \qquad \left[\frac{n_f}{4C_F} + 1\right] G_2(t) = 1$$

numerically we have

$$G_2(t) = \frac{1}{\frac{n_f}{4C_F} + 1} = \frac{16}{16 + 3n_f} = \underset{n_f=3}{0.64}, \underset{n_f=4}{0.57}, \underset{n_f=5}{0.52}, \underset{n_f=6}{0.47}$$

asymptotically gluons carry around 50% of total momentum!