## QCD Lecture 4

October 26

## Quantum

## Chromo Dynamics

Gauge theory based on $\operatorname{SU}(3)$ group

$$
\Psi(x) \rightarrow \Psi^{\prime}(x)=U(x) \Psi(x) \quad U(x)=e^{-i \theta_{m}(x) T^{m}} \quad\left(m=1,2, \ldots N^{2}-1\right)
$$

covariant derivative

$$
D_{\mu}=\partial_{\mu}+i g T^{m} A_{\mu}^{m}(x)=\partial_{\mu}+i g \boldsymbol{A}_{\mu}(x)
$$

transforms as

$$
\begin{aligned}
D_{\mu}^{\prime}=U(x) D_{\mu} U^{\dagger}(x) & \longrightarrow \\
& \longrightarrow
\end{aligned} \begin{aligned}
& \boldsymbol{A}_{\mu}^{\prime}(x)=U(x) \boldsymbol{A}_{\mu}(x) U^{\dagger}(x)-\frac{i}{g} U(x) \partial_{\mu} U^{\dagger}(x)
\end{aligned}
$$

## SU(N) group

in fundamental representation generators are given as $N \times N$ hermitean matrices that satisfy commutation relations

$$
\left[T_{m}, T_{n}\right]=i f_{m n l} T_{l}
$$

$f_{m n l}$ are totally antisymmetric tensors known as structure constants. To define the group we either give explicit form of the generators or a complete set of structure constants.

Examples:
SU(2)

$$
T^{i}=\frac{1}{2} \tau^{i}
$$

Pauli matrices

$$
\tau^{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \tau^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \tau^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Normalization:

$$
\operatorname{Tr}\left(T_{m} T_{n}\right)=\frac{1}{2} \delta_{m n}
$$

## SU(N) group

in fundamental representation generators are given as $N \times N$ hermitean matrices that satisfy commutation relations

$$
\left[T_{m}, T_{n}\right]=i f_{m n l} T_{l}
$$

$f_{m n l}$ are totally antisymmetric tensors known as structure constants. To define the group we either give explicit form of the generators or a complete set of structure constants.

Examples:
SU(3)
Gell-Mann
matrices
$T^{i}=\frac{1}{2} \lambda^{m}$

$$
\begin{aligned}
& \lambda^{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \lambda^{2}=\left[\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \lambda^{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \lambda^{4}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], \lambda^{5}=\left[\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right], \lambda^{8}=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right] \\
& \lambda^{6}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \lambda^{7}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i
\end{array}\right],
\end{aligned}
$$

## Conjugated <br> fundamental rep.

obviously, there are infintely many matrix representations related by the unitary transformation

$$
T_{n}^{\prime}=U^{\dagger} T_{n} U
$$

let's complex conjugate the commutation relation

$$
\left[T_{m}, T_{n}\right]=i f_{m n l} T_{l}
$$

and multiply all generators by minus

$$
\left[-T_{m}^{*},-T_{n}^{*}\right]=i f_{m n l}\left(-T_{l}^{*}\right)
$$

we have constructed conjugated representation $T_{n}^{\prime}=-T_{n}^{*}$ satysfying commutation relation
is this representation unitary equivalent to the fundamental one?

## Conjugated <br> fundamental rep.

obviously, there are infintely many matrix representations related by the unitary transformation

$$
T_{n}^{\prime}=U^{\dagger} T_{n} U
$$

let's complex conjugate the commutation relation

$$
\left[T_{m}, T_{n}\right]=i f_{m n l} T_{l}
$$

and multiply all generators by minus

$$
\left[-T_{m}^{*},-T_{n}^{*}\right]=i f_{m n l}\left(-T_{l}^{*}\right)
$$

we have constructed conjugated representation $T_{n}^{\prime}=-T_{n}^{*}$ satysfying commutation relation
is this representation unitary equivalent to the fundamental one?

SU(2) - yes
SU(3) and higher - no
complication

$$
\begin{aligned}
\tau_{i} \tau_{j} & =\delta_{i j}+i \varepsilon_{i j k} \tau_{k} \\
\lambda_{a} \lambda_{b} & =\frac{2}{3} \delta_{a b}+i f_{a b c} \lambda_{c}+d_{a b c} \lambda_{c}
\end{aligned}
$$

therefore quarks and antiquarks are different objects

## Adjoint representation

it follows from the Jacobi identity

$$
\left[T_{m},\left[T_{n}, T_{l}\right]\right]+\left[T_{n},\left[T_{l}, T_{m}\right]\right]+\left[T_{l},\left[T_{m}, T_{n}\right]\right]=0
$$

that

$$
f_{n l k} f_{k m r}+f_{l m k} f_{k n r}+f_{m n k} f_{k l r}=0
$$

this relation can be writen in terms of $\left(\mathrm{N}^{2}-1\right) \times\left(\mathrm{N}^{2}-1\right)$ matrices defined as

$$
\left(T_{l}^{\mathrm{adj}}\right)_{m n}=-i f_{l m n}
$$

in the following way

$$
\left[T_{m}, T_{n}\right]=i f_{m n l} T_{l}
$$

which means that $T_{l}^{\text {adj }}$ are $\operatorname{SU}(3)$ generators, they form adjoint representation note that

$$
-T_{l}^{\mathrm{adj} *}=T_{l}^{\mathrm{adj}}
$$

so adjoint representation is self-conjugated (real)

## Adjoint representation

consider vector in the adjoint representation $\quad A=\left(a^{1}, \ldots, a^{N^{2}-1}\right)$
which transforms as $\quad A^{\prime}=U^{\text {adj }} A \rightarrow a^{\prime m}=a^{m}-\theta^{l} f_{l m n} a^{n}+\ldots$.
because $U(x)=e^{-i \theta_{m}(x) T^{m}}$ and $\quad\left(T_{l}^{\text {adj }}\right)_{m n}=-i f_{l m n}$
one can write this transformation differently, defining $\quad \boldsymbol{A}=\sum_{n=1}^{N^{2}-1} a^{n} T_{n}$
then $\quad \boldsymbol{A}^{\prime}=U \boldsymbol{A} U^{\dagger}$
leads to

$$
\begin{aligned}
a^{\prime m} T_{m} & =\left(1-i \theta^{n} T_{n}+\ldots\right) a^{m} T_{m}\left(1+i \theta^{n} T_{n}+\ldots\right) \\
& =a^{m} T_{m}-i \theta^{n}\left[T_{n}, T_{m}\right] a^{m} \\
& =a^{m} T_{m}+\theta^{n} f_{n m k} T_{k} a^{m} \\
& =\left(a^{m}-\theta^{l} f_{l m n} a^{n}\right) T_{m}
\end{aligned}
$$

## Adjoint representation

consider vector in the adjoint representation $\quad A=\left(a^{1}, \ldots, a^{N^{2}-1}\right)$
which transforms as $\quad A^{\prime}=U^{\text {adj }} A \rightarrow \underline{a^{\prime m}=a^{m}-\theta^{l} f_{l m n} a^{n}+\ldots . . . . . . . ~}$
because $\quad U(x)=e^{-i \theta_{m}(x) T^{m}}$ and $\quad\left(T_{l}^{\text {adj }}\right)_{m n}=-i f_{l m n}$
one can write this transformation differently, defining $\quad \boldsymbol{A}=\sum_{n=1}^{N^{2}-1} a^{n} T_{n}$
then $\quad \boldsymbol{A}^{\prime}=U \boldsymbol{A} U^{\dagger}$
leads to

$$
\begin{aligned}
a^{\prime m} T_{m} & =\left(1-i \theta^{n} T_{n}+\ldots\right) a^{m} T_{m}\left(1+i \theta^{n} T_{n}+\ldots\right) \\
& =a^{m} T_{m}-i \theta^{n}\left[T_{n}, T_{m}\right] a^{m} \\
& =a^{m} T_{m}+\theta^{n} f_{n m k} T_{k} a^{m} \\
& =\left(a^{m}-\theta^{l} f_{l m n} a^{n}\right) T_{m},
\end{aligned}
$$

gauge fields transform according to the adjoint representation of SU(N)

## QED vs.QCD

field tensor in QED

$$
F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}
$$

can be expressed in terms of covariant derivatives, because the the field is Abelian:

$$
F^{\mu \nu}=D^{\mu} A^{\nu}-D^{\nu} A^{\mu}=\left(\partial^{\mu}+i q \underline{A^{\mu}}\right) A^{\nu}-\left(\partial^{\nu}+i q \underline{A^{\nu}}\right) A^{\mu}
$$

this can be generalized to the non Abelian case where the commutator does not vanish

$$
\boldsymbol{F}_{\mu \nu}=D_{\mu} \boldsymbol{A}_{\nu}-D_{\nu} \boldsymbol{A}_{\mu}=\partial_{\mu} \boldsymbol{A}_{\nu}-\partial_{\nu} \boldsymbol{A}_{\mu}+i g\left[\boldsymbol{A}_{\mu}, \boldsymbol{A}_{\nu}\right]
$$

in order to find transformaion law, we have first to prove that

$$
\boldsymbol{F}_{\mu \nu}=\frac{1}{i g}\left[D_{\mu}, D_{\nu}\right]
$$

commutator is in principle an operator and the field tensor is a function!
because

$$
D_{\mu}^{\prime}=U(x) D_{\mu} U^{\dagger}(x)
$$

we have

$$
\boldsymbol{F}_{\mu \nu}^{\prime}=U(x) \boldsymbol{F}_{\mu \nu} U^{\dagger}(x)
$$

## QCD Lagrangian

gauge boson part (yang-Mills)

$$
\mathcal{L}_{\mathrm{YM}}=-\frac{1}{2} \operatorname{Tr}\left(\boldsymbol{F}_{\mu \nu} \boldsymbol{F}^{\mu \nu}\right)=-\frac{1}{4} \sum_{m} F_{\mu \nu}^{m} F^{m \mu \nu}
$$

in QED

$$
\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)^{2}
$$

in QCD

$$
\left(\partial_{\mu} \boldsymbol{A}_{\nu}-\partial_{\nu} \boldsymbol{A}_{\mu}+i g\left[\boldsymbol{A}_{\mu}, \boldsymbol{A}_{\nu}\right]\right)^{2}
$$

QCD lagrangian contains interactions! gluons interact with themselves, they carry adjoint color charge

## QCD Lagrangian

gauge boson part (Yang-Mills)

$$
\mathcal{L}_{\mathrm{YM}}=-\frac{1}{2} \operatorname{Tr}\left(\boldsymbol{F}_{\mu \nu} \boldsymbol{F}^{\mu \nu}\right)=-\frac{1}{4} \sum F_{\mu \nu}^{m} F^{m \mu \nu}
$$

in QED

$$
\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)^{2}
$$

in QCD

$$
\left(\partial_{\mu} \boldsymbol{A}_{\nu}-\partial_{\nu} \boldsymbol{A}_{\mu}+i g\left[\boldsymbol{A}_{\mu}, \boldsymbol{A}_{\nu}\right]\right)^{2}
$$

QCD lagrangian contains interactions!

gluons interact with themselves, they carry adjoint color charge


$$
\begin{aligned}
& -i g_{s}^{2} f^{a b e} f^{c d e}\left(g_{\rho \nu} g_{\mu \sigma}-g_{\rho \sigma} g_{\mu \nu}\right) \\
& -i g_{s}^{2} f^{a c e} f^{b d e}\left(g_{\rho \mu} g_{\nu \sigma}-g_{\rho \sigma} g_{\mu \nu}\right) \\
& -i g_{s}^{2} f^{a d e} f^{c b e}\left(g_{\rho \nu} g_{\mu \sigma}-g_{\rho \mu} g_{\sigma \nu}\right)
\end{aligned}
$$

## QCD Lagrangian

gauge boson part (yang-Mills)

$$
\mathcal{L}_{\mathrm{YM}}=-\frac{1}{2} \operatorname{Tr}\left(\boldsymbol{F}_{\mu \nu} \boldsymbol{F}^{\mu \nu}\right)=-\frac{1}{4} \sum F_{\mu \nu}^{m} F^{m \mu \nu}
$$

in QED

$$
\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)^{2}
$$

in QCD

$$
\left(\partial_{\mu} \boldsymbol{A}_{\nu}-\partial_{\nu} \boldsymbol{A}_{\mu}+i g\left[\boldsymbol{A}_{\mu}, \boldsymbol{A}_{\nu}\right]\right)^{2}
$$

QCD lagrangian contains interactions!

gluons interact with themselves, they carry adjoint color charge


$$
\begin{aligned}
& -i g_{s}^{2} f^{a b e} f^{c d e}\left(g_{\rho \nu} g_{\mu \sigma}-g_{\rho \sigma} g_{\mu \nu}\right) \\
& -i g_{s}^{2} f^{a c e} f^{b d e}\left(g_{\rho \mu} g_{\nu \sigma}-g_{\rho \sigma} g_{\mu \nu}\right) \\
& -i g_{s}^{2} f^{a d e} f^{c b e}\left(g_{\rho \nu} g_{\mu \sigma}-g_{\rho \mu} g_{\sigma \nu}\right)
\end{aligned}
$$

## Full QCD lagrangian

$$
\mathcal{L}=-\frac{1}{2} \operatorname{Tr}\left[\boldsymbol{F}_{\mu \nu} \boldsymbol{F}^{\mu \nu}\right]+\sum_{f=1}^{6}\left[\bar{q}_{f} i \gamma^{\mu} D_{\mu} q_{f}-m_{f} \bar{q}_{f} q_{f}\right]
$$

quarks interact via covariant derivative

propagators:

$$
i S_{F}(p)=\cdot i \delta_{i j} \frac{(k+m)}{k^{2}-m^{2}+i \epsilon}
$$

onns
gauge choice!

$$
i D_{F}(p)_{\mu \nu}=\frac{-i \delta_{a b}}{k^{2}+i \epsilon}\left[g_{\mu \nu}-(1-\eta) \frac{k_{\mu} k_{\nu}}{k^{2}}\right]
$$

## Full QCD lagrangian

$$
\mathcal{L}=-\frac{1}{2} \operatorname{Tr}\left[\boldsymbol{F}_{\mu \nu} \boldsymbol{F}^{\mu \nu}\right]+\sum_{f=1}^{6}\left[\bar{q}_{f} i \gamma^{\mu} D_{\mu} q_{f}-m_{f} \bar{q}_{f} q_{f}\right]
$$

quarks interact via covariant derivative

propagators:

$$
i S_{F}(p)=\cdot i \delta_{i j} \frac{(\not k+m)}{k^{2}-m^{2}+i \epsilon}
$$

onns
gauge choice!

$$
i D_{F}(p)_{\mu \nu}=\frac{-i \delta_{a b}}{k^{2}+i \epsilon}\left[g_{\mu \nu}-(1-\eta) \frac{k_{\mu} k_{\nu}}{k^{2}}\right]
$$

## Color factors

each Feynman diagram is a product of a momentum-Dirac structure (like in QED) and a color factor
to calculate color factors it is very practical to use the graphical notation
fundamental geneator:
$m, n=1,2, \ldots N^{2}-1, \quad a, b=1,2, \ldots N$
multiplication:

adjoint generator:


## Color factors

Kroneker deltas and traces:

$$
\begin{aligned}
& a \underset{=\delta_{a b}}{a} \quad \underbrace{\sim}=N \\
& =\delta_{m n}^{\sim \sim n} \\
& \{\sim \sim
\end{aligned}
$$

generators are tracless and normalized to $1 / 2$


## Color factors

commutation relations: $\quad\left[T_{m}, T_{n}\right]=i f_{m n l} T_{l}$
fundamental:

adjoint:


## Color factors

Example:
Casimir operator for the fundamental representation
quadratic Casimir operator is the sum over all generators squared and it is proportional to unity multiplied by a number, which is simply called "Casimir"

$$
\sum_{n}\left(T^{n}\right)^{2}=C_{F} \mathbf{1}
$$

In $\operatorname{SU}(2)$ for any representation of $\operatorname{spin} s$ it is equal to

$$
\sum_{n} \hat{S}_{n}^{2}=s(s+1) 1
$$

## Color factors

Example:
Casimir operator for the fundamental representation

$$
\sum_{n}\left(T^{n}\right)^{2}=C_{F} \mathbf{1}
$$



## Color factors

Example:
Casimir operator for the fundamental representation
$\sum_{n}\left(T^{n}\right)^{2}=C_{F} \mathbf{1}$
contract fermion line:
use:


## Color factors

Example:
Casimir operator for the fundamental representation
$\sum_{n}\left(T^{n}\right)^{2}=C_{F} \mathbf{1}$

$$
\Sigma_{n}\left(T^{n}\right)^{2}=\frac{\Xi^{20 e r e s \xi} \xi}{\leftarrow}=C_{F} \longleftarrow
$$

contract fermion line:
use:

$$
m=N
$$

## Color factors

Example:
Casimir operator for the fundamental representation
$\sum_{n}\left(T^{n}\right)^{2}=C_{F} \mathbf{1}$

$$
\Sigma_{n}\left(T^{n}\right)^{2}=\frac{\text { Z }^{20 e r e b} \xi}{\longleftarrow}=C_{F} \longleftarrow
$$

contract fermion line:
use:
~n


$$
C_{F}=\frac{N^{2}-1}{2 N}= \begin{cases}\frac{3}{4} & \mathrm{SU}(2) \\ \frac{4}{3} & \mathrm{SU}(3)\end{cases}
$$

